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Abstract: This paper is concerned with the stabilization problem for a class of discrete-time networked
T-S fuzzy systems with bounded time delays and packet losses. By explicitly considering physical
properties of networked control systems (NCSs), sufficient conditions for the existence of state feedback
fuzzy controller is derived. Then a stabilization approach based on a parallel distributed compensation
scheme is developed. The merit of the proposed method lies in its much less conservatism, which is
achieved by guaranteeing the deceasement of Lyapunov functional at each control signal updating step.
Illustrative examples are provided to show the advantage and effectiveness of the developed results.

1. INTRODUCTION

During the past decades, the fuzzy-logic theory has attracted
great attention for its theoretical and practical significance in
dealing with the analysis and synthesis problems of nonlinear
systems. In particular, Takagi-Sugeno (T-S) fuzzy models have
proven to be capable of approximating any smooth nonlinear
systems to any specified accuracy, by smoothly blending a set of
local linear models via fuzzy membership functions. Under this
appealing framework, the well-developed linear system theory
can be easily applied to the analysis and synthesis of nonlinear
systems. Therefore, many nonlinear analysis problems have
been studied based on the T-S fuzzy model, with a rich body
of important results reported in the literature. To mention a
few, the stability analysis and synthesis problems of T-S fuzzy
systems have been investigated in Y. Y. Cao et al. [2001], H.H.
Choi et al. [2007], H. Gao et al. [2007], J. Dong et al. [2009],
G. Feng et al. [2010], Z. Xi et al. [2011], Y.-J. Chen et al.
[2012], H. H. Choi et al. [2013], while the filtering or fault
detection problems have been addressed in C. Lin et al. [2007],
X. Li et al. [2013], M. Chadli et al. [2013]. Fore more details
on this topic, we refer the readers to G. Feng et al. [2010], M.
Chadli et al. [2013], and the references therein.

It should be noted that all the aforementioned literatures are
based on an implicit assumption that the signals in T-S fuzzy
systems are directly feedback to the destination nodes (i.e., the
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controller node or the actuator note) without any time delays
or packet losses. Unfortunately, this assumption is difficult to
be satisfied in a spatially distributed control system if data
transmission is achieved via a communication network. In fac-
t, it is appealing to employ communication network for data
transmission in control systems from the practical engineer-
ing point of view, which brings a new active research front
termed networked control systems (NCSs). Comparing with
the traditional control systems, NCSs shows many significant
advantages, such as low cost, ease of maintenance and high
reliability. So far, NCSs have been widely used in a wide range
of areas (e.g., remote surgery, industrial automation, unmanned
vehicles, aerospace, and robots), with many interesting results
reported in the literature, see e.g., Xiong et al. [2007], L. A.
Montestruque et al. [2007], Xiong et al. [2009], Y. Shi et al.
[2011], D. Nešić et al. [2012], X. He et al. [2013], and the
reference therein.

Motivated by the advantages of T-S fuzzy models and NCSs,
the networked control problem of T-S fuzzy systems has been
an active field of research and there have been rich results on
this topic in the literature. To mention a few, the state feedback
robust control of networked T-S fuzzy systems with time delays
and packet losses is addressed in H. G. Zhang et al. [2009]. The
output feedback control of networked T-S fuzzy systems with
multiple packet dropouts is studied in J. Qiu et al. [2011]. While
in C. C. Hua et al. [2012], the decentralized memoryless state
feedback controller design method is proposed for networked
T-S fuzzy systems with time delays. The aforementioned re-
search results have a significant impact on both the theoretical
advances and practical applications of the stabilization problem
for networked T-S fuzzy systems. Nevertheless, it is worth
pointing out that, for the results obtained so far concerning this
topic, especially for the results on state feedback stabilization
problem of networked T-S fuzzy systems, there still leave much
room for improvement in their conservatism.

