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Abstract: Cloud-induced intermittency of photovoltaic (PV) generation forces equipment on the electrical 

grid to cycle excessively preventing PV from being considered as a reliable or dispatchable source of 

power.  Energy storage units (ESU) are proposed to turn PV power dispatchable. In order to use an ESU 

most effectively, it must be controlled appropriately by considering cloud-induced effects. To this end, the 

cloud structure is modeled as a random sequence inferred from clouding data. The proposed model is valid 

for centralized PV installations and serves to develop not only a control methodology to coordinate an 

ESU with existing grid equipment but also as a sizing criterion for an ESU. The above methodology is 

demonstrated on both clouding data collected from a rooftop PV installation that includes a pyranometer. 



1. INTRODUCTION 

Improvements in the manufacturing process of PV 

generation are lowering costs and leading to increased grid 

penetration. However, the power output of PV inverters 

varies sharply because of changing cloud cover that may 

cause transitions from rated power to less than half of rated 

power within minutes (Hill et al., 2012). This may cause 

over- or under-voltages on distribution systems (Shayani and 

de Oliveira, 2011; Barnes et al., 2012) in addition to reducing 

the maintenance interval of voltage regulating equipment 

such as substation load tap-changers (LTC) or in-line voltage 

regulators (Liu et al., 2012). 

Energy storage has long been proposed as a solution; 

however, it is necessary to either model or predict cloud-

induced intermittency to develop a more-efficient ESU 

control strategy (Chen et al., 2012; Liang and Liao, 2007; 

Omran et al., 2011; Song et al., 2012). Frequency-domain 

methods have been previously applied to characterize PV 

power (Vetterling, 1992). Unfortunately, the resulting 

frequency-domain signal has units without physical 

significance (Taylor and Mellott, 1998).  Despite these 

methods being useful for observing qualitative features of PV 

power intermittency, they not suitable for sizing ESU which 

requires knowledge of the peak energy amount charged to or 

discharged from a battery.  

 Methods for control of the ESU include deterministic 

scheduling, stochastic scheduling, rule-based control, 

feedback control, and feedforward control (Chen et al., 2012; 

Korpas and Holen, 2006; Liang and Liao, 2007; Liu et al., 

2012; Omran et al., 2011), with deterministic scheduling 

employed most commonly. Prediction of PV power is 

necessary for ESU control methods based on deterministic 

scheduling  (Korpas and Holen, 2006), and has received 

significant attention in recent years. Current methods are 

divided into two major groups (Lorenz et al., 2009). The first 

group consists of those methods using numerical weather 

prediction to estimate hourly averaged power with look-

ahead intervals on the order of one or more days (Anvari 

Moghaddam and Seifi, 2011). The second group of methods 

uses sky imagers, geographically distributed sensor arrays, or 

satellite imagery to track cloud position over time (Bing et 

al., 2012; Lonij et al., 2012; Stefferud et al., 2012). This 

yields power predictions on the order of a few hours ahead 

(Rikos et al., 2008).  The time resolution for both methods 

are too coarse for predicting cloud-induced power variations, 

which occurs in seconds (Stefferud et al., 2012).   

The contributions of this work are a random-sequence 

model for cloud-induced intermittency in a single PV 

installation, and its application to develop an efficient rule-

based ESU control strategy. The model is applicable to large, 

central PV installations that form 38% of installed PV 

generation (Sherwood, 2012). Unlike frequency-domain 

methods, the model outputs have physical units. The control 

strategy requires neither sky imaging data nor remote 

irradiance measurements, unlike existing methods. 

Additionally, both the model and rule-based controller 

operate over time scales on the order of seconds, suitable for 

modelling and mitigating the effects of cloud-induced 

intermittency. The model is also useful for generating 

simulated test data, similar to the case of wind generation, 

where either the Weibull distribution or time-series models 

are used.  

This paper is organized as follows: the PV data collection 

is described in section 2; the data processing is explained in 

section 3; the data analysis and development of statistical 

distributions are addressed ins section 4; the reward process 
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used to develop a control policy is described in section 5; the 

results of the methodology applied to a case study are 

presented in section 6; and lastly, the conclusions on the 

work performed as well as directions for future work are 

given in section 7. 

