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Abstract: Support Vector Machines (SVMs) is a popular machine learning technique, which has proven 

to be very effective in solving many classical problems with balanced data sets in various application 

areas. However, this technique is also said to perform poorly when it is applied to the problem of learning 

from heavily imbalanced data sets where the majority classes significantly outnumber the minority 

classes. In this paper, we tackle the problem of learning from severely imbalanced Rail dataset via a new 

iterative support vector machine algorithm with bootstrapping-based over-sampling and under-sampling. 

We combine the good generalization ability of SVMs with the class distribution advantages of 

resampling techniques. Under-sampling and Over-sampling are commonly used methods for overcoming 

the class imbalance problem. In this work, we also address the influence of under-sampling and over-

sampling techniques on rail data and show that achieving an optimal sampling rate yields a better SVM 

generalization capability. Experimental results show that the under-sampling outperforms over-sampling. 

The iterative SVM technique also shows a competitive generalization performance on the under-sampled 

rail data set, and that under-sampling can decrease the computational complexity of SVM algorithm. 

Keywords: Support vector machines (SVMs), imbalanced data, under-sampling, oversampling. 

 

1. INTRODUCTION 

Since their introduction (Vapnik 1995), Support Vector 

Machine (SVM) has shown a remarkable success in solving 

many classical problems in various application areas. In 

classification tasks, SVMs are preferred by researchers to 

many other classification algorithms as they have a solid 

mathematical structure, a remarkable generalization 

performance and the ability to reach optimum classification 

solutions as the hyper-planes are determined by support 

vectors (Batuwita & Palade 2010). SVMs are machine 

learning classification algorithms which consider that the 

target classes exhibit a similarity in their prior probabilities 

and misclassification costs. However, in various real-world 

modelling scenarios, the data available are severely 

imbalanced. SVM classifiers perform poorly when learning 

from heavily imbalanced data.  Imbalanced data become a 

real challenge in the knowledge discovery and data mining 

field. Imbalance data sets, also referred to as class imbalance 

learning, correspond to domains where there are many more 

examples of one class than the other class. Imbalance data 

Classification always causes problems as standard machine 

learning algorithms tend to be overwhelmed by the majority 

class and have a poor performance on the minority class. The 

problem of class imbalance has been addressed by machine 

learning researchers in two different ways: one is to change 

the class distribution of the date set at hand via applying 

various resampling approaches, such as under-sampling, over 

sampling, or the incorporation of both (Chawla et al. 2002) 

(Estabrooks et al. 2004). The other way is to internally 

modify the algorithm’s structure by assigning different 

priorities to training examples and push the classifier to focus 

on minority class (Akbani et al. 2004).  

In this paper, the objective is to elicit a better SVM model for 

classifying imbalanced rail data set by applying resampling 

techniques to achieve an optimum sampling rate that yields a 

better overall performance. The paper is organized as 

follows: Section 2 introduces an overview of the key 

production stages (steel making, continuous casting, rolling 

and finishing) from which the rail data is collected. Section 3 

discusses the class imbalance learning solutions that are 

available for SVM classification. The support vector 

machines algorithm is derived in Section 4.  In Section 5, we 

present the SVM classification performance and discuss in 

details a performance comparison and evaluation between the 

results obtained via bootstrapping-based oversampling and 

under-sampling. Concluding remarks are given in Section 6. 

2. OVERVIEW OF RAIL MANUFACTORING ROUTE, 

KEY PRODUCTION STAGES 

The rail manufacturing data utilized in this paper have been 

gathered from a complex steel manufacturing process which 

belongs to Tata Steel Europe. The data accumulated from the 
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rail manufacturing process is the accumulation of more than 

two years of production period (Yang et al. 2011). The rail 

production line consists of three key production stages, steel 

making, continuous casting, rails rolling and finishing as 

shown in Figure 1. 

 

 
 

Fig. 1. Overview of the rail Key production stages (with 

permission from Tata-Steel Europe). 

