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Abstract: The fast charge battery control problem is characterized by the need to have a
sufficiently detailed model that can capture both the charging process and the inevitable
constraints that limit the rate of charging due to battery state of health requirements. Presently,
it appears the minimal modeling requirements to address the charging problem in model based
fashion are unknown. This work seeks to develop a modeling methodology covering a large range
of applications through systematically simplifying the partial differential equations that describe
battery dynamics. The effects of grid resolution and polynomial order on the complexity and
accuracy of reduced order models have been investigated to provide insight into the minimum
modeling requirements at different charge rates. The proposed models are intended for controller
design and optimization applications including fast charge control.
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1. INTRODUCTION

Partial or full electrification of vehicle powertrain is one
approach addressing international expectation of low CO2

personal transport and high energy efficiency. With this
in mind, many studies suggest the proportion of electrified
vehicles in the market will significantly increase (e.g. Hens-
ley et al. (2012)). However, the development of electric
vehicles (EVs) and hybrid EVs is highly dependent on ap-
propriate use of their key technology, the battery system.
Lithium-ion (Li-ion) batteries are considered as the most
promising cell chemistry for automotive applications owing
to their high energy and power density, no memory effect,
and low self-discharge.

The key limiters in EVs uptake currently are the high
purchase price, limited range, and charge times compared
to internal combustion engine (ICE) vehicles. Price of
battery, as a major constituent part of the whole vehicle,
is predicted to fall from $500–$1000 per kWh today
to about $160–$300 per kWh by 2025 (Hensley et al.
(2012); Kinghorn and Kua (2011)). Range anxiety may be
addressed partially through lower battery prices allowing
larger packs, but improving the charge rate to an order
that allows comparable ‘refuel’ times with ICE vehicles
would also help alleviate range anxiety. Faster charging
may also lead to reduced vehicle cost through enabling
smaller battery packs. Currently the charge times are
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limited by the need to conservatively protect the battery
state of health (SOH) and lifetime.

Optimal fast charging control involves determining the
currents which charge the battery to a given capacity
in the shortest time without adversely impacting battery
health. The ideal problem can be generally stated in terms
of battery dynamics, ω, and the SOH and state of charge
(SOC) constraints as:

min
I(t)

tf (1a)

s.t. ω̇ = f(ω, t) (1b)

SOH(t)≥ SOHmin (1c)

SOC(tf ) = SOCmax (1d)

Model based control has been a successful approach in
constraint handling for a range of optimal and sub-optimal
control applications, so it is a good candidate for battery
management problem, (1). However, a suitable battery
model to use in (1b) for fast charge operation which
captures the key system characteristics while of reasonable
computational complexity is required to achieve this aim.
The models of a Li-ion battery widely discussed in the
literature can be grouped in two main categories, namely
equivalent circuit models (ECMs) and electrochemical
models.

ECMs idealize the battery as an open-circuit voltage
source connected with several resistors and capacitors, and
are typically employed in current battery management
system because of low computational times. However,
these models are limiting for the lack of detailed battery
physical information and low accuracy across a range of
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Fig. 1. Schematic and steps to develop a reduced model for
a Li-ion cell. a). Infinity dimensional model; b). Full
order PDE model; c). 2D PDE model; d). Pseudo 2D
(x and r) PDE model; e). 1D PDE model; f). 1D ODE
model.

charging conditions and in SOH prediction (Chaturvedi
et al. (2010)). Thus, ECMs are not considered here as a
suitable structure for (1b).

A first principle model of a Li-ion cell including a lithium-
anode, electrolyte and porous insertion cathode was ini-
tially presented by Doyle et al. (1993) and reformulated
by Chaturvedi et al. (2010). This model structure com-
promises coupled nonlinear partial differential equations
(PDEs) across two spatial dimensions that are impracti-
cal for most optimization and control applications, and
does not consider temperature variation. Temperature is a
particularly important factor in battery modeling because
heat generation during charge and discharge is known to
potentially have significant impact on the battery’s SOH.
In view of this, a battery model incorporating coupled
electrochemical and thermal behaviors will be proposed
in this paper.

