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Abstract: The probability distribution for profits and losses associated with a feedback-based
stock-trading strategy can be highly skewed. Accordingly, when this random variable has a large
expected value, it may be a rather unreliable indicator of performance. That is, a large profit
may be exceedingly improbable even though its expected value is high. In addition, the lack of
confidence in the underlying stock price model contributes to lack of reliability in the expected
value for profits and losses. Motivated by these issues, in this paper, we propose a new measure,
called the Conservative Expected Value (CEV), which discounts the “ordinary” expected value.
Once the CEV is defined, it is calculated for some classical probability distributions and a few
of its important properties are established.
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1. INTRODUCTION

This paper is motivated by our work to date on “skewing
effects” related to the use of feedback when trading in
financial markets; e.g., see [1] and [2]. Suffice it to say,
when a feedback control is used to modify an investment
position, the resulting probability distribution for profits
and losses can be highly skewed. For example, if K > 0
is the gain of a linear stock-trading controller, the re-
sulting skewness S(K) for profits and losses can increase
dramatically with K and can easily become so large as
to render many existing forms of risk-return analysis of
questionable worth. Said another way, the long tail of the
resulting highly-skewed distribution can lead to a large
expected profit but the probability of an “adequate” profit
may be quite small. Another negative associated with high
skew is that there can be a significant probability of large
drawdown in an investor’s account; e.g., see [3].

In addition to the negatives related to skewness, another
factor which complicates the expected profit-loss predic-
tion is that the model used for the stock price may not
be reliable, particularly, in turbulent markets. The issue
of “distrust” in the price model combined with the possi-
bility of misleading results due to skewness suggests that
a discounting procedure should be introduced to obtain a
“conservative” expected value.

1.1 Motivating Example
To provide a concrete illustration of the issues raised
above, we consider a stock-trading strategy based on the
linear feedback controller given in papers such as [1] and [4].
The amount invested I(t), at time t, is given by

I(t) = I0 +Kg(t),

where I0 is the initial investment, K is the feedback gain
and g(t) is the cumulative gain-loss up to time t. When

?This work was supported in part by NSF grant ECS-1160795.

Geometric Brownian Motion (GBM) is used to drive the
stock prices, the random variable g(t) turns out to be
a shifted and scaled log-normal distribution which can
be highly skewed with an expected value which may be
misleading in terms of the prospect for success.

To illustrate the scenario above, suppose time t = 1
represents one year and assume GBM process parameters
µ = 0.25 and σ = 0.5, where µ is the annualized drift and
σ is the annualized volatility. Furthermore, assume initial
investment I0 = 1 representing one dollar and feedback
gain K = 4. Then, via a simple modification of the results
in [4], the probability density function for the gains and
losses, g(t), at t = 1, is given by

f(x) =
1√

π
2 (1 + 4x)

e−

(
log(1+4x)+1

)2
8

for x > −0.25; see Figure 1.
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Fig. 1. Trading Profit-Loss: The Probability Density Function
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As seen in the figure, the expected value is E[g(1)] ≈ 0.43
which is shown via the vertical dashed line. This expected
value represents a raw return of 43% on an investment of
one dollar. However, as seen in the figure, the probability
of loss, the shaded area, is p

LOSS
≈ 0.70. In other words, the

expected return is quite attractive but it is highly probable
that a losing trade will occur.

1.2 Skewness Considerations
The “pathology” above can be explained by the large
skewness, found to be S = 414, of the probability density
function f(x) of the random variable g(1). To get a sense
of how large this degree of skewness is, it is instructive to
compare it against an exponentially distributed random
variable which is known to be highly skewed with S = 2
or a uniform distribution with no skewness at all.

In the view of high degree of right-sided skewness of the
distribution for g(1), the large expected value provides
an “unduly optimistic” assessment of the “bet at hand.”
For many traders, the high value of this expected pay-off
provides insufficient compensation for the fact that it is
overwhelmingly likely that a loss will occur. To address
this issue, in this paper, we introduce a procedure which
discounts the long tail of such highly-skewed distributions.
This discounting process leads to a conservative alter-
native to the classical expected value, which we called
the Conservative Expected Value (CEV). Using this dis-
counting process, as seen in Section 2, for the motivating
example above, we obtain CEV≈ −0.12. This negative
value indicates an expectation of loss from a conservative
perspective. Comparing this new measure to the classical
expected value, E[g(1)] ≈ 0.43, shows how the long tail of
the distribution is discounted.

