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Abstract: The recurrence algorithms for the Cramer-Rao lower bound for a discrete-time nonlinear 
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1. INTRODUCTION 

When efficient algorithms for processing of measurement data 

are developed in the context of the Bayesian filtering theory, 

it is a common practice for researchers to solve two problems: 

the problem of the analysis of the potential accuracy obtained 

using the algorithm, optimal in the sense of the chosen 

criterion, and the problem of design of a computationally 

economical algorithm that provides accuracy close to 

potential. Such an approach is widely used, in particular, for 

the development of algorithms for navigation data processing 

and tracking problems (Dmitriev and Stepanov 1998, 

Bergman 2001, Ristic et. al. 2004). The covariance matrix of 

estimation errors of the optimal algorithm is conventionally 

used as a characteristic of the potential accuracy. This matrix 

is determined by simulation which involves the procedure for 

calculating the optimal estimate. It is well known that, 

generally, it is impossible to design a universal and 

computationally convenient optimal algorithm for the 

problems of nonlinear filtering. Despite the fact that 

researchers have advanced in designing such algorithms 

recently due to, in particular, the application of various 

modifications of the Monte Carlo method (Doucet 2001, 

Gustafsson et al. 2002, Ristic 2004) the calculation of optimal 

estimates by these methods is computationally intensive 

(Snyder 2008, Stepanov and Berkovskiy 2011). In this regard, 

the development of approximate procedures for the analysis of 

potential accuracy of estimation is vitally important for the 

solution of applied problems. One of such procedures is based 

on the calculation of the Cramer-Rao lower bound (CRLB) 

(Van Trees 1968).  

The methods of obtaining algorithms for CRLB calculation 

and their application in nonlinear filtering problems have been 

the subject matter of many publications (Galdos 1980, Van 

Trees and Bell 2007). For example, in (Koshaev and Stepanov 

1997, Tichavsky et al. 1998, Simandl et al. 2001), the authors 

obtained convenient recurrence algorithms for CRLB 

calculation for discrete-time nonlinear filtering problems with 

additive measurement errors and forcing (process) noise in the 

equations for the state vector. These algorithms have been 

successfully used to solve a wide range of problems related in 

particular to the processing of navigation data (Dmitriev and 

Stepanov 1998, Bergman 1999, 2001, Batista et al 2013). 

However, in practice, there is often a need to solve problems 

in which the properties of forcing noise and measurement 

errors depend on the unknown state vector to be estimated, 

thus endowing them multiplicative nature. It is to this problem 

that the paper is devoted. Actually, we continue the research 

reported in (Stepanov et al. 2013). Here we suppose that not 

only properties of a forcing noise depend on the unknown 

state vector, but such dependency is also valid for 

measurement noise and the initial covariance matrix. These 

generalizations are very important in estimating the 

parameters of Markov random processes, widely used in the 

problems of navigation and tracking data filtering. 

2. PROBLEM STATEMENT 

Let us assume that we have composite n r -dimensional 

vector  ,
T

T T
i ix x  , which includes n -dimensional 

Markov sequence  1 2, ....
T

i i i inx x x x  and r -dimensional 

vector 1θ=(θ ,...θ )Tr  of unknown time-invariant parameters 

described by the following equations: 

   -1 -1,θ ,θ ,

θ θ,

i i i i i ix x x w   


 

 (1) 

and we also have m -dimensional measurements 

 ,θ (θ)i i i i iy s x v  .  (2) 
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Here  -1,θi ix ,  ,θi is x  are the known nonlinear vector-

functions of n  and m  dimensions;  -1,θi ix , (θ)i  are 

the known matrices of n p  and m m  dimensions, the 

elements of which are nonlinear functions of their arguments; 

iw  and iv  are white-noise zero-mean Gaussian sequences of 

p  and m  dimensions, for which the relations 

{ } δT
l k lk lE w w Q , { } δT

l k lk lE v v R  hold; lQ  and lR  are 

covariance matrices; δlk  is the Kronecker operator;  , 0x  

are random vectors with the known probability density 

function (PDF) 0 0( ,θ) ( /θ) (θ)f x f x f , where 0( /θ)f x  is 

Gaussian, i.е.,   0 0 0( /θ) ;0, θf x N x P , with 
0 0{ } 0xE x  , 

 
0 0 0 0{ } θT

xE x x P . Along with  ,
T

T T
i ix x  , we 

introduce composite vectors  0 1, ,...,
T

T T T
i iX x x x , 

 ,θ
T

T T

i iX X , 
TT

i
T

i yyY ),....( 1  of ( 1)i n , ))1(( rni  , 

and im  dimensions. We can write the following the Cramer-

Rao inequality, for the vector  ,θ
T

T T

i iX X  (Galdos 1980): 