 

The iron ore as well as additional scraps are continuously 

charged into the top of huge blast furnace. The objective of 

the blast furnace is to produce hot metal by physically 

converting iron oxides into liquid iron. The liquid products 

(molten iron) are drained from the blast furnace to a basic 

oxygen steelmaking furnace in which carbon-rich molten iron 

is refined into steel. Basic oxygen steelmaking process blows 

oxygen through the molten iron. The key purpose of the 

process is to reduce the carbon content of the alloys and 

change it into low-carbon-steel. For further secondary steel 

making, the liquid steel is passed through a ladle 

metallurgical furnace in order to adjust steel chemical 

structures via desulphurization and alloy addition. The de-

gasser unit will then improve steel cleanness by removing 

harmful hydrogen and other gases. In the stage of continuous 

casting, the rail molten steel is transferred to continuous 

casting machine by which 8-tonne steel blooms are produced 

(Yang et al. 2011). These produced blooms are heated and 

then fed directly to straightening operations and rolling mills 

at a proper temperature to yield rails up to 120 meters in 

length. The final stage of rail manufacturing process involves 

preventative measures against cracks and flaws and 

evaluating the properties of every rail via an inclusive non-

Destructive testing (NDT) to ensure it meets applicable 

standards and quality control specifications, in addition to 

dimensional accuracy measurement, before dispatch to 

clients. A well designed data infrastructure, includes online 

data servers, is utilized to collect real-time variables, process 

parameters, quality inspection data and management 

information from rail production route through extensive 

instrumentations allocated for online monitoring and process 

control. The overall data is then saved in a master server 

where an advanced level of data mining and analysis can be 

performed. The original rail data collected from the rail 

production route is very large, with over 200 variables and 

over 65000 data records cover a production period of two 

years. Owning the fact that a careful data preparation is an 

essential part of exploratory data analysis, Data pre-

processing framework was carefully designed to tackle the 

problem of detecting outliers, modifying incorrect data 

entries, and identifying relevant variables. Moreover, An 

intensive dimensionality reduction and input selection 

procedures were carried out on the rail data via correlation 

analysis and neural network modelling scheme (Yang et al. 

2011). Such procedures have many potential advantages as 

they can reduce utilization and training time, improve overall 

performance of predictors by defying the curse of 

dimensionality and enhance generalization by reducing over-

fitting. 39 inputs have been selected for this study as the most 

important input variables for the rail data where the rest of 

inputs are omitted. All the subsequent analysis will be based 

only on these inputs. The data has only one output consisting 

of integer values of (0, 1, 2 and 3) where 0 represents “good” 

rails, and values (1, 2 and 3) represents defected rails as per 

flow position ( end, middle, both) respectively. This study 

focuses on the rejected rails verified via an automatic and 

manual ultrasonic testing for the presence of internal 

irregularities such as cracks and flaws, to find root causes as 

well as identifying bottlenecks in the production route and 

thus applying appropriate control measures to improve 

process yields (reduce defects). 

3. CLASS IMBALANCE LEARNING METHODS FOR 

SVM CLASSIFICATION 

An iterative SVM classification strategy has been developed 

for the rail data with various options and key parameters built 

in the iterative strategy; only around 25% of the data were 

successfully classified. In any classification problem, the 

most important task is to correctly classify the minority class 

examples. Investigations were carried out on what are the 

root causes of such skewness of the model’s performance 

towards the majority class. Such a low success rate of 

classifying the rejected rails (minority class), was found to be 

due to the class imbalance phenomena in the training set. 

Class imbalance significantly hinders the performance of 

standard classifiers and modelling algorithms. The 

classification would always be biased in favour of the 

dominating class (majority), while the data related to the 

minority class tend to be misclassified. Such concern can be 

overcome via resampling techniques (Batuwita & Palade 

2010); (Akbani et al. 2004); (Estabrooks et al. 2004) to lead 

to balanced data. To change class distribution of rail data, the 

following methods are applied for SVM rail data training: 

3.1 Bootstrapping for Rail Data Resampling 

A data set is imbalanced if the samples corresponding to the 

majority class outnumber the samples belonging to the 

minority class. Since standard machine learning techniques 

and other modelling algorithms yield better classification 
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performance with balance data sets, Quality classification is 

not reachable with the current rail data set structure. 

Therefore, a direct data resampling approach is to be applied 

to change the class distribution of rail data.  

Changing the class distribution can be conducted via different 

resampling strategies, such as over-sampling, under-sampling 

or combination of both. However, the oversampling 

technique has gained extra attention. The advantage of a such 

technique is that it is external and therefore, easily 

transportable as well as very simple to implement 

(Estabrooks et al. 2004).  Moreover, over-sampling the 

minority class data avoids unnecessary information loss 

(Yang et al. 2011). For the over-sampling to be carried out, 

the original rail cast data are separated into two sub-sets. One 

set is for the dominating class and the other is for the 

minority class.  Subsequently, the minority class data are fed 

into the bootstrapping resampling algorithm. The 

bootstrapping resampling algorithm yields a multiple 

randomly resampled subsets that have the same size as the 

size of the original minority subset (Yang et al. 2011).  The 

resampled subsets are combined with the majority class data 

to shape the resampled training data that is ready for the 

subsequent training procedures. The design parameter     

which is defined as the ratio of the number of samples 

belonging to the majority class to that belonging to the 

minority class plays a crucial role in the bootstrapping over-

sampling algorithm as it controls imbalance level for the 

resampled training data set.  All of the existed resampling 

techniques are tailored to resample until the desired ratio 

between the majority and minority classes is reached. Figure 

2 shows the influence of the over-sampling strategy on the 

rail quality data. 