2. PV DATA ACQUISITION 

Irradiance is captured with an irradiance sensor (Apogee 

SP-125 5V amplified pyronameter (Apogee Instruments, 

2011) in conjunction with a LabVIEW-based data acquisition 

system (National Instruments USB-6259) using a custom 

program. The pyranometer is installed at the University of 

Arkansas (UA) in Fayetteville (AR) on the top of the John A. 

White Engineering Hall roof next to a pair of 225 W PV 

panels as shown in Fig.  1. It was installed on the same plane 

as the panels, facing South with tilt angle of 66º from 

horizontal. The PV data are available on the web at 

http://energy.uark.edu/pv. 

An unanswered question for PV generation systems is that 

of sample rate selection. Notably, very wide ranges of sample 

rates abound, including 3 seconds (NREL, 2011) to 1 hour 

(NREL, 2011). The authors sought to select a sample rate that 

preserved the salient characteristics of cloud-induced 

intermittency. The system supports sample rates of up to 25 

Hz with the sample rate selected on the theoretical frequency 

content of the irradiance sensor output voltage and inspection 

of recorded data.   The 25 Hz maximum sample rate of the 

data acquisition system was determined to be sufficient, and 

data was initially collected at this rate. However, this sample 

rate results in prohibitively large amounts of data over long 

periods of time.  

Moreover, it is only necessary in this application to detect 

the presence of large changes in irradiance, those where the 

irradiance changes by 70% of the maximum irradiance value 

or more (Grady and Libby, 2012). Visual inspection revealed 

that the time duration between peaks in the irradiance profile 

meeting this criteria was usually 2.5 s or more. Hence, the 

selected final sample rate selection is 1 Hz. 

3. PV DATA PROCESSING 

Erroneous values corrupted by noise and nonlinear effects 

in the sensor are unfortunately captured by the data 

acquisition system. Hence, the data must be processed to 

remove these erroneous values that occur at low irradiance 

as well as to capture statistics on clouding. This processing 

classifies data as clear or shaded, using the algorithm 

described in Fig.  2.  

Convergence is established within 3 iterations, so a 

convergence check was not implemented. The algorithm 

works by alternately estimating the clear-sky irradiance 

profile using a second-order curve fit and classifying the data 

as clear or shaded. Note that for PV systems with tracking, 

the irradiance profile will be flattened near mid-day (Seme et 

al., 2011), so a higher-order curve fit will be necessary. Each 

value is divided by the clear-sky irradiance profile at the 

corresponding time. The resulting values are clustered using 

K-means clustering with two centroids (Duda et al., 2001). 

Each subsequent clustering results in a more refined estimate 

of the clear-sky irradiance profile. Fig.  3 shows the 

classification results. 

The processing accomplishes two goals: First, the data are 

classified as either clear or shaded, allowing for statistics to 

be taken on cloud cover. Second, it mitigates corrupted data 

by removing erroneous samples and interpolating between 

the remaining good data. For the case of the pyranometer, 

two factors were observed to corrupt data. First, accuracy at 

high solar angles of incidence is poor as the output drops off. 

Second, oscillation is present at those high angles of 

incidence, illustrated around 6 am and 7 pm (19 h) in Fig.  3, 

which compares the measured and corrected data To 

overcome these issues, the corrupted samples are removed 

and a weighted sum of the predicted and measured irradiance 

is used to estimate the true irradiance. 

 

Fig.  1. Experimental setup at UA. 

 

 

Fig.  2. Flowchart for the classification algorithm. 

 

 

Fig.  3. Classified irradiance data for a partly cloudy day 

(Aug 27, 2011). The original irradiance profile and predicted 

clear-sky irradiance profile are in the top graphs, while the 

classification results (whether or not it is clear or shaded) are 

in the bottom graph. 
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4. EXPLORATORY DATA ANALYSIS AND STATISTICAL 

INFERENCE OF CLOUD DURATIONS 

In order to characterize and forecast the PV output, it is 

assumed that the clear and shaded durations follow statistical 

distributions.  Based on existing work in climate science 

(Neggers et al., 2003), cumulus clouds have a fractal 

structure, so the distribution of the cloud size  , and thus the 

duration of shading  , follow a power law distribution  

  ( )       (1) 

where   and   are distribution parameters. Through 

exploratory data analysis, it is inferred that the clear and 

shaded distributions follow a generalized Pareto distribution 

of the form 

  ( |     )  
 