  1

,

ˆ ˆ
( ) ( )

i i

T

i i i i i i i iX Y
E X X Y X X Y  

    
 

J G , (3) 

where 

 ln ln ( )

i i

T
i i i i

i X ,Y
i i

d f X ,Y d f X ,Y
E

dX dX

   
   

   

J , (4) 

and ),
~

( ii YXf  is the PDF for vectors iX  and iY . Let us 

separate the lower ( ) ( )n r n r    diagonal block in 
1

iJ  

    
 

 

θ ( )1
( )θ θ

,
i i

i

x x
in n ri i

in r in n rx
n rii

 
  



    
   

      

0
0 Ι J

Ι
,(5) 

where  ( )n r in 0  –  ( )n r in   is a zero matrix and ( )n rΙ  is 

a unit rn  matrix. The matrices ix
i , θ

i  determine CRLB 

for vectors ix  and θ . 

The purpose of this work is to obtain a recurrence algorithm 

for θ
i , ix

i . 

3. ALGORITHM FOR CRLB 

Doing mathematical operations in the way similar to that of 

(Stepanov et al. 2013), we can show that for θ
i  and ix

i  the 

following relations hold good: 

 
1

1θ θ T
i i i i iF L L


     

 
,  (6) 

1 1 θ 1ix T
i i i i i ii L L        .  (7) 

Here 

 

   

1 1

1 1 1 1

,θ ,θθ θ θ θ θ θ
1 1

1
,θ ,θ

1 1

θ θ θ
0 01 02

δ δ δ δ δΦ δ

δ δ δΦ δ , (8)

,

i i

i i i i

x x
i i i i i i i i i

T
x x x x

i ii i i i

F F s Q R L Q

Q L Q

F F F

 

   

 



 

         




       

 


 

 

   

1 1

1 1 1 1

,θ ,θ ,θ ,θ
1

1
,θ ,θ

1 1 0

δ δ δΦ δ

δ δ δΦ δ , 0,

j i i i

i i i i

x x x x
i ii i i i

T
x x x x

i ii i i i

L s R L Q

Q L Q L

 

   





 

     

       

(9) 

 
 

1 1

θ

1
1

1

1
0 0

δ δ δ δ ,(10)

(θ) .

i i i ix x x xT
i i i i ii i i is R Q Q

E P

 







         

 

 

Here: 

   

  
 

  
 

    

    

θ

θ

θ

θ
01

1 1
0 0θ

02 0 0
μ

0

0

ln θ ln θ ,
θ θ

θ θ1
θ θ

2 θ θ

ln det θln θ

θ θ1
,

2
ln det θ ln θ

θ θ

T

T

l

T

T

d d
F E f f

d d

d P d P
F E tr P P

d d

d Pd f

d d
E

d P d f

d d

 

  
      

  
      
   

  
  
  

  
 

     
  

 

 
,θ-1

-1 1
-1

1

Φ ,θ
Φ ( ,θ)

xi

i i
i i iT

i

x
E Q x

x





 
 
  

,   

   
,θ

-1,θ ,θ
δ (θ)i

xi

T
x i i i i

ii T
i i

s x s x
s E R

x x

  
 
   

,   

   
,θ

θ -1,θ ,θ
δ (θ)

θ θ
xi

T
i i i i

i i T

s x s x
s E R

  
 
   

,   

   
,θ

,θ -1
,θ,θ

δ (θ)
θ

i
xi

T
j ix i i

ii T
i

s xs x
s E R

x

 
 
   

,  

   
1

1

1 11
,θ -1

1 1

Φ ,θ Φ ,θ
δΦ ( ,θ)i

i

T
x i i i i

x i ii T
i i

x x
E Q x

x x




 

 

  
 
   

, 

   
1

1 1θ 1
,θ -1

Φ ,θ Φ ,θ
δΦ ( ,θ)

θ θ
i

T
i i i i

i x i i T

x x
E Q x



 
  
 
   

,  

   
1

1

,θ 1 11
,θ -1

1

Φ ,θ Φ ,θ
δΦ ( ,θ)

θ
i

i

T
x i i i i

x i ii T
i

x x
E Q x

x




 



  
 
 
 