Various efforts have been previously made to reformulate
and simplify the electrochemical PDE model. Reduced
models based on mixed spatial discretization across two
dimensions (2D) (e.g. Corno et al. (2012)) show high accu-
racy relative to the original model, but involve a large sys-
tem of ordinary differential equations (ODEs). To avoid a
large computational burden associated with these models,
the authors subsequently propose further simplifications,
however these are not, justified analytically or physically,
necessarily.

Other simplifications to the spatially discretized model
include the use of polynomial profiles and volume-average
integration of Li-ion concentration (Subramanian et al.
(2001)). Similarly, finite difference methods introduced
by Shi et al. (2011) capture electrolyte concentration
dynamics, but still exhibit long model computational times
due to the large number of nodes present in the model.

A number of other authors have applied model reduction
approaches based around elimination of some states or

state dynamics (e.g. Klein et al. (2013); Perkins et al.
(2012)). The most well known approach is the introduction
of the single particle model (SPM) assumption, whereby
the positive and negative electrodes and separator are
respectively replaced by a single node with lumped param-
eters and states (Ning and Popov (2004)). These classes
of reduced order models all suffer from an inability to
suitably capture battery dynamics and SOC/SOH at a
wide current range (Santhanagopalan et al. (2006); Moura
et al. (2012)). This is clearly an issue in solving the optimal
control problem (1).

Consequently, the objective of this work is to establish a
library of control-oriented Li-ion cell models with estab-
lished accuracy over a large range of possible charge rates.
The schematic and steps are shown in Fig. 1, starting from
the full order electrochemical and thermal PDE model.
Model reductions are rigorously applied at each stage,
leading to a number of reduced-order model parameters
(such as grid resolutions) that must be selected to provide
sufficient accuracy at differential charge rates. Simulation
studies are performed to provide insight into the parameter
requirements for the full range of charge rates considered.

2. PDE MODEL OVERVIEW

In a Li-ion cell, the dynamics (1b) represent the flow of Li-
ions from the positive electrode to the negative electrode,
and all the resulting electrochemical and thermal phenom-
ena. The starting point for this work will be electrochem-
ical model of Chaturvedi et al. (2010) augmented by the
thermal model of Gu and Wang (2000). All later model
reductions will have their accuracy measured relative to
this initial model formulation.

The key assumptions underpinning the PDE model formu-
lation are as follows:

Assumption 1. Li-ion dynamics along y and z dimensions
are negligible.

Remark 1. The implication of this assumption is that Li-
ion dynamics are only considered in x dimension and the
end effects due to other dimensions are neglected. This
is reasonable because the length scales of active material
section are typically several orders of magnitude difference
between x and the other two dimensions. The simplifying
process can be seen in Fig. 1a–c.

Assumption 2. Each agglomeration of lattice sites inside a
cell is a spherical solid particle of radius of Rp.

Remark 2. This assumption allows a symmetry argument
whereby diffusion in the (xr, yr, and zr) coordinates within
a particle can be represented using only r coordinate.
Coupled with Assumption 1, only x and r coordinates
are regarded to fully describe the concentrations in the
electrodes.

Assumption 3. There is no direct Li-ion diffusion between
adjacent particles.

Remark 3. Li-ion diffusion between adjacent particles is
negligible due to the high solid phase diffusive impedance,
and thus all kinds of diffusion between particles considered
are through the electrolyte.
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Assumption 4. The cell consists of active materials and
current collectors, and the effects of other components,
i.e. tabs, insulator, etc., are not considered. The only
heat sources within the cell are reaction heat generation,
reversible heat generation, and ohmic heat generation.
Heat transport is only caused by internal conductivity and
convection between battery surface and ambient.