Therefore, in this paper, we revisit the stabilization problem for
a general class of discrete-time networked T-S fuzzy systems
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with time delays and packet losses, where our focus is to further
reduce the conservatism of networked T-S fuzzy systems. By
explicitly considering physical properties of NCSs, a NCSs
model with some physical constraints is used to describe the
closed-loop networked T-S fuzzy systems. Under this frame-
work, an improved stability criterion dependent on both time
delay bound and packet loss bound is derived, by guaranteeing
the deceasement of Lyapunov functional at each control signal
updating step rather than at each sampling step. Based on the
obtained stability conditions, we further investigated the corre-
sponding state feedback controller design problem. Illustrative
examples are provided to show the advantage and effectiveness
of the developed results.

The organization of this paper is as follows. The system de-
scription and problem formulation are provided in Section II.
The stability conditions and controller design methodology for
the nonlinear NCSs are presented in Section III. Two numerical
examples are provided in Section IV. Finally we conclude this
paper in Section V.

Notation. Throughout this paper, Rn denotes the n dimen-
sional Euclidean space and the notation P > 0(≥ 0) means
that P is real symmetric and positive definite (semidefinite).
The superscript “T ” denotes matrix transposition; and for a
matrix A, sym(A) denotes A+AT . I is the identity matrices
with appropriate dimensions. In symmetric block matrices, we
use “∗” as an ellipsis for the terms introduced by symmetry.
Sometimes, when no confusion would arise, the dimensions of
a matrix will be omitted for convenience.

2. PROBLEM FORMULATION

The structure of NCSs considered in the paper is shown in Fig.
1, where the dynamics of the controlled plant is described by
the T-S fuzzy model and it can be represented by the following
form:

•Plant rule i:
IF θ1(k) is µi1, and · · · , θg(k) is µig,
THEN x(k + 1) = F ix(k) +Giu(k)

(for i = 1, 2, · · · , r)
(1)

where µiϖ (ϖ = 1, 2, · · · , g) are the fuzzy sets, x(k) ∈ Rn

is the plant state, u(k) ∈ Rm is the control input, F i and Gi

are matrices of compatible dimensions, r is the number of IF-
THEN rules, θ = [θ1 θ2 · · · θg] are the premise variables.
It is assumed that the premise variables do not depend on the
input u(k). By using the fuzzy inference method with a center-
average defuzzifier, product inference, and singleton fuzzifier,
the controlled plant in (1) can be expressed as:

x(k + 1) =
r∑

i=1

µi(k)[F ix(k) +Giu(k)], (2)

where

µi(k) =
wi(k)
r∑

i=1

wi(k)
, wi(k) =

p∏
j=1

µij [θj(k)] (3)

It is assumed that wi(θ(k)) ≥ 0 for i ∈ R = 1, 2, · · · , r and∑r
i=1 wi(θ(k)) > 0 for k. Therefore, we can conclude that∑r
i=1 µi(θ(k)) ≥ 0 for i = 1, 2, · · · , r and

∑r
i=1 µi(θ(k)) =

1 for all k.

Networked

 controller

ZOHBuffer

Sensor

Actuator

Plant

Plant and the sensor

Network

Fig. 1. The structure of the considered NCSs

In the considered NCSs, the sensor and actuator are time
driven. The actuator employs logical zero-order holder (ZOH)
with logical storage capacity, which enables NCSs to use the
most recent control signal to control the plant. The networked
controller is event driven and takes the following form:

•Controller rule i:
IF θ1(k) is µi1, and · · · , θg(k) is µig,
THEN u = Lix

(for i = 1, 2, · · · , r)
(4)

where Li are the feedback gains to be designed. Then the final
output of the networked fuzzy controller is:

u =
r∑

i=1

µi(k)Lix (5)

Letting F̄ =
∑r

i=1 µi(θ(k))F , Ḡ =
∑r

i=1 µi(θ(k))G, L̄ =∑r
i=1 µi(θ(k))Li, and applying controller (5) to the plant (2),

we can obtain the following compact closed-loop system:

x(k + 1) = F̄ x(k) + ḠL̄x(k − τk), (6)

where τk is the input delay of control signal acting on the plant
at time step k, which reflects the comprehensive effect of time
delays, packet losses, and packet out-of-order. For τk in (6), a
natural assumption can be made as follows:

τ1 ≤ τk ≤ τ2, (7)

where τ1 and τ2 are the lower and upper bounds respectively.