, 

-1 -1 -1( ,θ) ( ,θ) ( ,θ)T

i i i i i i iQ x x Q x   ,   

 ,θ1

1 1
1( ,θ)

xi
i i iQ E Q x



 
 , T(θ) (θ) (θ)i i i iR R   , 

,θ1

1 1
θ

μ

(θ) (θ)1
δ (θ) (θ) (θ)

2 θ θ
xi

i i
i i i

l

R R
R E tr R R



        
     

, 

,μ=1.rl , 
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  ,θ

1 1

1, 1,μ

( ,θ) ( ,θ)1
δ = δ ( ,μ) ( ,θ) ( ,θ)

2
i i

xi

x x i i i i
i i i ii i

i l i

R x R x
R R l E tr R x R x

x x

 

 

       
     

 

,μ=1.l n , 

  ,θ

1 1
,θ ,θ

,μ

( ,θ) ( ,θ)1
δ δ ( ,μ) ( ,θ) ( ,θ)

2 θ
i i

xi

x x i i i i
i i i ii i

l i

R x R x
R R l E tr R x R x

x

         
     

 

μ=1. , 1.r,n l   

 1
,θ1

1
-1

1

1,

1
-1

1

1,μ

( ,θ)
( ,θ)

1
δ ,μ

2 ( ,θ)
( ,θ)

i
xi

i i
i i

i lx
i

i i
i i

i

Q x
Q x

x
Q l E tr

Q x
Q x

x

















  
  
   

   
  
      

, ,μ=1. ,l n  

 
,θ1

1
-1

1

θ
1

-1
1

μ

( ,θ)
( ,θ)

θ1
δ ,μ

2 ( ,θ)
( ,θ)

θ

xi

i i
i i

l

i
i ji

i i

Q x
Q x

Q l E tr
Q x

Q x










  
  

   
   

  
      

, ,μ=1. ,l r   

 1
,θ1

1
-1

1

,θ

1
-1

1

1,μ

( ,θ)
( ,θ)

θ1
δ ,μ

2 ( ,θ)
( ,θ)

i
xi

i i
i i

lx
i

i i
i i

i

Q x
Q x

Q l E tr
Q x

Q x
x















  
  

   
   

  
      

,μ=1. , 1.r.n l   

In these equations the following notations are used:  

1 1

1

1

( ) ( )
. . .

. . . . .
( )

. . . . .

. . . . .

( ) ( )
. . .

n

T

m m

n

s x s x

x x

ds x

dx

s x s x

x x

  
  
 
 
 

  
 
 
  
   

,
( ) ( )

T
T

T

ds x ds x

dx dx

 
  
 

. 

Note that when  θ(θ) θ;0,f N P  and  0 0θP P  we can 

write θ -1
0 θF P . Let us consider some specific cases. 

Case 1. The subvector θ  is absent ( 0r  ), the measurement 

errors and forcing noise are additive; moreover, 1( )i i ix    , 

(θ)=i I  is a unit matrix, 0( /θ) (θ)f x f ,  0 0θP P , 

 θ(θ) θ;0,f N P . For these assumptions θδ 0iR  , 

θδ 0iQ  , 1,θ
δ 0ix

iQ   , 1δ 0ix
iQ   , T

i i i i iQ Q Г Q Г  , 

θδ 0is  , θδ 0i  , 
,θ

δ 0
jx

is  , 1,θ
δΦ 0ix

i
  , 0jL  , 

0, 1j i   and therefore 

1ix
ii
   ,    (11) 

 1
1

1
1δ Φ δi ix xT

i i i i ii is Q 



        , 1

0 0P  .(12) 

Since iQ  does not depend on the state vector, we can write: 

 
,θ-1

-1 1 * 1

1

Φ ,θ
Φ

xi

i i
i i i iT

i

x
E Q Q

x

 



 
   
  

, and 

 
11 1 * T * 1 1

1 0 0δ ( ) , , (13)ix
i i i i i i i iis Q Q Q P

   
         

where 
1

* 1( )
i

i i
i x T

i

d x
E

dx


 

   
 

, 

1

1

11 1

1 1

( ) ( )
i

i

T
x i i i i
i x i T

i i

x x
E Q

dx dx




 

 

  
   

 

, 












 

T
i

ii
i

i

i
T
i

x
x
i

dx

xs
R

dx

xs
Es

i

i
)()( 1 . 

It is clear that (13) coincide with the equations in (Koshaev et 

al. 1997, Tichavsky 1998, Simandl et al. 2001).  