 

Fig.2. The influence of     on the resampled training data. 

 

Oversampling has the property that there is no information 

from the original training set is lost since we keep all 

instances from majority and minority classes. However, when 

it is applied to a large scale data set, technical difficulties 

arise as the training data size is significantly increased. 

Therefore, the training time is also increased and a sufficient 

amount of memory is required to hold the training set. Since 

the dimensionality of rail data set is very high, the best 

sampling rate     achieved is 5.  It is highly important to 

take into account the resampling time in order to keep time as 

well as memory complexity under reasonable constraints.  

3.2 Under-sampling  

Under-sampling is a popular resampling strategy that seeks to 

change the class distribution of the training data. It is 

considered as an independent pre-processing stage that can 

straightforwardly re-balance the date before training the 

classifiers. Therefore, it can be employed with any 

classification algorithm. In Random under-sampling, the 

majority class examples in the training data set are randomly 

eliminated until a desired ratio between the majority and 

minority class     is achieved. Consequently, the overall 

number of training examples is significantly reduced. 

Regardless of its simplicity, under-sampling has empirically 

shown to be very effective sampling approach. Since the rail 

data are highly dimensional data, there is a significant saving 

in classification time as well as memory. Theoretically, the 

main drawback of random under-sampling is that it discards 

data that may contain useful information for building an 

accurate model (Chawla et al. 2002). The significant      

achieved via under-sampling rail quality data is a value of 1. 

The effect of under-sampling on the overall size of training 

data is illustrated in Figure 3. 

 

Fig.3.     effect to the size of training data. 

 

4. SVM LEARNING THEORY 

The theory of Support Vector Machines is a new 

classification technique particularly suitable for binary 

classification, although it can also be extended to other 

applications. The basic idea of SVMs is to find an optimum 

hyper-plane which separates the high-dimensional data into 

its two classes. Since the given data may often not be linearly 

separable, the notion of a “kernel feature space” is introduced 

which casts the data into a higher dimensional space where 

the data is separable. In this section we briefly review the 

idea of SVM in classification problems. 

Let S be the data set of labeled training points 

(     )     (     ) Where        represents n-dimensional 

data points,      represents the classes of which these data 

points are belonging to,            and           In 

order to find the hyper-plane that better separates the classes, 

the data records are mapped into a higher dimensional space 

via a mapping function  , then the separating hyper-plane 

defined by the weight vector ( ) and bias ( ) can be 

represented as follows (Batuwita & Palade 2010): 
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However, in many real-world applications, the data points are 

not totally linearly separable. Therefore, the optimization 

constraints can be generalized by introducing a slack variable 

      where the soft-margin optimization problem is 

expressed as follows (Batuwita & Palade 2010):  

 

       ( 
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                                                                               (4.2) 

 

The variables      hold for the misclassified points, the 

summation term  ∑   
 
    is the measurement of the amount of 

misclassification, and the parameter C is the regularization 

parameter. The aforementioned optimization problem is a 

quadratic problem (QP) that can be solved by constructing 

nonnegative Lagrangian multipliers   :  
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SVM employs a kernel function K that implements the dot 

product between the functions  (  ), in such a case, the dual 

optimization problem can be transformed from an input space 

to a higher dimensional space. Accordingly, the nonlinear 

separating hyper-plane can be achieved as the solution of 

(Batuwita & Palade 2010):    
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After solving the quadratic problem and finding the optimal 

value of   , the data points that have nonzero    values and 

fall in the margin are called support vectors.  

 

5. SVM CLASSIFICATION AND PERFORMANCE 

COMPARISON 

As stated earlier, the support vector machine algorithm is 

sensitive to the class imbalance learning (Batuwita & Palade 

2010); (Lin & Wang 2002). In data classification, the choice 

of a Kernel function is challenging and becomes a central 

problem (Micchelli & Pontil 2005); (Prajapati & Patle 2010). 