 
[   

(   )

 
]

   
 
 

  
(2) 

where k, σ, θ are parameters of the distribution. Although the 

duration of clear conditions is truncated based on the length 

of a day, the effect of truncation is neglected. Two separate 

distributions are inferred for the duration of clear and shaded 

events, respectively. Quantile-quantile (QQ) plots are used to 

evaluate how the fitted distributions handle outliers, 

illustrated in Fig.  4. In these figures, the inverse cumulative 

distribution functions (CDF) of the inferred distributions are 

plotted against the observed values for clear and shaded 

durations. The better the inferred distribution fits the data, the 

more the plotted points fall on the line    . The inferred 

distributions fit the data well with the exception that the 

distribution of shaded durations is more long-tailed than the 

observed data, and quantization occurs at small time scales. 

5. APPLICABILITY OF CLOUDING DISTRIBUTIONS TO ESU 

 The characterization of the distribution of the clear and 

shaded durations, as well as the likelihood that the PV 

installation will be clear or shaded at a given time in the 

future are necessary to develop an ESU control strategy or 

sizing criterion.  

The state of the PV installation is modelled as a time series 

         , where each at sample  , the state    is either 1, 

denoting clear, or 2, denoting shaded. Part 4 revealed that    

is dependent not just on     , but also on the total duration 

that the sensor has been clear or shaded, thereby violating the 

Markov property (Duda et al., 2001). This is apparent 

because the distributions of the clear and shaded events are 

not exponential, which is required for the Markov property to 

hold (Duda et al., 2001). Next, it is shown that the 

distributions of clear and shaded times can still be used to 

model the shading as a discrete-time semi-Markov process 

(Howard, 2007). 

5.1. Semi-Markov Discrete-Time Process Model 

A Markov process has a set of states and a state-transition 

probability matrix indicating the likelihood     of 

transitioning from state   to state   at sample   (Feller, 2008; 

Papoulis and Pillai, 2002; Sharma, 2009). The semi-Markov 

discrete-time process (SMDTP) is a generalization of the 

Markov process that waits for a random hold time before 

each transition. Therefore, each element     of the SMDTP 

state-transition probability matrix has a corresponding hold 

time distribution    ( ). When a SMDTP has transitioned to 

state  , it randomly selects the next state   based on the    . In 

the discrete-time case addressed here, the selection is based 

on    ( )   the number of samples   to wait before 

transitioning to state  .  
Irradiance is modelled by a two-state model in which 

virtual state transitions are forbidden (that is, transitions from 

a state to itself), illustrated in Fig.  5. This results in a simpler 

representation of the system, as the state-transition 

probability matrix is simply a two-by-two identity matrix. 

The SMDTP can be executed via the algorithm described in 

Fig.  6 in order to generate simulated data. 

For forecasting, the quantities of interest are the interval 

transition probabilities, giving the likelihood that the PV is 

clear or shaded at sample   given that it transitioned to be 

clear or shaded at sample 0. The interval transition 

probability    ( ) is the probability that the process is in 

state   at sample  , given that it entered state   at sample  ; in 

particular 

   ( )  ∑∑    ( )   (   )

 

   

 

   

  (3) 

   ( )  ∑∑    ( )   (   )

 

   

 

   

  (4) 

Again, the term    ( ) is the probability that the process will 

transition into state   at sample   given that it entered state   
at sample  .  Because these calculations rely on a series of 

multiply-accumulate operations which are performed quickly 

by modern computers, they are easily computed numerically 

using the following initial conditions  

  ( )  [
  
  

] (5) 

and the definition of a probability mass function 

    ( )     ( )    (6) 

    ( )     ( )     
(7) 

where (5) reflects the fact that at sample 0 the state of the 

process is known as it has just been observed. 

 
(a) 

 
(b) 

Fig.  4. QQ plot of shaded durations comparing the 

distribution against data.  

 

Fig.  5. Graphical illustration of the SMDTP model. 
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The interval transition probabilities allow for performing 

forecasting by taking the state with the highest likelihood. 