Before proceeding, we introduce the following definitions. The
time step at which new control signal arrives at ZOH is called
updating step, while the one at which no new control signal
arrives at ZOH is called holding step. Let S , {i1, i2, · · ·} (a
subsequence of {1, 2, · · ·}) and δik , ik+1 − ik denote the
sequence of time indexes of updating steps and non-updating
step number until time step ik, respectively. As stated in our
earlier work H. Li et al. [2013], one can easily infer that the
following two properties always hold for NCSs:

Pro. 1:
{

τk+1 ≤ τk at updating step
τk+1 = τk + 1 at holding step (8)

Pro. 2: 0 ≤ δik ≤ δ̂ , maxik∈S(δik), (9)

Property 2 means at least one time step is updating step every δ̂

time steps. Note that δ̂ reflects the comprehensive effect of time
delay, maximum consecutive packet losses (MCPL) and packet
out-of-order.

The objective of this paper is to design the networked controller
(5) such that the NCS (6) is stable.
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3. MAIN RESULTS.

In this section, we will first address the stability analysis prob-
lem for the considered the networked fuzzy system based on
the Lyapunov functional method. By guaranteeing the decease-
ment of Lyapunov functional at each control signal updating
step rather than at each sampling step, an improved stability
criterion for NCS (6) is derived in the following Theorem.

Theorem 1: Given scalars δ̂, τ1, and τ2 (τ2 ≥ τ1 > 0), the
NCS (6) is asymptotically stable if there exist P i > 0, Qi > 0,
Zi > 0, and Si = [ST

1i ST
2i]

T , such that the following are
feasible:

Ψstlii < 0, s, t, l, i ∈ R, (10)

Ψstlij +Ψstlji < 0, s, t, l, i, j ∈ R, 1 ≤ i < j ≤ r, (11)
where

Ψstlij =


Ψ11 Ψ12

√
τ2S1i AT

i P t Ψ15

∗ Ψ22
√
τ2S2i LT

j G
T
i P t

√
τ2L

T
j G

T
i Zj

∗ ∗ −Zl 0 0
∗ ∗ ∗ −P t 0
∗ ∗ ∗ ∗ −Zj

 ,

Ψ11 = −P i +Qi + sym(S1i), Ψ12 = −S1i + ST
2i,

Ψ15 =
√
τ2(A

T
i − I)Zj , Ψ22 = −1

δ̂
Qs − sym(S2i).

Proof: Let η(k) = x(k+1)−x(k). Then, for NCS (6), define
a Lyapunov function as:

V (ik) =

3∑
j=1

V j(ik), V 1(ik) = xT (ik)P̄ x(ik), (12)

V 2(ik) =
−1∑

θ=−τ2

ik∑
m=ik+θ

ηT (m)Z̄η(m), (13)

V 3(ik) =

ik−1∑
m=ik−τik

xT (m)Q̄x(m), (14)

where P̄ =
∑r

i=1 µi(θ(k))P i > 0, Q̄ =
∑r

i=1 µi(θ(k))Qi >
0, Z̄ =

∑r
i=1 µi(θ(k))Zi > 0 are to be determined.

To reduce unnecessary conservatism, we guarantee the decease-
ment of Lyapunov functional at each updating step in this paper.
Following this idea, we have

∆V (ik) = V (ik+1)− V (ik) =
3∑

j=1

∆V j(ik),

∆V j(ik) = V j(ik+1)− V j(ik) =

δik∑
l=0

∆V j(ik + l).

where δik ≤ δ̂.

Then, along the solution of (6), ∆V j(ik) (j ∈ {1, 2}) takes the
form of (15) and (16), shown at the bottom of the next page.
For ∆V 3(ik) =

∑δik
l=0 ∆V 3(ik + l), two cases arise and they

are discussed as follows.

Case 1: 0 ≤ l < δik . In this case, the sampling steps are holding
steps, and therefore we have τik+l+1 = τik+l + 1 for NCSs (6).
In view of this, ∆V 4(ik + l) (0 ≤ l < δik ) can be obtained in
the form of (17), shown at the bottom of the next page.