1.3 Other Considerations and the CEV
In addition to the possibility of high skewness of a prob-
ability distribution, the uncertainty of the underlying
model can dramatically impact an analysis. For example,
in turbulent markets such as those experienced in the
crash of 2008-2009, celebrated models based on Geometric
Brownian Motion failed miserably when the volatility dra-
matically increased. Similar shortcomings of various other
models in describing observed market prices motivates the
search for a conservative measure of expected value to
robustify predictions against model uncertainty; see [5] for
discussion of robustness in a macro-economic context.

As previously mentioned, to address the high skewness and
possible model uncertainty, in this paper, we introduce
the Conservative Expected Value (CEV) for a random
variable X. In a financial context, involving unreliable
models, we do not ascribe high credibility to large profits
which are highly improbable. It is important to note that
the CEV is defined for the class of random variables with
finite leftmost support point. That is, we are addressing
random variables for which the worst case is bounded. In
fact, the finite leftmost support point requirement above
is satisfied in our papers involving linear feedback in finan-
cial markets, see [1]–[4]. Another example involving finite
leftmost support point is a random variable modelling the
lifetime of a component in a system.

By way of further motivation for the CEV definition, in
the financial literature, it is a routine procedure to pick

a target value γ for the acceptable profit or loss and
declare “win” for outcomes larger than γ and a “loss”
for smaller outcomes. Taking a conservative perspective,
for a given target value γ for a random variable X, the
first step in CEV analysis is to shift the probability mass
associated with all possible losses, {x : x ≤ γ}, to the
worst-possible loss, the leftmost support point. Also the
probability mass associated with the outcomes which are
declared as “wins” are all shifted to the smallest possible
value for a win, namely the target value x = γ. We call this
process “Bernoullizing.” Motivation for this mass-shifting
process is based on “distrust” in the assumed distribution.

The Bernoulli random variable obtained by mass shifting
as described above; call it Xγ , provides a conservative
lower bound on performance which discounts long tails.
For any given target value γ, it is easy to see that the
expected value of the resulting Bernoulli random variable
Xγ is smaller than the expected value of the original
random variable X. By picking a target value γ = γ∗

which leads to the largest expected value for Xγ , we
avoid excess conservatism and obtain the Conservative
Expected Value (CEV). More specifically any target value
γ < γ∗ is deemed inefficient in the following sense:
The pair (γ,E(Xγ)) is dominated by (γ∗,CEV(X)). By
finding the pair (γ∗,CEV(X)) we can identify a range of
inefficient target values, γ, and exclude them from the
risk-return evaluation.

1.4 Related Literature

It is important to note the distinction between the CEV
and so-called “risk-adjusted performance measures” in
the finance literature. Whereas the CEV only discounts
the expected value, classical risk-adjusted measures also
account for the spread indicators such as variance; see [6]
for a detailed survey. We note that some of the risk-
adjusted performance metrics such as the Sharpe Ratio [7],
which are based solely on expected value and variance,
have been questioned for not taking higher order moments
into account. In this regard, some performance measures
are defined to address the effect of these moments; e.g.,
see, [8] and [9]–[11].

Finally, it is instructive to mention a related but yet differ-
ent line of research called Prospect Theory in Behavioral
Finance; e.g., see [12]. This theory describes how a rational
individual follows a two-stage process called “editing” and
“evaluation.” These two phases have a lot in common with
what is proposed in the calculation of the CEV since both
methods consist of finding a threshold and simplifying
the original random variable. Once the distribution is
simplified both methods evaluate the profitability of the
resulting random variable.

1.5 Remainder of Paper

The remainder of the paper is organized as follows: In
Section 2, the Conservative Expected Value is formally
defined for a general random variable X with finite left-
most support point. In Section 3, the CEV is calculated
for some of the classical probability distributions. Then in
Section 4, some of the most important properties of the
CEV are established. Finally in Section 5, a discussion of
possible research directions is provided.
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2. THE CONSERVATIVE EXPECTED VALUE

In this section, the Conservative Expected Value is formally
defined. The motivation and main steps associated with
the calculation below were given earlier in Subsection 1.3.

2.1 The CEV Definition
Let X be a random variable with cumulative distribution
function FX(x) and finite leftmost support point

αX
.
= inf{x : x ∈ R such that FX(x) > 0}.

Then, given γ ∈ R and Bernoulli random variable

Xγ
.
=

{
αX with probability FX(γ);

γ with probability 1− FX(γ),

the Conservative Expected Value of X is defined to be

CEV(X)
.
= sup

γ
E(Xγ).

