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Abstract: The boundary feedforward control problem for a class of distributed-
parameter port-Hamiltonian systems in one spatial dimension is addressed. The con-
sidered hyperbolic systems of two conservation laws (with dissipation) are discretized
in the spatial coordinate using an energy-based, structure preserving discretization
scheme. The resulting finite-dimensional approximate state representation has a
feedthrough term which allows to directly express the differential equation for the
inverse dynamics. The inverse system needs to be solved in order to determine
the control inputs for given desired output trajectories. For non-collocated pairs
of boundary in- and outputs the magnitude of dissipation determines whether the
inverse discretized models are stable or not. In the unstable case, the problem at
hand can be attacked with classical approaches for the dynamic inversion of non-
minimum phase systems.
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1. INTRODUCTION

The port-Hamiltonian approach is an elegant way
to formulate nonlinear, energy-based models of
multi-domain physical systems. The equations de-
scribing a port-Hamiltonian (pH) dynamical sys-
tem have an intuitive structure, where each of the
containing symbols is related to the stored energy,
its exchange between different types and subsys-
tems, and its dissipation, see van der Schaft (2000).
This holds not only in the finite-dimensional case,
but also for infinite-dimensional systems, governed
by systems of partial differential equations (van der
Schaft and Maschke, 2002). The pH structure
can be exploited, for example, to design finite-
dimensional energy-shaping feedback controllers
for infinite-dimensional systems, based on the con-
struction of structural invariants (Casimir func-
tions) for the closed-loop system (Macchelli and
Melchiorri, 2005; Schöberl and Siuka, 2013). The
limiting factor for the application of these methods,
however, is the presence of physical dissipation.

In general, analysis and controller design become
more tractable when a finite-dimensional approx-
imation (by spatial discretization) of the infinite-
dimensional system is used. In Golo et al. (2004),
a technique has been introduced to obtain such
an approximation preserving the port-Hamiltonian
structure. In particular, the physical property of
? The author is with the Institute of Automatic Control
(Prof. Boris Lohmann).

passivity of the original system is preserved in the
approximation. Examples of related approaches for
structure preserving discretization are Moulla et al.
(2012) or Farle et al. (2013). An advantage of pH
discretization is that nonlinearities, which originate
in a non-quadratic energy functional 1 , and which
may have a dominant effect on the system dynam-
ics, are preserved in the discretized model. A finite-
dimensional pH model of lower dimension used
for feedforward controller design, might suffice in
order to achieve satisfactory tracking performance,
compared to a higher dimensional linear approxi-
mation, for example.

The systems considered in this paper are hyperbolic
systems of two conservation laws with dissipation 2 .
This includes the simplest linear case of an elec-
tric transmission line with quadratic energy and
constant parameters, but also nonlinear systems
like hydraulic/pneumatic flows in pipes, nano scale
transmission lines with varying geometric proper-
ties or non-quadratic energy terms, or the shallow
water equations for flows in open channels.

The feedforward control problem for discretized
port-Hamiltonian systems of this type is addressed.
Given desired output trajectories, the correspond-
ing inputs shall be determined. The solution of

1 This includes also spatial integrals over a quadratic form
with non-constant Hessian.
2 Inspired by the electric example, the class of systems is
for brevity called (general) transmission systems.
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this task depends on (non-)collocation of in- and
outputs. In the case of collocated in-/outputs 3 the
problem is solved by numerical integration of the
stable inverse dynamics, which is the dual state rep-
resentation with in- and outputs permuted. When
in- and outputs are non-collocated 4 stability of the
inverse dynamics is lost in general and (numerical)
methods for the stable inversion of non-minimum
phase systems need to be applied.

The remainder of the paper is organized as follows.
In Section 2, the considered infinite-dimensional
models of transmission systems are presented. Sec-
tion 3 contains a brief summary of structure pre-
serving discretization and the derivation of the
different finite-dimensional models considered in
the paper. In Section 4, the inverse models are
presented and in Section 5, the feedforward con-
trol problem is analyzed for collocated and non-
collocated in- and outputs, respectively. A condi-
tion is given for stable dynamic inversion in the case
of non-collocation. A summary and future research
perspectives conclude the paper in Section 6.