Case 2: l = δik . In this case, the time step ik + δik + 1 is
an updating step, and thus we have τik+δik+1 ≤ τik+δik

. Then,
∆V 4(ik + δik) is expressed in (18), shown at the bottom of the
next page.

Moreover, note that the control signal L̄x(ik − τik) is used
to control plant during time interval [ikh ik+1h). Then, for
0 ≤ l ≤ δik , it follows from τik+l+1 = τik+l + 1 that x(ik +
l−τik+l) = x(ik−τik). Therefore, from (17) and (18), we can
obtain (19) shown at the bottom of the next page.

On the other hand, for any matrix S̄(k) = [S̄
T
1 (k) S̄

T
2 (k)]

T

with appropriate dimensions, the following equation always
hold:
A(ik + l,m) =2

1

τik+l

[
xT (ik + l) xT (ik + l − τik+l)

]T
S̄

×
ik+l−1∑

θ=ik+l−τ2

[x(ik + l)− x(ik + l − τik+l)

− τik+lη(m)]

=0
(20)

where 0 ≤ l ≤ δik , S̄1 =
∑r

i=1 µi(θ(k))S1i, S̄2 =∑r
i=1 µi(θ(k))S2i.

Let Ξ(ik + l,m) = [xT (ik + l) xT (ik + l − τik+l) η(m)]T .
Then, from (15)-(16) and (19)-(20), we can readily have
∆V (ik) =∆V 1(ik) + ∆V 2(ik) + ∆V 3(ik) +A(ik + l,m)

≤ 1

τik+l

ik+l−1∑
θ=ik+l−τ2

Ξ(ik + l,m)T

×

{
r∑

s=1

r∑
t=1

r∑
l=1

hs(θ(ik + l − τik+l))

× ht(θ(ik + l − τik+l+1))hl(θ(ik + l))

×

[
r∑

i=1

hi(θ(ik + l))Sstlii

+
r∑

i=1

r∑
j=i+1

hi(θ(ik + l))hj(θ(ik + l))

×(Sstlij + Sstlji)]}Ξ(ik + l,m)
(21)

where the expression Sstlij are shown at the bottom of the
page.

Noting that τ1 ≤ τδik ≤ τ2 and by Schur complement, it is not
difficult to get from (22) that

Sstlii < 0,

(Sstlij + Sstlji) < 0. (23)
It implies ∆V (ik) < 0 for any x ̸= 0, and therefore the asymp-
totic stability of NCS is established. The proof is completed.
n

The stability criteria of NCSs formulated earlier deserves some
remarks.

Remark 1: Theorem 1 provides an improved stability condition
dependent on both time delay bound and packet loss bound for
networked fuzzy systems. The merit of the obtained stability
condition lies in its much less conservatism, and it is achieved
by guaranteeing the deceasement of Lyapunov functional at
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each control signal updating step rather than at each sampling
step.

Remark 2: Please note that the computational complexity of
stability criteria in Theorem 1 will increase if the number of
fuzzy rules increase. To overcome this problem, let P = P i,
Q = Qi, Z = Zi, and follow the similar lines in the proof of
Theorem 1, one can easily obtain the following stability criteria
for networked fuzzy system.

Corollary 1: Given scalars δ̂, τ1, and τ2 (τ2 ≥ τ1 > 0), the
NCS (6) is asymptotically stable if there exist P > 0, Q > 0,
Z > 0, S = [ST

1 ST
2 ]

T , and i ∈ R, such that the following
are feasible:

Θ11 Θ12
√
τ2S1 AT

i P Θ15

∗ Θ22
√
τ2S2 LT

i G
T
i P

√
τ2Li

TGT
i Z

∗ ∗ −Z 0 0
∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ −Z

 < 0, (24)

Θ11 = −P +Q+ sym(S1), Θ12 = −S1 + ST
2 ,

Θ15 =
√
τ2(A

T
i − I)Z, Θ22 = −1

δ̂
Q− sym(S2).