Remark 4. Thermal models based on this assumption have
been experimentally validated by (Gu and Wang (2000)).
This allows the rate of temperature change to be written:

ρc
∂T

∂t
= λ

∂2T

∂x2
+ aFJ(η − T

∂U

∂T
)− ie

∂Φe

∂x
− is

∂Φs

∂x
(2)

where ρ, c, and λ are the density, specific heat, and
heat conductivity inside the cell, a and J are the specific
interfacial area and molar flux of solid particle, η, is, and
Φs are the overpotential, current, and electric potential in
solid particle, F is Faraday’s constant, U is open circuit
potential, and ie and Φe are the current and potential in
electrolyte.

Based on Assumptions 1-4, the model shown in Fig. 1d,
can now be explicitly described. The dynamic equations in
the two electrodes are represented by the same governing
equations.

According to Fick’s law of diffusion, the Li-ion transport
in spherical solid particles and electrolyte are described as

∂Cs (x, r, t)

∂t
=

1

r2
∂

∂r

(
Ds(T )r

2 ∂Cs (x, r, t)

∂r

)
(3)

εe
∂Ce (x, t)

∂t
=

∂

∂x

(
De(T )

∂Ce (x, t)

∂x

)
+

t0−
F

∂ie (x, t)

∂x
(4)

Based on Ohm’s law, the relationship between solid phase
potential and current density in solid particles is given by

∂Φs (x, t)

∂x
= − is (x, t)

σ(T )
(5)

The variations of potential and current density in elec-
trolyte follow a modified Ohm’s law describing the conser-
vation of charge in electrolyte phase, which is

∂Φe (x, t)

∂x
= − ie (x, t)

κ(Ce, T )
+

2RT (x, t)t0−
F

∂ lnCe (x, t)

∂x
(6)

In (3)-(6), t0− is transference number of the cathodes with
respect to the solvent velocity, εe is volume fraction of the
electrolyte, De and κ are effective diffusion coefficient and
ionic conductivity in the electrolyte, and Ds and σ are
effective diffusion coefficient and electronic conductivity
in the solid particles.

Considering the Kirchoff’s current law, the total current
density I through the cross section of a cell is uniform,
namely the current density in solid phase and electrolyte
satisfy I(t) = is(x, t)+ ie(x, t). Due to charge conservation
in solid particles, molar flux is determined by the diver-
gence of local electrolyte current

∂ie (x, t)

∂x
= aFJ (x, t) (7)

The above PDEs are coupled by Butler-Volmer Kinetics
which describe the relationship among J , η, Ce and Cs

(Newman and Thomas-Aleya (2004)).

J (x, t) =
i0 (x, t)

F

(
e

αaF
RT (x,t)

η(x,t) − e−
αcF

RT (x,t)
η(x,t)

)
(8)

In (8), αa and αc are charge-transfer coefficient of anode
and cathode. The overpotential η(x, t) and exchange cur-
rent density i0(x, t) are modeled as

η =Φs (x, t)− Φe (x, t)− U (Css (x, t))− FRfJ (x, t) (9)

i0 = reffCe(x, t)
αa(Cs,max − Css (x, t))

αaCss (x, t)
αc (10)

where, Css is the concentration of Li-ion at the surface
of spherical solid particles and is defined as Css (x, t) =
Cs(x,Rp, t). The open circuit potential U is a measured
property and is evaluated as an empirical function of Css

by curve-fitting experimental data (Doyle et al. (1996)).

A general thermal model capturing temperature distri-
bution and evolution inside a cell is coupled with the
above electrochemical model, and composed of the thermal
balance equation and heat generation equation

ρc
∂T (x, t)

∂t
= λ

∂2T (x, t)

∂x2
+ q(x, t) (11)

q(x, t) = aFJ (x, t) (η (x, t) + T (x, t)∂U/∂T )

− ie (x, t)
∂Φe (x, t)

∂x
− is (x, t)

∂Φs (x, t)

∂x
(12)

In the separator, the governing equations are similar to
those for electrodes, but there is no solid particle so that
is=Φs=J=η=0. The complete battery is linked through
electrode-separator interfaces that satisfy mass, charge,
and energy continuity. For space reason, the boundary
conditions required to solve these dynamics equations
are not explicitly included, but readers are directed to
(Chaturvedi et al. (2010); Gu and Wang (2000)).