Let us rewrite (12) in the form: 

 

1 1 * T

1
* T 1 * * 1

1

δ ( )

( )

ix
i i i ii

i i i i i i i

s Q Q

Q Q

 


 



     


      


, (14) 

where 1 * 1 * Tδ ( )ix

i i i i iQ      . 

Applying the matrix inversion lemma to (14), we can write 

one more variant of the recurrence relation for i  

 
1

* T 1 *
1δ ( ) ( )ix

i i i i i iis Q



        .(15) 

Remark. It should be noted that by including the subvector θ  

in the state vector ix , we can also obtain the CRLB for θ  

using (15) for some cases (Koshaev and Steanov 1997), 

which, for example, is true when the equation for the state-

vector is linear. It is clear because 0i   and using (15), 

we do not need to invert matrix iQ . However we should keep 

it in mind that in a general case the CRLB for θ  obtained 

using the algorithm with the vector of unknown parameters 

included in the state vector is higher or equal to the CRLB for 

θ  calculated using the algorithm obtained in this paper 

(Koshaev 1998). In other words, the CRLB for θ  obtained 

using the algorithm considered in this paper is more exact. For 

more details, see variant 2, for example. 

Case 2. The state vector includes subvector θ  ( 0r  ) and all 

additional assumptions are the same as for case 1, then 

θ -1
0 θF P , θδ 0iR  , θδ 0iQ  , 1,θ

δ 0ix
iQ   , 1δ 0ix

iQ   , 

1 1
i iQ Q  . Equations (6), (7) are the same, but the equations 

for the matrices included in them are different, i.е., 

 
1

1θ θ T
i i i i iF L L


     

 
,     

1 1 θ 1ix T
i i i i i ii L L        , 

  

     

1 1

1
θ

1
,θθ θ θ θ

1 1 1

,θ θ
1 0

δ δ δΦ δ

δΦ , ln θ ln θ ,
θ θ

i i

i

x x
i i i i i ii i

TT
x

i i

F F s L

d d
L F E f f

d d

 





  



         

  
        

 

  

 

1 1

1

1,θ ,θ
1 1

,θ
1 0

δ δΦ δ

δΦ , 0,

j i i

i

x x x
i i ii i i

T
x

i i

L s L

L L

 





 



      

  

 

 1
1

1 1
1 0 0δ Φ δ ,i ix xT

i i i i ii is Q P


 
          .  
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If, in addition, 
,θ

δ 0
jx

is   and 1,θ
δΦ 0ix

i
  , then all 0jL  , 

0, 1j i   ; therefore,  

 
1

θ θ
i iF


  , 1,ix

ii
     (16) 

θ θ θ θ
1 δ δi i i iF F s    ,   (17) 

 1
1

1
1δ Φ δi ix xT

i i i i ii is Q 



        , 1

0 0P  ,(18) 

or 

 
1

* T 1 * 1
1 0 0( ) ( ) , .(19)i i i ii i i is Q P


 

            

Below, we give some simplest examples to illustrate the 

application of the relations obtained. 

4. EXAMPLE 

Assume that we need to estimate an unknown parameter 

θ q  of a random walk (Wiener process) ( )z t  by its discrete 

measurements with additive measurement errors. Let us 

consider different variants of the problem solution. 

Model 1. We use the following model for discrete time: 

1 ,

0,

i i ix x tw

q


   


 
   (20) 

( , )i i i i i i i iy z v s x q v qx v      . (21) 

where  -1 -1,i i ix q x  , ( , )i i is x q qx , σwi t   , t  is 

the sampling interval; iv  and iw  are zero-mean Gaussian 

white noise with variances 
2

σv  and 
2

σw , respectively; 0x  and 

q  are independent random values with PDF 

2
0 0( ) ( ;0,σ )f x N x  and ( )f q  is a PDF, for which the 

( )q E q  and 
2 2

σ ( )q E q q   are known. A feature of this 

model is that the shaping filter for iz  does not depend on θ  

and nonlinearity is only due to nonlinearity in measurements. 