2. INFINITE-DIMENSIONAL MODELS

In this section, the class of hyperbolic systems
of two conservation laws (transmission systems)
is introduced and illustrated at the examples of
the linear transmission line and the nonlinear flow
in open channels (shallow water equations). The
unified port-Hamiltonian model is presented and
the different possibilities for boundary in- and
outputs are discussed.

2.1 Physical examples

Transmission line. The transient behavior of
a single electric transmission line (or a pair of
transmission lines, respectively) is governed by the
hyperbolic linear partial differential equations

∂t(li(x, t)) = −∂xv(x, t)− ri(x, t)
∂t(cv(x, t)) = −∂xi(x, t)− gv(x, t).

(1)

ψ(x, t) = li(x, t) and q(x, t) = cv(x, t) are the dis-
tributed magnetic flux and electric charge densities,
i(x, t) and v(x, t) the current and the voltage. l and
c are the series inductance and parallel capacitance,
r an g denote the resistance and admittance, each
per unit length, x is the spatial coordinate.

For the linear transmission line, analytic expres-
sions exist to compute the voltage (current) at one
terminal from voltage and current signals at the
other terminal (Fliess et al., 1999). In Schmuck
et al. (2014) these expressions are used to solve the
feedforward control problem in a network of HVDC
transmission lines.

3 i. e. when in- and output are a pair of conjugate power
variables at one terminal of the system
4 i. e. physical quantities of same type at opposite terminals

Shallow water equations. The transient flow in an
open channel with constant width can be described
by the one-dimensional shallow water or Saint
Venant equations 5

∂th = −∂x(hv)

∂tv = −v∂xv − g∂xh+ g(S0 − Sf )
(2)

with the water level h(x, t) and the flow velocity
v(x, t) as distributed states. The remaining quanti-
ties are the gravitational acceleration g, the channel
bottom slope S0 and the so-called friction slope Sf

S0(x)=−∂xb(x), Sf (x, t)=
Cv(x, t)|v(x, t)|m−1

Rp
,

(3)
where b(x) is the bottom height, C a friction coeffi-
cient, R the hydraulic radius, and m, p parameters
depending on the flow regime. In Knüppel et al.
(2010), where Eqs. (2) and (3) are taken from,
a trajectory generation approach for the shallow
water equations is proposed, based on numerical
integration along the characteristics of the PDEs.
Hamroun et al. (2006) present the structure pre-
serving discretization and simulation of the shallow
water equations. In Pasumarthy and van der Schaft
(2006) the discretized model is derived, where in
addition the fluid velocity component, perpendicu-
lar to the main flow direction is considered.

2.2 Unified port-Hamiltonian model

Both electric and fluidic model can be represented
in a unified way with the following distributed-
parameter pH state representation (including dis-
sipation), see e. g. van der Schaft (2006):[

∂tz1
∂tz2

]
=

[
0 −1
−1 0

] [
∂xe1
∂xe2

]
−
[
r1 0
0 r2

] [
e1
e2

]
. (4)

z(x, t) = [z1(x, t) z2(x, t)]T denotes the vec-
tor of distributed state variables and e(x, t) =
[e1(x, t) e2(x, t)]T represents the vector of dis-
tributed efforts (co-states), which are defined as the
variational derivatives of the energy functional on
the considered spatial interval 6 :

e(x, t) = (δzH(z))T . (5)

The time derivatives of the states f(x, t) =
ż(x, t) are called flows. Together with the efforts,
they define a pair of conjugated power variables.
ri(x) ≥ 0, i = 1, 2, are distributed dissipation coef-
ficients. The energy stored on the spatial interval
[0, L] is given by a functional

H(z) =

∫ L

0

H(z(x, t)) dx, (6)

where H(z(x, t)) denotes the energy or Hamilto-
nian density. The row vector of variational deriva-
tives δzH of H is defined by the relation
5 Arguments of functions are dropped, when they are clear
from the context.
6 Notation: ∂zH (∇H) denotes the row (column) vector of
partial derivatives of a function H(z). Likewise, δzH is the
row vector of variational derivatives of a functional H(z(x)).
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Table 1. Variables in the transmission
line example (densities per unit length)