In summary, the battery dynamics are represented by (3)-
(8) and (11), leading to a set of 17 nonlinear coupled
PDEs and algebraic equations. The outputs of interest
are the terminal voltage, temperature, SOC, and SOH.
The latter two may respectively be expressed as functions
of Css and average Li-ion concentration in solid particles
C̄s (Chaturvedi et al. (2010)); and Css, C̄s, Ce and η
(Ramadass et al. (2004)). The terminal voltage is defined
as

V (t) = Φ+
s (0, t)− Φ−

s (0, t) (13)

3. MODEL REDUCTION

3.1 Spatial Dimension Reduction

In the 2D model (3)-(12), it is noticed that for each elec-
trode, except Li-ion concentration of solid phase Cs(x, r, t)
which involves r coordinate, the other equations are all
with respect to x and t. However, the mixed spatial scales
result in significant computational overhead, so there is
motivation to eliminate the final resolution, r, if possible.

An exact analytical solution of (3) is provided by Carslaw
and Jaeger (1973) as

Cs(x, r, t) = Cs0 −
J(x, t) ·RP

Ds

[
3τ +

1

10

(
5r2

R2
p

− 3

)]
+
2J(x, t) ·R2

P

Dsr

∞∑
n=1

sin(λnr/Rp) exp
(
−λ2

nτ
)

λ2
n sin(λn)

(14)

where, τ = Dst/R
2
P , and λj(j = 1,2,. . . ) are the positive

eigenvalues of λj = tan(λj).
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Equation (14) involves infinite series and is difficult to
be directly used for solving the presented battery model.
This motivates to find a possible approximation of Cs, ex-
pressed as Ĉs. On the other hand, to capture battery elec-
trochemical behaviors and predict SOC, the concentration
states of interest in each solid particle are the surface con-
centration, Css(x, t) and average concentration C̄s(x, t).
With this in mind, an attempt to replace Cs(x, r, t) by
Css(x, t) and C̄s(x, t) is conducted by assuming:

Assumption 5.At a constant charge rate, ∀ε > 0, ∃n(ε, I) ∈
Z satisfying ||Cs(x, r, t)− Ĉs,n(x, r, t)||2 < ε.

Remark 5. A solution for Ĉs,n(x, r, t) was obtained by
approximating the solid phase Li-ion concentration with
the following polynomial form (Subramanian et al. (2001))

Ĉs,n(x, r, t) = a1(x, t) + a2(x, t)
r2

R2
P

+ · · ·+ an(x, t)
r2n

R2n
P
(15)

By substituting (15) into (3) and employing volume-
average integration of r, the 2D second-order PDE, (3) in
each electrode can be decoupled to a first-order PDE and
an algebraic equation in terms of Css(x, t) and C̄s(x, t),
which are given as

∂C̄s (x, t)/∂t=−3J (x, t) /RP (16)

Css (x, t) =Cs0 − J(x, t) ·RP (3τ + 0.2) /Ds

+
J(x, t) ·RP

Ds

∞∑
n=1

2 exp
(
−λ2

n
τ
)

λ2
n

(17)

For convenience, we define ϑ(x, t)=J(x, t)RP /Ds. Through
utilizing the second, fourth, and sixth-order polynomials
for (15), equation (17) can be further approximated by
(Subramanian et al. (2001))

Css,1(x, t) =Cs0 − ϑ(x, t) (3τ + 0.2) (18)

Css,2(x, t) =Cs0 − ϑ(x, t)
(
3τ + 0.2− 2e−35τ/35

)
(19)

Css,3(x, t) =Cs0 − ϑ(x, t)
(
3τ + 0.2− 0.1135e−100.123τ

)
+ϑ(x, t)

(
0.0864e−18.877τ

)
(20)

It is worth mentioning that the polynomial order, n is
“tuning parameter” for these polynomial approximations
to reflect concentration dynamics. The accuracy and ap-
plication of battery models yielded by different order poly-
nomials will be investigated in the next section.