Using the above relations, we can write: 

1
-1 2

1
( , )

σ
i i

w

Q x q
t

 


,
2

1
Φ

σ
j

w t



,

2 22

2 2

σ
δ

σ σ

i qx
qi

v v

qq
s E

  
  

 
 

, 

2 2 2

2 2

σ σ
δ

σ σ
i

q i w
xi

v v

x i t
s E

   
  

 
 

, 
,

δ 0ix q
is  , 1

2

1
δΦ

σ

ix
i

w t

 


, 

δΦ 0
q
i  , 1,

δΦ 0ix q
i
  , θδ 0iR  , 1δ 0ix

iQ   , δ 0
q
iQ  , 

1,
δ 0ix q

iQ   , 1 2 1(σ ) ,i wQ t  
* 1i  , 0i  , 0, 0. .jL j i   

Taking into consideration the fact that this example 

corresponds to case 2, and, in addition, all 0jL  , 0.j i , 

we can use (16), (17), and (19). Thus: 

2 2

1 1 2

σ σ
δ ,

σ

q q q q w
i ii i

v

i t
F F s F 

 
     0 01

q q
F F , 

 
1

1
1δ ( )ix

i i iis Q



       

 
2 2

1
1 2 2

1 02

σ
( ) σ , 1/ σ .

σ

q
i i w

v

q
t






          

Finally, 

1
2 2

0 2

0.5( 1) σ σ

σ

q q w
i

v

i i t i
F


   

   
 
 

,  (22) 

 1

1
2 2

1
2

1 2

σ
σ

σ

i i qx x
wi i

v

q
t






 
      
 
 

, 0 2
0 σ
x

  . (23) 

It is also easy to see that for 
2

( ) ( ; ,σ )qf q N q q , then 

0 2

1

σ

q

q

F  . Thus, we can state the fact that in the case under 

consideration, the type of ( )f q  at fixed values of ( )q E q  

and 
2 2

σ ( )q E q q   does not practically affect the final result. 

It should be noted that the CRLB for the model (20), (21) is 

equivalent to the covariance in the linear estimation problem 

of vector (20) by measurements 

2 2
1 1

2 2
2 2

σ ,

σ σ ,

lin lin
i q i i

lin lin
i w i

y q x v

y i t q v

    
 

     
 

   

where 1
lin
iv  are independent of 0x  and q  zero-mean Gaussian 

white-noise sequences with variances 
2σv , whereas 0x  and q  

are independent of each other. Gaussian random values  with 

variances 
2σ  and  

1

0
q

F


. In other words, the value that 

determines the CRLB for q  corresponds to the case of q  

estimation from measurements of the form (21) under the 

assumption that ix  is replaced by the known coefficient 

2 2σ σwi t   
 

. In turn, the CRLB for ix  corresponds to the 

case of ix  estimation from the same measurements, but under 

another assumption, namely, that q  is replaced by the known 

coefficient 2 2σq q  
 

. 

Model 2. Let us include the unknown parameters θ  in the 

state vector ( , )Ti ix x q   and use the same model (20), (21), 

but in so doing, our aim is to find the recurrence relation for 

the CRLB for vector ix . In this case, taking into 

consideration the fact that  ( ) ( , )i i i i is x s x q qx    

    1-1, ii i
i i

xx q
x

qq

    
     

  
 and 

σ

0 0

wi
i

t   
     

   
, 

we can use (15) which does not require nonsingularity of 
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matrix iQ . Since 

1 2

( ) ( ) ( )
, ( , )

( )

i i i i i i
iT

i i i

ds x s x s x
q x

d x x x

  

  

  
     

, 

then 

2

2 2

1
δ

σ

i

i

ix
xi

i i

q x q
s E

x q x

    
   

    

 

2 2

2 2 2

σ 01

σ 0 σ σ

q

w

q

i t

   
   
     

. 

By virtue of the fact that 0i   and 
*

i E  , (19) takes 

the form: 

2

1
1

1

1
12 2

σ

12 2 2

δ

σ 0 01
,

0 0σ 0 σ σ

i i i

wi

x x x T
i ii i i

q x
i

w

s

q t

i t

  















  
            

                            

 (24) 

where 

 
0

2

100

0

0

0

x

q
P

F





 
   
 
  

. 

It is easy to see that the result generating by (24) coincide 

with (22) and (23). Taking into consideration the above 

remark, we note that in this example, the CRLBs 

corresponding to different algorithms are identical. 

Model 3. We can use another shaping filter for i iz x :  

1 ,

0,

i i ix x q tw

q

  


   (25) 

i i iy x v  ,    (26) 

where iv  and iw  0x  and q  are the same as in the previous 

case. As in the first two models, we assume that for ( )f q , the 

first two moments ( )q E q  and 
2 2

σ ( )q E q q   are known, 

and, besides, the value of 
2 2

1 1
( )

q
a E f q dq

q q

 
  

 
 

  is also 

determined. It should be noted that Gaussian PDF does not 

satisfy the latter requirement because such integral diverges. 