Var. Physical quantity

z1 ψ flux density
z2 q charge density

H 1
2l
ψ2 + 1

2c
q2 mag. plus el. energy density

e1 i current
e2 v voltage
r1 r resistance per unit length
r2 g admittance per unit length

Table 2. Variables in the shallow water
example, ρ: density of water

Var. Physical quantity

z1 v flow velocity
z2 h water height

H 1
2

(hv2 + gh2 + 2hgb(x)) Energy per area per ρ

e1 vh
volumetric flow, divided
by channel width

e2
1
2
v2 + gh+ gb(x) Total pressure per ρ

r1
gC|v|m−1

hRp friction coefficient

H(z + εη) = H(z) + ε

∫ L

0

δzHη dx+O(ε2) (7)

with ε small and η a vector of smooth functions
such that z + εη satisfies the same boundary
conditions as z. In case the energy (Hamiltonian)
density H does not depend on spatial derivatives of
the states, the variational derivatives of H can be
identified with the partial derivatives of the energy
density: δzH = ∂zH. With ε = dt, η = ż, the time
derivative of H can be expressed as

Ḣ =

∫ L

0

δzHż dx = (8)

=

∫ L

0

eT
[

0 −1
−1 0

]
∂xe dx−

∫ L

0

eT
[
r1 0
0 r2

]
e dx.

Integration by parts yields the energy balance equa-
tion for the infinite-dimensional pH system

Ḣ ≤ e1(0)e2(0)− e1(L)e2(L). (9)

The energy balance equation results from the fact
that flows and efforts associated to distributed
energy storage and dissipation, as well as energy
exchange through the boundary, are related by a
power-conserving interconnection. The latter can
be formalized by a so-called Stokes-Dirac structure
(van der Schaft and Maschke, 2002).

Tables 1 and 2 contain the definitions of the vari-
ables in the pH model for both physical examples.

2.3 Boundary conditions

The state representation of a distributed-parameter
system is completed with the definition of bound-
ary conditions. For the considered class of systems

with two states, distributed along one spatial di-
mension, boundary conditions are imposed on the
effort variables at the terminals of the transmission
system (x = 0 and x = L, respectively). In this
paper, the following cases are distinguished.

Collocated in-/output pairs. Two efforts of dif-
ferent type, one at each terminal, are considered
as control inputs, while the conjugate 7 efforts are
considered as outputs. One possible combination is[

u1
u2

]
=

[
e2(0)
−e1(L)

]
,

[
y1
y2

]
=

[
e1(0)
e2(L)

]
. (10)

The minus sign ensures that yTu is the power
supplied to the system through the boundary. This
definition of in- and outputs is shown in Fig. 1 for
the transmission line example. Another possibility,
where simply the roles of inputs and collocated
outputs are changed, is[

u′1
u′2

]
=

[
e1(0)
e2(L)

]
,

[
y′1
y′2

]
=

[
e2(0)
−e1(L)

]
. (11)

Non-collocated in-/output pairs. Effort variables
of same type (e. g. voltages) at opposite terminals
form a pair of non-collocated in- and outputs, like[

ũ1
ũ2

]
=

[
e2(0)
e1(0)

]
,

[
ỹ1
ỹ2

]
=

[
e2(L)
−e1(L)

]
. (12)

Effect of terminal resistance. By an algebraic
relation between the efforts at one terminal, e. g.
due to an ohmic terminal load in the electric
example, the number of (free) control inputs and
outputs of the pH system is reduced. At x = L
(index “L”) this relation can be expressed as

e2(L) = RL(z(L))e1(L), (13)

where RL is a, possibly state dependent, lumped
resistive term. For the transmission line, an ohmic
load at x = L is modeled by

vL = RLiL ⇔ e2(L) = RLe1(L). (14)

For the shallow water equations, at the downstream
end of the channel section a weir with a discharge
characteristics (Knüppel et al., 2010)

Qw = hLvL = Cw
2

3

√
2g(hL − w)

3
2 (15)

is assumed (height w, discharge coefficient Cw).
Squaring this equation, dividing by 2h2L and adding
ghL + gbL, one obtains

1

2
v2L + ghL + gbL =

4
9Cwg(hL − w)3 + gh3L

h2L
+ gbL.