Mapping the non-linear input space to a higher feature space 

(linear) via a kernel function depends significantly on the 

nature of the data. Therefore, The radial basis function (RBF) 

as a kernel is employed due to its clear implementation and 

the  potential effectiveness on overall performance (Sahoo et 

al. 2013); (Prajapati & Patle 2010). Applying the 

aforementioned framework on the imbalanced rail data set 

has led to a poor generalization as well as a large number of 

support vectors. Support vector machine parameters, 

regularization parameter (C) and the width of (RBF), are 

optimized based on the grid search approach. The model’s 

performance is skewed towards the majority class where the 

minority class is poorly classified at less than 25%. 

Sensitivity, specificity and accuracy performances are 

employed in our experiment as performance metrics 

throughout the confusion matrix. The confusion matrix for 

two class problem is illustrated in Table 1. 

  

Table 1. Two-class Confusion Matrix  

 Predicted positive Predicted Negative 

 Real Positive TP(True Positive) FN(False Negative) 

 Real Negative FP(False Positive) TN(True Negative) 

  

The performance measures of SVM classifier are assessed as 

follows: 

 

Specificity 
  

(     )
                                                          (4.5) 

 

Sensitivity 
  

(     )
,                                                         (4.6) 

 

And the total accuracy is expressed as: 

 

Accuracy  
(     )

(           )
                                               (4.7) 

 

Specificity is the ability of the algorithm to accurately 

classify the majority class whereas Sensitivity is the ability of 

the algorithm to accurately classify the minority class. 

Accuracy refers to the overall percentage that both classes are 

correctly classified. In this paper, bootstrapping based over-

sampling and under-sampling schemes with different 

sampling rates are tailored to overcome the class imbalance 

phenomena. Consequently, it is not only the model’s 

performance that has been significantly improved but the 

number of the support vectors has also been reduced. Table 2 

illustrates a performance comparison of SVM algorithm with 

under-sampling and bootstrapping-based oversampling. 

 

Table 2. Performance comparison of SVM algorithm 

 
Number of 

Support vectors 

Sensitivity % of 

testing set 

Under-sampling 2171 65.3 % 

Oversampling 23452 47.1% 

 

With under-sampling, the SVM algorithm has shown a good 

generalization with significant classification performance 

increment of 65.3%. Moreover, under-sampling technique 

succeeded in drastically reducing the number of support 

vectors of SVM classifier to 2171. The advantages of fewer 

support vectors will mostly mean short computational time 

and small memory requirements (Zheng et al. 2013). 

Theoretically, under-sampling has mostly the best trade-off 

between algorithm generalization capability and the number 

of support vectors. The maximum number of iterations is 

controlled via the number of parameters utilized in the grid 

search scheme. The results agree with the hypothesis that 
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under-sampling the majority class reduces the total number of 

training examples, speeding up the training time and 

accordingly ensure promising classification performance. 

Figure 4 illustrates the classification performance of the 

iterative SVM algorithm on the under-sampled rail data set.  

 

 

 
 

Fig.4. SVM classification for Under-sampled rail data.  

 

The employment of the Bootstrapping-based over-sampling 

technique causes performance degradation to 47.1% and thus 

weak generalization capability, because time complexity 

grows dramatically as the size of the data increase. The SVM 

model built from an over-sampled data yields a large number 

of support vectors as shown in table 2. Our experimental 

results show that Bootstrapping-based over-sampling 

increases the computational cost associated with SVM 

training algorithm. It is worth mentioning that Large Data 

Modelling is Hungry for Resources and no convergence 

occurs when using 4GB memory due to the computationally 

expensive optimization phase. As a result, the computer 

memory has been extended to 16 GB. Figure 5 shows SVM 

performance with bootstrapping-based oversampling 

technique. Although it is a solid mathematical structure, it is 

worth mentioning that the SVM technique has drawbacks as 

it can be computationally expensive when dealing with large 

scale data and it tends to produce a large number of support 

vectors.  

 

 

 
 

Fig.5. SVM performance with Bootstrapping-based 

Oversampling Scheme. 

 

6. CONCLUSIONS 

  

An approach to rail data classification via iterative SVMs 

with bootstrapping-based oversampling and under-sampling 

has been described. The results show that SVM is a 

promising algorithm for the resampled rail data classification 
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problem. Resampling techniques adopted in our experiment 

play crucial role for effective data classification, however, 

under-sampling can suppress the number of support vectors 

and result in a SVM with a significant performance gain. It 

also shows a remarkable reduction of the complexity of 

memory and training time. Class imbalance is not the only 

problem which tends to govern the performance of the 

learning algorithms, but there are other elements which 

potentially hinder the classification performance such as the 

overall size of the data set. Future research will investigate a 

cost sensitive learning and apply distinct costs to change class 

distribution of training data set. A second aspect worthy of 

further investigation is the inclusion of clustering prior to 

classification to reduce the number of support vectors.  
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