For example, if a process transitioned from clear to shaded at 

sample 0, it will most likely remain shaded for 50 seconds 

until    ( ) exceeds 0.5, as illustrated by Fig.  7. This figure 

illustrates the evolution of the interval transition probabilities 

over time assuming that the system started in clear (state 1, 

red lines), or shaded (state 2, black lines). As time increases, 

the uncertainty in the interval transition probabilities 

increases and they converge to their steady-state values, the 

marginal likelihood of the system being either clear or 

shaded. 

5.2. Voltage Variations Caused by PV Intermittency 

The variations in voltage caused by intermittency of PV 

generation on the feeder are calculated as follows. It is 

assumed that the feeder can be modelled as a voltage source 

behind an equivalent series impedance (Shayani and de 

Oliveira, 2011), illustrated in Fig.  8. Using the notation in 

(Baran and Wu, 1989), the voltage magnitude as  function of 

real and reactive power injections is 

    
    

   (     )  
  

   
 
(     ) (8) 

                  (9) 

           
(10) 

In the above,   and   are the resistive and reactive portions 

of the line impedance while   and   are the real and reactive 

powers flowing into the PV bus at the end of the line. The 

real power is broken up into the PV real power injection    , 

ESU real power injection     , and load real power draw 

     . The reactive power consists only of the load reactive 

power draw      . For notational convenience,        and   

are defined as the magnitudes of the infinite bus voltage, PV 

installation bus voltage, and equivalent series impedance.  

The change in voltage magnitude with respect to real 

power injection is 

   
    

  
 

     
      

    
  (       

 )   
  (11) 

It is assumed that the substation LTC has   taps allowing 

for a total variation of     V from nominal. Assuming 

voltage sensing at the PV bus, the amount of voltage 

variation required for the LTC to cycle is therefore        

V. This corresponds to a change in power of  

           (  )  (12) 

 

 

Fig.  6. Simulation of the SMDTP. 

 

Fig.  7. Interval transition probabilities    ( ) converging to 

the steady-state probabilities   . The probabilities       
 . 

 

Fig.  8. Equivalent feeder model with transformer LTC, PV 

generation and ESU. 

5.3. Reward Model 

Two reward processes are used to calculate both the 

number of LTC tap-changes and the ESU battery throughput. 

These two quantities are considered the rewards to be 

determined, though they are actually costs. Similar to the case 

of the interval transition probabilities, the reward processes 

are calculated recursively as follows 

  ( )    ( )
    ( )  ∑    ( )

 

   

  (   ) 
(13) 

  ( )    ( )
    ( )  ∑    ( )

 

   

  (   ) 
(14) 

   ( )
    (   ) ∑    ( )
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   ( )
    (   ) ∑    ( )

 

     

 (16) 

   ( )  ∑    ( )

 

   

  (   ) 
(17) 

   ( )  ∑    ( )

 

   

  (   ) (18) 

   (   )  ∑     ( )

   

   

 (19) 

  
    
( )  {

       
           

 
(20) 

  
     

( )  {
                   
           

 (21) 

These assume zero initial rewards, so   ( )   . The 

significances of the terms are as follows:   ( ) is the 

expected reward of the process at sample   given that the 

process entered state   at sample 0. The term   ( )
  is the 

expected reward conditioned on the event that the process 
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transitions to another state after sample  . The term   ( ) is 

the expected reward that the process earns in state  , 
conditioned on the event that the process transitions to 

another state before sample    The last terms in (13) and (14) 

are the expected rewards earned over samples     to   

conditioned on the event that the process transitions to 

another state before sample    The term   (   ) represents 

the cumulative reward accrued over   samples. The term 

    ( ) is the reward rate at   samples after having 

transitioned into state  . In this case the reward is actually a 

cost. Two reward rates are considered. The rate,      ( ) is the 

number of tap-changes that occur, while       ( ) is the 

battery throughput.  These assume that a tap-change will 

occur when a timeout period equal to     samples has 

elapsed after the process has changed states. During those 

    samples, the ESU will either supply or draw a fixed 

amount of power to regulate voltage. Only discharge power is 

considered in calculating battery throughput. The two costs 

are used to select the timeout period that minimizes the ESU 

throughput while maintaining the expected number of tap-

changes per day within the allowable maximum.  