2.2 Remarks on the Definition
The definition of CEV can be written in terms of the
cumulative distribution function, FX(·); that is,

CEV(X) = sup
γ

E(Xγ)

= sup
γ
αXFX(γ) + γ(1− FX(γ))

= sup
γ
γ + (αX − γ)FX(γ).

For the case, γ < αX , we see that Xγ = γ with probability
one and moreover E(XαX ) > γ. Hence, in the analysis of
the supremum entering into the CEV definition, attention
can be restricted to γ ≥ αX . Finally, since the probability
masses of X are moved to the left to create Xγ , as shown
in Lemma 4.1, we have CEV(X) ≤ E(X).

2.3 Motivating Example Revisited
Recalling the motivating example given in the introduction
and its probability density function f(x), to obtain the
CEV, we first find the cumulative distribution function.
Via a straightforward calculation, we obtain

F (x) = Φ
( log (1 + 4x) + 1

2

)
for x ≥ −0.25, where Φ is the cumulative distribution
function for the standard normal random variable N (0, 1).
As noted earlier, the probability distribution associated
with profits and losses was found to be highly-skewed;
i.e., S = 414. The expected gain-loss was 43% and was
deemed insufficient in the presence of large probability of
loss, pLOSS ≈ 0.7. We now calculate

CEV(g(1)) = sup
γ

E [g(1)γ ] = sup
γ

{
γ + (αg(1) − γ)F (γ)

}
= sup

γ

{
γ − (0.25 + γ)Φ

( log (1 + 4γ) + 1

2

)}
.

A line-search using E [g(1)γ ] leads to maximizer γ∗ ≈ 1.8
and we obtain CEV(g(1)) ≈ −0.12, which compares to
E[g(1)] ≈ 0.43. To summarize, after discounting the long
tail, the negative sign of CEV is a warning that the
classical expected value may be unduly optimistic.

3. COMPUTING CEV: EXAMPLES

The CEV is now calculated for various well-known proba-
bility distributions. These examples demonstrate that the
CEV can differ dramatically from E(X).

3.1 Uniform Distribution
Suppose X is uniformly distributed on [0, 1]. Then, noting
that for γ ∈ [0, 1], Xγ = 0 with probability γ and Xγ = 1
with probability 1− γ, a straightforward calculation leads
to expected value

E (Xγ) =

{
γ − γ2; 0 ≤ γ ≤ 1;

0; γ > 1.

Hence, E(Xγ) is maximized at γ = 0.5 with resulting
conservative expected value given by CEV(X) = 0.25
which compares with E(X) = 0.5. This result can be
generalized to a random variable distributed uniformly
over [αX , b]. For this case, we obtain

CEV(X) =
3αX + b

4
which compares to E(X) = (αX + b)/2.

3.2 Bernoulli Random Variable
With random variable X = 0 with probability p and
X = 1 with probability 1− p, for γ ≥ 0, a straightforward
calculation leads to

E(Xγ) =

{
γ(1− p) ; 0 ≤ γ < 1;

0 ; γ ≥ 1.

Now, the supremum in the CEV definition is reached
as γ → 1 and we obtain

CEV(X) = 1− p = E(X).

That is, for the “extreme” case of a Bernoulli random vari-
able, no discounting of the classical expected value results.

3.3 Modified Log-Normal Random Variable
The motivating stock-trading example in Section 1 of
this paper can be generalized with arbitrary values for
the parameters I0,K, µ, σ and t. That is, beginning with
probability density function

fX(x) =
1√

2πσ2t(I0 +Kx)
e−

(
log(1+Kx

I0
)+0.5K2σ2t−µKt

)2

2K2σ2t

with αX = −I0/K and calculating the cumulative distri-
bution FX(x), we arrive at

E(Xγ) = γ −
(
I0

K
+ γ

)
Φ

( 1
K

log( I0+Kγ
I0

) + 0.5Kσ2 − µt

σ
√
t

)
where Φ is the cumulative distribution function for the
standard normal random variable N (0, 1). The supremum
of E(Xγ) above gives CEV(X) and is found via a single-
variable optimization problem which can easily be solved
by a line-search over γ ∈ [−I0/K,∞). Then, we can
compare CEV(X) with the classical expected value

E(X) =
I0
K

[
eµKt − 1

]
.