(16)
Setting bL = 0, as a reference level for the channel
bottom height, the equation can be rearranged:

1

2
v2L + ghL︸ ︷︷ ︸
e2(L)

=
4Cwg

9vL

(
1 +

(hL − w)3

h3L

)
︸ ︷︷ ︸

RL(z1(L),z2(L))

hLvL︸ ︷︷ ︸
e1(L)

.

(17)

7 The product of an effort variable with its conjugate
counterpart has the unit of power.
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Fig. 1. Distributed states, efforts, in- and outputs
in the transmission line example.

The effect of the weir corresponds to a state-
dependent terminal resistance.

3. DISCRETIZED MODELS

The goal of structure preserving spatial discretiza-
tion of infinite-dimensional pH systems is to ob-
tain a finite-dimensional approximate model in pH
form, which obeys the energy balance equation (9).
In this section, the discretization scheme according
to Golo et al. (2004) is summarized with the sim-
plest possible shape functions and it is shown how
to construct N -segment models of the considered
transmission systems. The discretized models are
given for the cases of collocated and non-collocated
in-/outputs as well as for the non-collocated SISO
case with terminal resistance.

3.1 Discretization of states and efforts

The distributed states zi(x, t) and efforts ei(x, t),
i=1,2 on an interval x∈ [a, b] are approximated by

zi(x, t) ≈ Zi(t)ω
ab
i (x) (18)

ei(x, t) ≈ Ea
i (t)ωa

i (x) + Eb
i (t)ωb

i (x). (19)

Zi(t) are the states of the discretized model and

the boundary efforts E
a/b
i (t) will serve as in- and

outputs. The shape functions 8 ωab
i (x) and ωa

i (x),
ωb
i (x) have to be chosen such that the Zi(t) ap-

proximate the integrals of the distributed states

while E
a/b
i (t) reproduce the boundary efforts of the

infinite-dimensional system:

Zi(t) ≈
∫ b

a

zi(x, t) dx (20)

Ea
i (t) ≈ ei(a, t), Eb

i (t) ≈ ei(b, t). (21)

These requirements translate into the conditions∫ b

a

ωab
i (x) dx = 1, (22)

ωa
i (a) = ωb

i (b) = 1, ωa
i (b) = ωb

i (a) = 0. (23)

Replacing (18) and (19) in the partial differential
equations (4), where for the moment the dissipation
is ignored, i. e. r1 = r2 = 0 is assumed, yields

8 While ω
a/b
i are indeed functions (0-forms), it is evident

from Eq. (22) that the “shape functions” ωab
i (x) are differ-

ential 1-forms.

ωab
1 (x)Ż1(t) = −∂xωa

2 (x)Ea
2 (t) + ∂xω

b
2(x)Eb

2(t)

ωab
2 (x)Ż2(t) = −∂xωa

1 (x)Ea
1 (t) + ∂xω

b
1(x)Eb

1(t).
(24)

The simplest choice of shape functions such that
the terms depending on x cancel in (24) is (i = 1, 2)

ωab
i =

1

b− a
, ωa

i (x)=
b− x
b− a

, ωb
i (x)=

x− a
b− a

.

(25)
What remains is the set of two ordinary differential
equations, excited by the boundary efforts

Ż1(t) = −Ea
2 (t) + Eb

2(t)

Ż2(t) = −Ea
1 (t) + Eb

1(t).
(26)

The average effort variables on one segment are
defined as

Ei(t) =
1

2
(Ea

i (t) + Eb
i (t)). (27)

3.2 One-segment model

Choosing the in- and outputs according to Eq. (10),
at the boundaries a and b (instead of 0 and L)[
U1

U2

]
=

[
Ea

2

−Eb
1

]
≈
[
e2(a)
−e1(b)

]
,

[
Y1
Y2

]
=

[
Ea

1

Eb
2

]
≈
[
e1(a)
e2(b)

]
,

(28)
and approximating the effect of dissipation by the
terms −Ri(Z)Ei with

Ri(Z) = (b− a)ri(
Z

b− a
), (29)

see the remark below, the discretized pH state
representation for one segment (superscript “1”) is

Ż = (J1 −R1)E +G1U

Y = (G1)TE(t) +D1U
(30)

with

F 1 = J1 −R1 =

[
−R1(Z) −2

2 −R2(Z)

]
,

G1 =
[
g11 g

1
2

]
=

[
2 0
0 2

]
, D1 =

[
0 1
−1 0

]
.