Corollary 1 provides an alternative stability criteria for net-
worked T-S fuzzy system, and it can greatly reduce the com-
putational complexity of stability condition, at a cost of higher
a little more conservatism.

Theorem 1 gives necessary stability conditions on the existence
of stabilizing state feedback gains for networked fuzzy systems.
However, it is difficult to calculate stabilizing gains directly
from Theorem 1, since the obtained stability conditions are non-
linear in controller gains. To circumvent the synthesis problem,
let P̄ t = P−1

t , Z̄j = Z̄
−1
j , and pre- and post- multiplying (10)

and (11) by diag{I, I, I, P̄ t, Z̄j}. Then we can readily obtain
the following theorem.

Theorem 2: Given scalars δ̂, τ1, and τ2 (τ2 ≥ τ1 > 0), the
NCS (6) is asymptotically stable if there exist P i > 0, P̄ i > 0,
Qi > 0, Zi > 0, Z̄i > 0, and Si = [ST

1i ST
2i]

T , such that the
following are feasible:

Υstlii < 0, s, t, l, i ∈ R, (25)

Υstlij +Ψstlji < 0, s, t, l, i, j ∈ R, 1 ≤ i < j ≤ r, (26)

P iP̄ i = I, ZiZ̄i = I, (27)

where

∆V 1(ik) =

δik∑
l=0

[F̄ x(ik + l) + ḠL̄x(ik + l − τik+l)]
T P̄ [F̄ x(ik + l) + ḠL̄x(ik + l − τik+l)]−

δik∑
l=0

xT (ik + l)P̄ x(ik + l),

(15)

∆V 2(ik) =

δik∑
l=0

[
τ2η

T (ik + l)Z̄η(ik + l)−
ik+l−1∑

θ=ik+l−τ2

ηT (θ)Z̄η(θ)

]
(16)

∆V 3(ik + l) =

ik+l+1−1∑
l=ik+l+1−τik+l+1

xT (ik + l)Q̄x(ik + l)−
ik+l−1∑

l=ik+l−τik+l

xT (ik + l)Q̄x(ik + l) = xT (ik + l)Q̄x(ik + l), (17)

∆V 3(ik + δik) =

ik+δik+1−1∑
l=ik+δik+1−τik+δik

+1

xT (ik + δik)Q̄x(ik + δik)−
ik+δik−1∑

l=ik+δik−τik+δik

xT (ik + δik)Q̄x(ik + δik)

≤
ik+δik+1−1∑

l=ik+δik+1−τik+δik

xT (ik + δik)Q̄x(ik + δik)−
ik+δik−1∑

l=ik+δik−τik+δik

xT (ik + δik)Q̄x(ik + δik)

= xT (ik + δik)Q̄x(ik + δik)− xT (ik + δik − τik+δik
)Q̄x(ik + δik − τik+δik

).

(18)

∆V 3(ik) =

δik∑
l=0

[xT (ik + l)Q̄x(ik + l)]− xT (ik + δik − τik+δik
)Q̄x(ik + δik − τik+δik

)

=

δik∑
l=0

[xT (ik + l)Q̄x(ik + l)]− 1

δik

δik∑
l=0

[xT (ik + δik − τik+δik
)Q̄x(ik + δik − τik+δik

)]

=

δik∑
l=0

[xT (ik + l)Q̄x(ik + l)− 1

δik
xT (ik + l − τik+l)Q̄x(ik + l − τik+l)]

(19)

Sstlij =


−P i +Qi + sym(S1i) −S1i + ST

2i

√
τδikS1i AT

i P t
√
τ2(A

T
i − I)Zj

∗ −1

δ̂
Qs − sym(S2i)

√
τδikS2i LT

j G
T
i P t

√
τ2L

T
j G

T
i Zj

∗ ∗ −Zl 0 0
∗ ∗ ∗ −P t 0
∗ ∗ ∗ ∗ −Zj

 , (22)
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Υstlij =


Υ11 Υ12

√
τ2S1i AT

i Υ15

∗ Υ22
√
τ2S2i LT

j G
T
i

√
τ2L

T
j G

T
i

∗ ∗ −Zl 0 0
∗ ∗ ∗ −P̄ t 0
∗ ∗ ∗ ∗ −Z̄j

 , (28)