3.2 Spatial Discretization

A further model simplification is possible by approximat-
ing the 1D PDE model of (4)-(8), (11), (16) and (17) by
ODEs. This can be realized by finite difference through
discretizing each domain (l−, l+ and lsep) in a cell to N
elements with grid resolution ∆xi. In each element, all
states are assumed to be uniform. In this way, a discretized
battery model with uniform resolution is given by

dC̄s (i) /dt=−3J (i) /RP (21)

Css,n (i) : =Cs(i, Rp) (22)

εe
dCe (i)

dt
=De

Ce (i+ 1)− 2Ce (i) + Ce (i− 1)

(∆x)
2

+ t0−(ie (i+ 1)− ie (i))/(F∆x) (23)

(Φs (i+ 1)− Φs (i))/∆x = −is (i)/σ(i) (24)

(Φe (i+ 1)− Φe (i)) /∆x = −ie (i)/κ (i)

+
2RT (i)t0−

F

lnCe (i+ 1)− lnCe (i)

∆x
(25)

(ie (i+ 1)− ie (i)) /∆x = aFJ (i) (26)

J(i) =
i0(i)

F

(
e

αaFη(i)
RT (i) − e−

αcFη(i)
RT (i)

)
(27)

ρc
dT (i)

dt
= λ

T (i+ 1)− 2T (i) + T (i− 1)

(∆x)
2

+aFJ (i) (η (i) + T (i) ∂U/∂T )

−ie (i)
Φe (i+ 1)− Φe (i)

∆x
− is (i)

Φs (i+ 1)− Φs (i)

∆x
(28)

Here i denotes the i-th element in each electrode or sepa-
rator. In conjunction with the discretized expressions of
(10), (11) and corresponding boundary conditions, the
PDE battery model is approximated by a spatial dis-
cretized model that includes 8N ODEs and 11N algebraic
equations (AEs) associated with 19N states in the entire
battery region, as shown in Fig. 1f. To investigate the
applications of this proposed model at different charge
rates, N is “tuning parameter”.

Typical battery parameters like those observed in (Doyle
et al. (1996); Gu and Wang (2000)) lead to separation of
length scales between some states in (21)-(28). To capture
this effect, the 19N state equations will be considered
with different level of discretization, particularly focusing
on the temperature and electric potential. This leads to
14N+2NΦ+NT total equations, with now three discretiza-
tion variables to be considered.

4. SIMULATION RESULTS

One of the typical methods to validate a cell model is using
constant current charge and discharge at different current
rates (Chaturvedi et al. (2010)). In this paper, to evaluate
the proposed models over the entire possible operating
domain, the inputs are constant currents ranging from
0.5C to 10C. The ambient temperature and initial battery
temperature are both set at 25◦C. The cell parameters are
taken from (Doyle et al. (1996); Gu and Wang (2000)) and
they are related to a prismatic LiMnO4/LiC6 battery.

The PDE model (3)-(12) is solved by COMSOL Multi-
physics 4.3a. While, the proposed model (21)-(28) for a
given (N , NΦs , NT and n) set is solved by DASSL under
the same conditions. During each cycle, fully charged Li-
ion cells are discharged from 4.2V to 2.8V using both
models. The terminal voltages sampled at 10 Hz, leading
to Vk and V̄k for the proposed model and PDE model, re-
spectively. The normalized root-mean-square (RMS) error
in voltage estimation is consequently defined as