3.4 Weibull Random Variable
Consider the random variable X having cumulative distri-
bution function

FX(x) = 1− e−(λx)
α

,

with α, λ > 0 and for x ≥ 0. A straightforward calculation
leads to

E(Xγ) = γe−(λγ)
α

for γ ≥ 0. Then, setting the derivative to zero gives
γ∗ = α1/α/λ, and the CEV is obtained as

CEV(X) =
α1/α

λ
e−α.
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This compares with the classical expected value

E(X) =
1

λ
Γ
( 1

α
+ 1
)
.

We can consider the percentage discounting of CEV rela-
tive to the classical expected value E(X); i.e., let

PD(X)
.
=

E(X)− CEV(X)

E(X)
= 1− α1/αe−α

Γ
(

1
α + 1

) .
A plot of PD(X) versus α is provided in Figure 2.
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Fig. 2. Percentage Discounting for Weibull Random Variable

The lack of monotonicity of PD(X) with respect to α is
interesting to note. The discounting of E(X) is heavy for
small and large values of α. The non-monotonic behavior of
PD(X) is mainly due to the fact that neither the expected
value nor the CEV are monotonic functions of α. A
Rayleigh random variable, another special case of Weibull
random variable is similarly analyzed.

3.5 Pareto Random Variable

For αX > 0 and β > 1, we consider the cumulative
distribution function for random variable X given by

FX(x) = 1−
(
αX
γ

)β
.

We calculate

E(Xγ) = αX

[
1−

(
αX
γ

)β]
+ γ

(
αX
γ

)β
for γ ≥ αX . Then, taking the derivative of E(Xγ) with
respect to γ and setting it to zero, we obtain

γ∗ =

(
1 +

1

β − 1

)
αX .

This leads to

CEV(X) =
βαX
β − 1

[
1 +
−1 +

(
1− 1

β

)β
β

]
which can be compared to E(X) = βαX/(β − 1). Using
the two formulae above, the percentage discounting by the
CEV in this example is

PD(X) =
1−

(
1− 1

β

)β
β

.

This discounting is monotonically decreasing in β.

4. PROPERTIES OF CEV

In this section, some of the basic properties of the CEV
are established. In the lemma below, simple bounds on
the CEV(X) are given. The tightness of these bounds is
discussed immediately following the lemma.

4.1 Lemma (Bounds on the CEV)
Let X be a random variable with finite leftmost support
point αX . Then

median(X) + αX
2

≤ CEV (X) ≤ E (X) .

Proof: Since E (Xγ) ≤ E (X) for all γ, taking the supre-
mum over γ immediately leads to CEV(X) ≤ E(X).
For the lower bound, we consider the special choice
γ = median (X). Then the expected value of the resulting
Bernoulli random variable achieves the lower bound above.
This completes the proof. �

4.2 Remarks on CEV Bounds
The lower bound in Lemma 4.1 is achieved when X is
uniformly distributed. When X is a Bernoulli random
variable the upper bound is achieved; see Section 3 for
the derivations. In the following theorem, it shown that
the CEV(X) has an affine linearity property.

4.3 Theorem (Affine Linearity)
Given constants a ≥ 0 and b ∈ R, for a random variable X
with finite leftmost support point αX , the CEV satisfies

CEV (aX + b) = aCEV (X) + b.

Proof: The proof is broken in two parts; First, it is proved
that CEV (aX) = aCEV (X) for given a ≥ 0 and then
it is shown CEV (X + b) = CEV (X) + b for any b ∈ R.
Combining these two will complete the proof. For the
first part, consider the random variable Y

.
= aX. Indeed,

proceeding from the definition,

CEV (Y )
.
= sup

γ
E (Yγ) = sup

γ
{γ + (αY − γ)FY (γ)} .

Now substituting FY (γ) = FX (γ/a) and noting that Y
has leftmost support point αY = aαX , we obtain

CEV (Y ) = sup
γ
{γ + (aαX − γ)FX (γ/a)} .

Using the change of variables θ = γ/a gives

CEV (Y ) = sup
θ
{aθ + a (αX − θ)FX (θ)} = aCEV (X) .

For the second part of the proof, consider the random
variable Z

.
= X + b. Now

CEV (Z)
.
= sup

γ
E (Zγ) = sup

γ
{γ + (αZ − γ)FZ (γ)} .

Then substituting FZ (γ) = FX (γ − b) and noting Z has
leftmost support point αZ = αX + b, we obtain

CEV (Z) = sup
γ
{γ + (αX + b− γ)FX (γ − b)} .