(31)

The vector of efforts E is indeed the gradient
∇ZHab of the approximate energy on the interval
[a, b] of the transmission system,

Hab = (b− a)H(
Z

b− a
) ≈

∫ b

a

H(z(x))dx. (32)

Remark 1. The explicit one-segment discretized
pH model for the shallow water equations was
derived in Pasumarthy and van der Schaft (2006).

Remark 2. To match the dissipated power in the
discretized model, it is required that∫ b

a

rie
2
i (x) dx ≈ RiE

2
i , i = 1, 2. (33)

Replacing (19) under the integral and using the
definition of average efforts (27), expressions of the
boundary efforts remain on the left hand side. The
effect of these terms diminishes with the number of
segments interconnected in series, such that (29) is
a valid approximation of the dissipation.
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3.3 Series interconnection

For the series interconnection of two segments on
the intervals [ak, bk], [ak+1, bk+1], the conditions

Ebk
i = E

ak+1

i , i = 1, 2 (34)

have to be obeyed. With the definition of collocated
in- and outputs according to Eq. (10), this means

Uk+1
1 = Y k

2 , Uk
2 = −Y k+1

1 . (35)

The remaining in- and outputs of the intercon-
nected model are[
U1

U2

]
=

[
Uk
1

Uk+1
2

]
≈
[

e2(ak)
−e1(bk+1)

]
,
[
Y1
Y2

]
=

[
Y k
1

Y k+1
2

]
≈
[
e1(ak)
e2(bk+1)

]
.

(36)
For a 2-segment discretization, two models of type
(30), (31) are written one below each other, replac-
ing conditions (35). Attaching another 1-segment
model yields the 3-segment model, etc.

3.4 Collocated in-/outputs

The N -segment model on the spatial interval [0, L]
(a1 = 0, bN = L) with collocated in- and outputs[
U1

U2

]
=

[
U1
1

UN
2

]
≈
[
e2(0)
−e1(L)

]
,

[
Y1
Y2

]
=

[
Y 1
1

Y N
2

]
≈
[
e1(0)
e2(L)

]
,

(37)
states and efforts Z,E ∈ R2N , is

Σ :
Ż = FE +GU

Y = GTE +DU .
(38)

The matrices F = FN , G = GN , D = DN

are obtained from a recursive computation with
K = 2, . . . , N 9 :

FK =

[
FK−1 −gK−12 (g11)T

g11(gK−12 )T F 1

]
, (39)

gK1 =

[
g11

−gK−11

]
, gK2 =

[
−gK−12

g12

]
, (40)

DK = −DK−1 =

[
0 −(−1)K

(−1)K 0

]
. (41)

The matrices F , G, D define a Dirac structure
(van der Schaft, 2000) between the flow variables

[Ż
T
Y T ]T and the efforts [ET UT ]T . This Dirac

structure describes the power-conserving intercon-
nection of the energy storing and dissipating ele-
ments in the discretized model. The employed dis-
cretization scheme approximates the total energy

HN =

N∑
k=1

Hakbk ≈ H (42)

and conserves the energy balance equation (9):

ḢN ≤ Y1U1 + Y2U2 ≈ e1(0)e2(0)− e1(L)e2(L).
(43)

The vector of efforts E is the gradient ∇ZH
N (Z)

of the approximate energy.
9 The superscript K with the matrices F , g1, g2 and D
denotes the interconnection of K segments, whereas k with
the in- and outputs refers to the k-th segment.

3.5 Non-collocated in-/outputs

The feedthrough in the model (38) allows to rewrite
the equations in terms of the non-collocated pair of
in- and outputs Ũ and Ỹ according to (12):

Σ̃ :
Ż = F̃E + G̃Ũ

Ỹ = H̃
T
E + D̃Ũ ,

(44)

with
F̃ = F + (−1)Ng2g

T
1 , G̃ =

[
g1 −(−1)Ng2

]
,

H̃
T

=

[
gT2

(−1)NgT1

]
, D̃ =

[
(−1)N 0

0 −(−1)N

]
.