β :=

√∑M
1

(
Vk − V̄k

)2
M

/∑M
1 V̄k

M
× 100%

4.1 Minimal States of Electric Potential, NΦ

The electric potential gradient in solid particles is ex-
amined with a view to determining the minimal NΦs

at
various charge rates. Define the discretized spatial approx-
imation of Φs and the resulting approximation error as:
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Φd
s(i, t) :=

NΦ

l

∫ (i+1)l/NΦ

il/NΦ

Φs(x, t)dx, x ∈ [i, i+ 1]
l

NΦ
(29)

∆Φs(x, t) := Φs(x, t)− Φd
s(i, t),∀i ∈ [1, NΦ] ∩ Z (30)

Lemma 1. The discretized Φd
s model with NΦ satisfies

|∆Φs(x, t)| ≤ εΦ (31)

and εΦ := I(t)l/σNΦ, where σ represents the minimum
value of σ(T ) (at initial temperature).

Proof 1. From equation (5), Φs is monotonic in x, such
that the error in any given element [i, i+ 1] l/NΦ is

|∆Φs(x, t)| ≤ |Φs ((i+ 1)l/NΦ)− Φs (il/NΦ)| (32)

By integration on both sides of (5) across one element, we
obtain∫ (i+1)l/NΦ

il/NΦ

∂Φs (x, t)

∂x
dx =

∫ (i+1)l/NΦ

il/NΦ

− is (x, t)

σ(T )
dx

εiΦ := |Φs ((i+ 1)l/NΦ, t)− Φs (il/NΦ, t)|

=

∣∣∣∣∣
∫ (i+1)l/NΦ

il/NΦ

is (x, t)

σ(T )
dx

∣∣∣∣∣ ≤
∣∣∣∣ I(t)lσNΦ

∣∣∣∣ (33)

So, εΦ := maxi ε
i
Φ = I(t)l/(σNΦ).

Remark 6. Using typical battery parameters of (Doyle
et al. (1996)) and considering 10C operation rate, the error
in the negative electrode is bounded by NΦε

−
Φ≤0.541mV,

which corresponds to a relative error 0.06%. Consequently,
the choice N−

Φ =1 seems reasonable. Conversely, in the
positive electrode the reduced conductivity relative to the
negative electrode leads to NΦε

+
Φ≤53.96mV, on a relative

error 1.324%. To ensure high accuracy of the electric
potential in this electrode, N+

Φ is chosen to be N .

Remark 7. Inaccuracies in Φs can also potentially impact
other states through the coupled dynamics evident in (9)
and (11). However, a first order Taylor series expansion of
these equations with perturbed Φs exhibits only negligible
effect on η and T for realistic parameter values.

4.2 Minimal Temperature States, NT

The thermal phenomena is heavily coupled with electro-
chemical reactions governed by (3)-(12), so it is impractical
to obtain εT by analytical deduction in a way similar to
Section 4.1. In light of this, the temperature distribution
along x coordinate in an electrode pair can be derived
by simulations based on the PDE model. To gain the
temperature profile across an entire cell, which consists of
L/l electrode pairs, the heat generation rate is assumed to
be uniform (Muratori et al. (2000)) and scaled by q(t)L/l.
The typical heat transfer coefficient (h) between the cell
and ambient can be: 5W/m2·K (normal convection); 30 or
100W/m2·K (forced convection). To explore the extreme
temperature difference between battery surface and center,
h is chosen to be 100, and the resulting cell temperature
profiles at different current rates are shown in Fig. 2.

It is apparent that the peak temperature difference in the
cell is bounded by ∆T≤4K, which corresponds to a relative
error ∆T/T̄ 1.24%. Moreover, the lower h and current rate
are adopted, the smaller error will be obtained. After also
confirming negligible coupling effects in parameters Ds,
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Fig. 2. Temperature profiles in a battery cell at 1, 3, 5, and 10C
discharge operations. (a). Temperature variation at battery
surface (solid) and center (dashed); (b). Temperature distribu-
tion across battery thickness direction at the end of discharge
operation (2.8V). The heat transfer coefficient and thermal
conductivity are h=100W/m2·K, λ=0.99W/m·K.