6. METHODOLOGY RESULTS 

The objective is to assess the necessary amount of energy 

storage and develop a control strategy to avoid excessive 

cycling of a LTC. The selected strategy is for the ESU to fill 

in dips in power until a timeout counter expires. The SMDTP 

is used to select the timeout parameter. For this analysis, one-

minute data taken on May 1, 2013 from the 15 kW 

Fayetteville (AR) Public Library PV installation is studied. 

The inferred parameters for the clear and shaded durations 

are illustrated in Table I. These parameters are applied to 

study a 2 MW PV installation illustrated in Fig.  8. It uses the 

feeder parameters from (Shayani and de Oliveira, 2011) and 

the additional parameters specified in Table II. Both the ESU 

and PV are approximated as ideal ac current sources 

(assuming only small changes in     in Fig.  8. Based on the 

desired lifetime of the transformer/LTC, the ESU control 

strategy must limit the number of tap changes per day to  

      
     

         
 
     

      
     (22) 

 

Given the feeder parameters, a load-flow analysis indicates 

a 1.27% voltage rise per MW. For an LTC with the 

parameters in Table II, the power change for a tap-change is 

     (   ) (  )  (      ) (         )        . 

Based on previous work in cloud intermittency, a typical 

cloud will result in the power output decreasing to 30% of 

clear-sky conditions (Grady and Libby, 2012). 

Thus, the minimum necessary clear-sky output power in 

kW need for the PV to induce a tap-change during clouding is   

  ̌                       (23) 

Based on the collected data, the duration during the studied 

day that the 2 MW PV generation can cause a tap-change  ̌    

and the average change in PV power during clouding   ̅   are 

calculated and given in Table III. These figures are used to 

calculate the battery capacity. 

By sweeping the ESU timeout, the corresponding ESU 

throughput at 20 tap-changes per day is 2.625 MWh, using a 

zero-order approximation of ESU power (ESU power is 

approximated by the average power in the reward 

calculations). However, the actual discharge durations are at 

most equal to the selected ESU timeout corresponding to 20 

minutes. Fig.  9 illustrates the number of tap-changes and the 

battery throughput over the course of a day with the selected 

control parameters. Fig.  10 shows a snapshot of the ESU 

charge/discharge schedule as the ESU compensates for cloud-

induced intermittency. 

 

TABLE I. DISTRIBUTIONS OF CLEAR AND SHADED DURATIONS 

        

Irradiance 

Sensor 

Clear                       

shaded                       

PV Power 
Clear                  

shaded                   

TABLE II. STUDY PARAMETERS 

Component Parameter Expression          Value 

PV  Rated power  ̂        

Transformer Desired lifetime                 

 Lifetime operations             

LTC Regulation range        

 LTC steps      

PV Cloud-induced power 

reduction 
      

TABLE III. STUDY RESULTS 

Component Parameter Expression Value 

Feeder 
Change in net power required 
to induce a tap-change 

            

 

Minimum PV output power for 

a tap-change to occur during 

clouding 
 ̌          

PV 
Time during studied day that 

     ̌   
 ̌          

 
Average PV power while 

     ̌   
 ̅          

 

Average change in power 
during clouding while 

     ̌   
  ̅           

 ESU timeout     20 minutes 

ESU 
Average ESU output power 

while      ̌   
 ̅           

 Daily ESU energy throughput                

 

 

Fig.  9. Expected number of tap-changing operations and 

ESU throughput vs. time. 
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Fig.  10. Irradiance vs. time and ESU state vs. time.  A value 

of +1 indicates discharging, –1 indicates charging, and 0 

indicates standby. 

7. CONCLUSIONS  

A SMDTP model was proposed to fit observed clouding 

data. The model was most useful for selecting a control 

strategy offline because the conditional probabilities of clear 

and shaded future states converge to their steady-state values 

rapidly, though conditioning on weather data offers the 

potential for improved performance. It was applied to 

calculate the expected number of tap-changes and battery 

throughput for an ESU coordinated with a transformer LTC 

in order to select a control strategy and battery capacity. The 

results demonstrate how the proposed method allows for LTC 

maintenance intervals to be met while minimizing battery 

utilization in an ESU. 
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