Υ11 = −P i +Qi + sym(S1i), Υ12 = −S1i + ST
2i, (29)

Υ15 =
√
τ2(A

T
i − I), Υ22 = −1

δ̂
Qs − sym(S2i). (30)

Then, cone complementarity linearization (CCL) approach can
be employed in this paper to calculate the stabilizing gains
from Theorem 2. It is worth mentioning that the CCL based
controller design procedure is quite standard, and therefore we
omit it in this paper to avoid unnecessary repetition. For more
details on the CCL approach, we refer the readers to our earlier
work H. Li et al. [2009] and the reference therein.

4. ILLUSTRATIVE EXAMPLES

In this section, two examples are provided to illustrate the
advantage and effectiveness of the proposed approach.

Example 1: Consider a networked nonlinear system in (6) with
the following parameters:

F 1 =

[
−0.291 1

0 0.95

]
, G1L1 =

[
0.012 0.014
0 0.015

]
,

F 2 =

[
−0.1 0
1 −0.2

]
, G2L2 =

[
0.01 0
0.01 0.015

]
. (31)

The basic idea of this example is to keep the lower delay bound
τ1 constant first, and then we are interested in the admissible
upper delay bound τ2, below which the NCS is stable for all
τ1 ≤ τk ≤ τ2.

A comprehensive study is carried out, with the comparative
results listed in Table 1. It has been shown that the proposed
method obtains much larger admissible upper delay bound than
the existing one in H. Gao et al. [2009], especially when the
MCPL bound δ̂ in NCSs is small. Therefore, the result in this
paper is less conservative than that in H. Gao et al. [2009] for
this example.

Table 1. The admissible τ2 for given τ1.

τ1 = 5 τ1 = 8 τ1 = 10

Theorem 1 in H. Gao et al. [2009] 16 18 20

Theorem 1 with δ̂ = 10 33 33 33

Theorem 1 with δ̂ = 5 > 100 > 100 > 100

Theorem 1 with δ̂ = 3 > 100 > 100 > 100

Example 2: Consider a NCS shown in Fig. 1, where the
controlled plant can be expressed by (1) and its parameters are
given as follows:

F 1 =

[
−0.291 1

0 0.95

]
,F 2 =

[
−0.1 0

1 −0.2

]
,

G1 =

[
0.01

0.01

]
, G2 =

[
0.01

0.015

]
, (32)

The membership functions for Plant Rule 1 and 2 are of the
following form:

µ1[x1(k)] =

{
1− 1

1 + e−7[x1(k)−π
6 ]

}
× 1

1 + e−7[x1(k)−π
6 ]

,

µ2[x1(k)] = 1− µ1[x1(k)]. (33)

In the studied scenario , the network condition are set to τk ∈
{1, 2, 3, 4, 5} and δ̂ = 2, By the proposed method, we obtain a
stabilizing controller of the form (4), with the following gains:

L1 = [2.4830 − 2.7007] , L2 = [−0.3566 2.5660] . (34)

With the initial state x0 = [10,−10]
T , typical simulation result

of the above networked T-S fuzzy system is depicted in Fig. 2.
It can be seen that the above networked system is asymptoti-
cally stable and shows satisfactory control performance, which
illustrates the effectiveness of the proposed method.
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Fig. 2. Typical simulation results using the proposed method.

5. CONCLUSIONS

In this paper, the stabilization problem has been investigated
for a general class of networked T-S fuzzy systems with time
delays and packet losses. To reduce the conservatism of NCSs,
an improved stability criterion dependent on both time delay
bound and packet loss bound is derived, by guaranteeing the
deceasement of Lyapunov functional at each control signal up-
dating step rather than at each sampling step. Then, a stabilizing
controller design method based on the PDC scheme has also
been provided. Finally, two illustrative examples are provided
to demonstrate the effectiveness of the approaches proposed in
this paper. Further research topics include extending the main
results of this paper to the H∞ case.
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