De, σ and κ, and states J , at this scale of temperature
error, the temperature gradient in the cell is evidently
negligible, and a good approximation can be therefore
achieved by the lumped parameter approach with NT=1,
T (x, t)=T (t).
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Fig. 3. Comparison of the reduced model (RM) and PDE
model in terms of Css, C̄s, Ce, and η (at current
collector) during 0.5C and 10C charge operations. For
0.5C, n=N=1; for 10C, n=3 and N=10.

4.3 Minimal Resolution of Remaining State, N

Having reduced the parameters NT=N−
Φ =1, the modeling

complexity is fully stated in terms of N and n. These
parameters determine the ability of the reduced order
model to reproduce the outputs of full PDE model to
a given accuracy level. Specifying the accuracy levels of
interest to be β=5% (for closed loop control) and β=1%
(for open loop optimization), the minimal N and n were
found over a range of charge rates and given in Table 1.

The accuracy of the single particle model represented by
N=1 is limited to low charge rates as previously observed
in the literature (e.g. Santhanagopalan et al. (2006)). For
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Table 1. Appropriate polynomial profile and
grid resolution for different charge rates.

Requirements for β <5% Requirements for β <1%

Rate n N NT N−
Φ β n N NT N−

Φ β

0.5C 1 1 1 1 0.39 1 1 1 1 0.39

1C 1 1 1 1 0.87 1 1 1 1 0.87

2C 1 1 1 1 1.97 1 3 1 1 0.73

3C 2 1 1 1 3.30 2 2 1 1 0.83

4C 2 1 1 1 4.79 2 5 1 1 0.94

5C 2 2 1 1 3.13 3 5 1 1 0.93

6C 3 2 1 1 1.56 3 6 1 1 0.99

7C 3 2 1 1 1.66 3 7 1 1 1.00

8C 3 2 1 1 1.80 3 8 1 1 0.96

9C 3 2 1 1 2.04 3 9 1 1 0.98

10C 3 2 1 1 2.38 3 10 1 1 0.99

charge rates >1C, to maintain model accuracy of 1%,
increasing N and n are required. Reducing the accuracy
requirement to 5% means the single particle model main-
tains its ability to 4C rates. For high charge/discharge
rates, the complexity requirements increase monotonically
with current. For fast charge optimization problems, this
potentially means models with up to 10 spatial states
and 6th order polynomial approximation must be used.
The significance of this increased modeling request can be
expressed in terms of the computational load differences.
The N=10, n=3 set up is 10 times slower than the N=1,
n=1, but still 500 times faster compared to the PDE
model.

So far, the output voltage and temperature of the PDE
model is well approximated by a library of models con-
sisting of 5N+1 ODEs and 10N+1 AEs. As stated ear-
lier, based on the prevalent literature, SOC and SOH are
functions of the internal states, Css, C̄s, Ce, and η. The
capability of the reduced models presented in Table 1 to
capture these states at different charge rates is examined
and shown in Fig. 3. It can be seen that close agreement is
achieved for the upper and lower bounds of the considered
current range. If SOC and SOH are well-captured by these
states, then the proposed models are therefore capable in
dealing with the constraints on problem (1).

5. CONCLUSION

The coupled electrochemical and thermal battery models
presented in this paper consist of a 1D ODAE system
and are derived from the PDE model with the use of
several simplifying assumptions, finite difference method,
polynomial approximation, and volume-average integra-
tion. The requirements for the proposed model to achieve
given modeling accuracy from 0.5C to 10C charge rates
were found using a combination of theoretical analysis and
simulations to identify the minimal parameter set (N , n,
NΦ and NT ). The proposed models exhibit significantly
reduced computational times relative to the PDE model.
Future work will concentrate on using these models in the
solution of the optimal fast charge problem (1).
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