The feature of this statement is that the model for the 

measurements are linear, whereas equation for the state vector 

is nonlinear, since the coefficient of the forcing noise depends 

on the unknown parameter. From (25)–(26) it follows that 

 -1 -1,θi i ix x  ,  ,i i is x q x ,  -1,i ix q q  . In this case: 

1
-1 2 2

1
( , )

σ
i i

w

Q x q
q t

 


, 
2 2

1
Φ

σ
qi

w

E a
q t

 
  

  

, 
2

1
δ

σ

ix
i

v

s  , 

δ 0
q
is  , 

,
δ 0ix q

is  , 1

2 2

1
δΦ

σ

ix
qi

w

E a
q t


 

  
  

, δΦ 0
q
i  , 

1,
δΦ 0ix q

i
  , 2 2

-1 -1 -1( , ) ( , ) ( , ) σT

i i i i i i i wQ x q x q Q x q q t     , 

θδ 0iR  , 1δ 0ix
iQ   , 

2 2

1 1
δ

2 2σ
q

q
i

w

a
Q E

q t

 
  

  

, 

1,
δ 0ix q

iQ   , 1

2 2

1

σ
qi

w

Q E a
q t


 

  
  

, * 1i  , 0jL  , 

0.j i ,    0 ln ln
q

T
q d d

F E f q f q
dq dq

  
   
   

. 

Since here, too, all 0jL  , 0.j i  , using (19) we can write 

1 2

q q
i i

a
F F   ,    0 ln ln

q

T

q d d
F E f q f q

dq dq

  
   
   

, 

 2

1

2
1 1

0 02 2
1

( σ 1)1
, .

σ σ ( )i

i v
a

i a
v v i

a a
a P

a

 

 


  
      

 
 

Therefore, we have 

1

0 ,
2

q
q

ia
F


 

   
 

   (27) 

 

   

1

1

1
2

1

1
2

1

σ

σ 1

i

i

i

x
v i

x
i

x
vi

a

a a













 
  

 
 

  

, 0
00

x
P  . (28) 

In this example we calculate the CRLB for q , which 

determines the properties of the Wiener process. It is 

interesting to compare (22) and (27) for the same values of q  

and 
2σq . Let assume that  

3 30.5 σ2

3

3 e

σ

qq

q

q
f q



  (Weibull 

PDF). In this case, 

2
3 3

3
σ

2π
q q

 
 
 

 , 
2

2π

2
3σ

3
q

a 
 

 
 

, 

0

4

3

q a
F  , where     is the Gamma function. Fig. 1 

presents the results of the CRLB calculations obtained using 

(22) and (27), with σ 0.0019q  , 0.12,q   σ 0.3v   

σ 1.3, σ 1w  , and 1t  . 

Here, we also give the values of the root-mean-square (RMS) 

error for the optimal estimate computed using Monte-Carlo 

simulation as  
2

1

1
ˆσ ( )

L
jMC j

q i
j

i q q
L 

  , where L-number of 

samples in Monte-Carlo simulation; jq  and ˆ
j

iq  are the 

samples and optimal estimates calculated using the algorithm 

described, for example, in (Ivanov et al., 2000).  
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Fig. 1. 1 – CRLB for model (25), (26); 2 – CRLB for model 

(20), (21), 3 – RMS error for the optimal estimate for two 

models, L=500.  

From the curves above it follows that, firstly, the CRLB is, 

unfortunately, significantly less than the real RMS error and, 

secondly, the CRLB depends on the model used for iz . It is 

clear that in the accuracy analysis it makes sense to use an 

upper envelope corresponding to the two CRLBs.  

5. CONCLUSIONS 

Recurrence relations have been obtained for the calculation of 

CRLB in the discrete-time nonlinear filtering problem in the 

conditions when the forcing noise, measurement errors and 

initial covariance matrix depend on the state vector to be 

estimated which also includes the subvector of unknown time-

invariant parameters. 

Some specific cases have been considered. The relation 

between the derived recurrence algorithm for the CRLB 

calculation and the known algorithms corresponding to the 

case of additive forcing and measurement noise has been 

established. 

An example of CRLB calculation in the estimation problem of 

the parameters of the random walk process has been 

considered. The results obtained allowed the conclusion that 

there is an obvious dependence of CRLB on the type of the 

model used to describe the process under study for nonlinear 

filtering problem. This dependence is worth further study. 
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