Using the change of variables θ = γ − b gives

CEV (Z) = b+ sup
θ
{θ + (αX − θ)FX (θ)}

= b+ CEV (X) . �

4.4 Average of i.i.d Random Variables
In the theorem to follow, we consider the average Xn of n
independent and identically distributed (i.i.d.) random
variables Xk, and show that the CEV(Xn) tends to the
common expected value, µ = E(Xk), as n→∞.
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4.5 Theorem (Average of i.i.d Random Variables)
For positive integers k, let Xk be a sequence of i.i.d.
random variables with finite mean E (Xk) = µ, finite
variance σ2 and finite leftmost support point, αXk = αX .
Then, with partial sum averages given by

Xn
.
=

1

n

n∑
k=1

Xk,

it follows that
lim
n→∞

CEV(Xn) = µ.

Proof: For each n, note that αX must be the leftmost
support point of Xn; that is, αXn = αX . Now, using
Theorem 4.3 gives CEV(Xn − αX) = CEV(Xn)− αX and
hence, without loss of generality, we assume that αX = 0
in the remainder of the proof which implies µ ≥ 0. Now,
along the sequence Xn, recalling Lemma 4.1,

CEV(Xn) ≤ E(Xn) = µ.

Next, we construct a lower bound for CEV(Xn) using a
one-sided Chebyshev inequality. Indeed, since Xn has finite
mean µ and bounded variance σ2

n = σ2/n, for ε > 0 and
each n, the Chebyshev inequality

P (Xn ≤ (1− ε)µ) ≤ σ2
n

σ2
n + ε2µ2

is satisfied. Hence, for any γ ∈ [0, µ), letting ε = (µ−γ)/µ
and noting that ε > 0, via the inequality above, we obtain

P (Xn > γ) ≥ (µ− γ)2

σ2
n + (µ− γ)2

.

Using this inequality leads to a lower bound for the CEV.
That is, using αX = 0, a straightforward calculation yields

CEV(Xn) = sup
γ

γP (Xn > γ) ≥ sup
γ∈[0,µ)

γ
(µ− γ)2

σ2
n + (µ− γ)2

.

For large enough n, noting that µ > (1/n)
0.25

, for the

specific choice γ = µ− (1/n)
0.25

,

sup
γ
γ

(µ− γ)2

σ2
n + (µ− γ)2

≥
(
µ−

(
1

n

)0.25 )
.

1√
n

σ2
n + 1√

n

Since µ is an upper bound for CEV(Xn) and further noting
that σ2

n = σ2/n; for large enough n we can combine the
inequalities above to obtain

µ ≥ CEV(Xn) ≥
(
µ−

(
1

n

)0.25 ) 1
σ2√
n

+ 1
.

Now letting n→∞, it is easy to show that the right-hand
side tends to µ and hence CEV(Xn) tends to µ. �

4.6 Convexity Property of the CEV
Consider a random variable X whose probability density
function is a convex combination of the probability density
functions of n random variables, X1, X2, . . . , Xn; i.e.,

fX(x) =

n∑
i=1

λifXi(x).

where λi ≥ 0,
∑n
i=1 λi = 1 and fXi is the probability

density function for Xi. To illustrate how the situation
above arises, consider the case for the random variable
describing the output of a system which can switch among
n different states. Suppose, the state is modelled by a
random variable θ such that P (θ = i) = λi, for values

of i = 1, 2, . . . , n. Further assume that the output of the
system, X, conditioned on the state is modelled by a set
of random variables Xi; that is,

fX(x|θ = i)
.
= fXi(x).

This implies that, the probability density function for X
is a convex combination of the fXi given above. In the
lemma below, an upper bound on the CEV of X is given
in terms of the convex combination of the CEV(Xi).

4.7 Lemma (Convexity Property of the CEV)
Let the probability density function fX of the random
variable X be the convex combination above of the prob-
ability density functions fXi of the n random variables,
X1, X2, . . . , Xn. Then X has a conservative expected
value satisfying

CEV(X) ≤
n∑
i=1

λiCEV(Xi).