(45)

3.6 Non-collocated in-/outputs, terminal resistance

A resistive relation (13) at x = L can be written

U2 = − Y2
RL

= −g
T
2E

RL
− (−1)NU1

RL
. (46)

Replacing this equation in the model of the N -
segment discretized system (38) and taking the
non-collocated output yields the SISO model

Σ̄ :
Ż = F̄E + ḡU1

Y2 = h̄
T
E + d̄U1

(47)

with
F̄ = F − g2gT2 /RL, ḡ = g1 − (−1)Ng2/RL,

h̄
T

= gT2 , d̄ = (−1)N .
(48)

Remark 3. The case of collocated in- and outputs
with terminal resistance is omitted. The stability
of the inverse model, as discussed in the sequel,
corresponds to the collocated MIMO case.

4. INVERSE MODELS

Due to the feedthrough term in the models Σ, Σ̃
and Σ̄ it is straightforward to write down the cor-
responding inverse models (denoted with a prime).

4.1 Collocated in-/outputs

Σ′ :
Ż = F ′E +G′Y

U = (G′)TE +D′Y
(49)

with
F ′ = F +GDGT ,

G′ = −GD, D′ = −D.
(50)

4.2 Non-collocated in-/outputs

Σ̃′ :
Ż = F̃

′
E + G̃

′
Ỹ

Ũ = (H̃
′
)TE + D̃

′
Ỹ

(51)

with

F̃
′

= F − (−1)Ng1g
T
2 , G̃

′
=
[
(−1)Ng1 g2

]
,

(H̃
′
)T =

[
−(−1)NgT2

gT1

]
, D̃

′
= D̃.

(52)
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4.3 Non-collocated in-/outputs, terminal resistance

Σ̄′ :
Ż = F̄

′
E + ḡ′Y2

U1 = (h̄
′
)TE + d̄′Y2

(53)

with

F̄
′

= F̃
′
, ḡ′ = (−1)N ḡ,

(h̄
′
)T = −(−1)N h̄

T
d̄′ = d̄ = (−1)N .

(54)

5. FEEDFORWARD CONTROL

The following feedforward control problem is con-
sidered for the three different state representations:

Given a desired output trajectory Y d(t) (or Ỹ d(t)
or Y2,d(t)), determine the corresponding input

Ud(t) (or Ũd(t) or U1,d(t)) such that the out-
put tracks the desired trajectory in the ideal,
undisturbed case with appropriate initial conditions
Z(0) = Zd(0).

The structure preserving discretization scheme as
presented before leads to models with a feedthrough
term such that the relative degree of the outputs
Y (t) (or Ỹ (t) or Y2(t)) is zero. Impeding the (di-
rect) application of the flatness-based approach,
this structural property of the discretized models
allows for a straightforward formulation of the in-
verse system, as seen above. The inverse system in
the considered cases is exactly the zero dynamics
(of full order n = 2N) of the original system,
excited by the (desired) output. With the solution
of the inverse dynamics, the state Zd(t) along the
desired output trajectory can be parameterized.
Finally, the output equation can be solved for the
desired input function Ud(t) (or Ũd(t) or U1,d(t)).

5.1 Collocated in-/outputs

In the case of collocated in- and outputs, due to
skew-symmetry of GDGT , the original and the
inverse system share the same dissipation matrix
R = − 1

2 (F + F T ) = R′. The inverse model
Σ′ is nothing else than the discretized model of
the pH system (4) with the alternative choice of
in- and outputs (11). If R is positive definite (or
R is positive semi-definite and the damping is
pervasive), the control input can be determined
for a desired output trajectory by stable numerical
integration of Σ′.

5.2 Non-collocated in-/outputs

In the other cases of non-collocated in- and outputs
the inverse system can be unstable (corresponding
to non-minimum phase original dynamics), depend-
ing on the magnitude of dissipation. The problem
at hand is then the stable inversion of a non-
minimum phase system for which there exists a
series of solution approaches. In Chen and Paden

(1996) it is proposed to solve the corresponding
“two point boundary value problem of the zero
dynamics driven by the desired output” by finding
trajectories which start on an unstable manifold
and end on a stable manifold. A constructive pro-
cedure is presented in Devasia et al. (1996). In
Graichen et al. (2005), it is described how to solve
the boundary value problem using a numerical rou-
tine contained in Matlab.

Whether the inverse models Σ̃′ and Σ̄′ are stable
or not is determined by the dissipation matrix

R̄
′

= − 1
2 (F̄

′
+(F̄

′
)T ) = R̃

′
which has the following

block matrix structure:

R̄
′

=


A B −B B . . .
B A B −B . . .
−B B A B
B −B B A
...

...
. . .

 , (55)

A =

[
R1 −2
−2 R2

]
, B =

[
0 2
2 0

]
. (56)

From the structure of A it is obvious that R1, R2 >
0, i. e. a fully damped system is indispensable for

positive (semi-)definiteness of R̄
′
.

Lemma 1. The dissipation matrix R̄
′

in Eq. (55)
with R1, R2 > 0 is positive definite if and only if

R1R2 > (2N)2 (57)

with N the number of segments of the discretized
model. �

Proof. R̄
′

can be transformed into a block trian-
gular matrix with a zero matrix ON×N in the
lower left corner by pairwise permuting rows and
columns, which preserves the definiteness property.
The definiteness of the transformed matrix can
be checked with the help of the Schur decompo-
sition. Doing this subsequently for models with
K = 1, . . . , N segments, condition (57) follows. �

The lemma provides a condition for asymptotic
stability of the inverse pH systems Σ̃′ and Σ̄′. If
the condition holds, a bounded control input corre-
sponding to a desired (bounded) output trajectory
can be determined by simple numerical integration.

Remark 4. Note that the bound for admissible dis-
sipation increases with the number of segments N ,
while the values of Ri decrease when the segments
become shorter. As a consequence, the condition
can only be satisfied in heavily damped systems
with a coarse spatial discretization.

Remark 5. The condition only depends on the ma-
trices F , G and D of the original model an not on
the functional relations between efforts and states.

5.3 Main result

The observations on the structure of the discretized
(inverse) port-Hamiltonian models with complete
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damping, i. e. r1, r2 > 0 (R1, R2 > 0, respectively)
and the conclusions regarding the solution of the
feedforward control problem can be summarized as
follows:

Proposition 2. The feedforward control problem
for the considered discretized distributed-parameter
port-Hamiltonian transmision systems can be solved
in the case of collocated in- and outputs by numer-
ical integration of the asymptotically stable inverse
(or dual) system Σ′.

In the case of non-collocated in- and outputs, the
inverse system Σ̃′, (or Σ̄′ if there is a terminal
resistance) is asymptotically stable if and only if
condition (57) holds. Only in this case a simple nu-
merical integration of the inverse dynamics yields
a bounded input trajectory for a given bounded
desired output. �

6. CONCLUSIONS AND FUTURE WORK

The feedforward control problem for finite-dimen-
sional port-Hamiltonian approximations of nonlin-
ear hyperbolic systems of two conservation laws
(“transmission systems”) has been discussed. The
models which are obtained from a structure pre-
serving spatial discretization possess a feedthrough
term which allows to express the inverse system in a
straightforward way. While the inverse model with
collocated in- and outputs is stable, and hence, a
feedforward controller easy to determine by numer-
ical integration, this property is in general lost in
the non-collocated case. A condition for admissible
damping in this case has been derived, which is
violated for sensible physical systems. Then, to
solve the feedforward control problem, methods for
the stable inversion of non-minimum phase systems
have to be employed.

The approach which is sketched in this paper ex-
ploits the structure of the discretized models with
a particular choice of shape functions. Ongoing
work is on adopting the procedure in Devasia et al.
(1996) for the stable inversion of the discussed
models in the non-minimum phase case.

Different shape functions lead to models of different
structure, e. g. with full relative degree, for which
the flatness-based approach is more suitable. The
main difficulty then is the symbolic expression
of the differential parameterizations of states and
inputs for fully damped, nonlinear systems. Also
other numerical methods, e. g. based on the method
of characteristics, will be taken into account for
comparison with the proposed scheme.

Future work is planned on exploiting the modu-
lar, port-Hamiltonian structure of the discretized
models in order to find efficient numerical methods
to solve the feedforward control problem. Further
issues are the application to flexible mechanical
structures and to nonlinear transmission networks.
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