Proof: Without loss of generality, we assume that

αX1
≤ αX2

≤ . . . ≤ αXn .
Using the definition of X, it is easy to show that
αX = αX1

. Now we calculate

CEV(X) = sup
γ
γ + (αX − γ)FX(γ)

= sup
γ
γ + (αX − γ)

n∑
i=1

λiFXi(γ)

≤
n∑
i=1

sup
γ
λi(γ + (αXi − γ)FXi)

=

n∑
i=1

λiCEV (Xi). �

4.8 Finiteness of the CEV
This section is concluded with a discussion of the condi-
tions under which the CEV is finite. We begin with the
simple observation that CEV(X) ≤ E (X) implies that
CEV(X) is finite whenever E(X) is finite. For the case
when E(X) =∞, the CEV can be either finite or infinite;
see examples below.

Infinite Expected Value with Finite CEV: This ex-
ample is known as St. Petersburg Paradox; see [13] for
details. Consider the random variable X with probabil-
ity density function given by X = 2k with probability
p = 1/2k+1 for non-negative integers k. Then, it immedi-
ately follows that E(X) =∞. Now, to calculate CEV(X),
noting that αX = 1, we obtain

E(Xγ) = P (X ≤ γ) + γP (X > γ) = 1 +
γ − 1

2k+1

for γ ∈ [2k, 2k+1) and non-negative integers k. For every
value of k, E(Xγ) varies linearly from 1.5 − 1/2k+1 to
2 − 1/2k+1. By letting k → ∞, it is easy to show
that CEV(X) = 2.

Infinite CEV: Consider the random variable X with
probability density function fX(x) = 1/(2x

3
2 ) for x ≥ 1.

Then a straightforward calculation leads to

E(Xγ) =
√
γ − 1
√
γ
− 1
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for γ ≥ 1. Now as γ →∞, we obtain E(Xγ)→∞. Hence,

CEV(X) = sup
γ

E(Xγ) =∞.

Note that P (X > γ) = 1/
√
γ is tending to zero as

γ → ∞ but not as fast as γ is tending to infinity.
Since CEV(X) ≤ E(X), it must also be the case
that E(X) = ∞. The following lemma gives a necessary
and sufficient condition for the finiteness of the CEV.

4.9 Lemma (Finitieness of the CEV)
For random variable X, the condition

CEV(X) <∞
is satisfied if and only if

lim sup
γ→∞

γ(1− FX(γ)) <∞.

Proof: First, assuming CEV(X) < ∞, there exists an
M <∞ such that for every γ, we have

E(Xγ) = γ + (αX − γ)FX(γ) < M.

Hence for all γ,

γ(1− FX(γ)) < M − αXFX(γ) < M + |αX |
and we obtain

lim sup
γ→∞

γ(1− FX(γ)) ≤M + |αX | <∞.

Now suppose lim supγ→∞ γ(1 − FX(γ)) < ∞. Then there
exist an M <∞ and a γM <∞ such that for all γ > γM ,

γ(1− FX(γ)) < M.

Using the definition of CEV yields

CEV(X) = sup
γ

E(Xγ)

= max
(

sup
γ∈(−∞,γM )

E(Xγ), sup
γ∈[γM ,∞)

E(Xγ)
)
;

≤max
(
γM ,M + |αX |

)
<∞

which completes the proof. �

5. CONCLUSION AND FUTURE WORK

In this paper, the Conservative Expected Value was intro-
duced. Its motivation in terms of financial markets, large
skewness and model distrust was discussed. The calcula-
tion of the CEV was demonstrated for a number of well-
known probability distributions and a random variable
corresponding to the gains and losses of a feedback-based
stock-trading strategy. Some of the important properties
of the CEV were established. Recalling that the CEV is
defined for random variables with finite leftmost support
point, it is natural to consider the possibility of an ex-
tension of the definition to include random variables with
unbounded support. It is also of interest to develop an
alternative for variance; i.e., a Conservative Variance.

We envision use of the CEV in a number of applications.
In finance, when the degree of distrust in a model is large,
one can replace the ordinary expected value with the CEV
in the analysis. For example, one can consider “modified”
Sharpe and Sortino Ratios by replacing the expected value
by the CEV. Another possible application of CEV is in
Control Theory. If one considers a stochastic linear system
which involves uncertain parameters, for example, see [14],
instead of analysing various quantities using the expected
value, the CEV can be used to robustify against lack of
accuracy in the underlying model.

Finally, in the study of system reliability, for example,
see [15], various aspects of performance are modelled
by random variables. The “mean time between failures”
(MTBF) is frequently used and the corresponding random
variable is usually assumed to be highly-skewed; e.g.,
exponentially distribution is a commonly used model.
Motivated by this large skewness and possible model
distrust, the CEV may be an appropriate alternative to
the classical expected value.
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