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1. INTRODUCTION  

Wind energy has gained a big interest these last years as one 

of the most promising and abundant sources for green and 

sustainable energy. However, wind farms are characterized 

by high manufacturing and maintenance costs that bring 

challenging reliability and lifetime issues. Introducing fault 

diagnosis and fault tolerant control (FTC) is considered a 

suitable way for improving their reliability and reducing their 

maintenance.  

In recent years, the problem of fault diagnosis and FTC of 

wind turbines has become an important topic of research. In 

Odgaard et al. (2013), a benchmark model for fault diagnosis 

and FTC of wind turbines has been proposed and results 

obtained using several approaches are compared. This 

benchmark relies on a realistic three blade horizontal variable 

speed wind turbine with a full scale converter coupling and a 

rated power of 4.8 MW. In some of the the works 

summarised in Odgaard et al. (2013),   the fault detection 

problem has been addressed using model-based approaches 

that are based on analytical redundancy and checking the 

consistency of the observed behavior with respect to the 

system one. This consistency checking is based on computing 

the difference, called residual, between the value predicted 

from the model and the real value measured by the sensors. 

In case a discrepancy is detected, a fault in the system is 

indicated. Otherwise, it is considered that the system is 

working properly. 

In the case of LTI systems, model-based fault detection 

theory is well developed (Blanke et al. 2006; Isermann, 

2005). However, since these models are based on LTI lumped 

parameter models, they are valid only around a given 

operating point. In order to use these simplified models in 

large operating conditions, the influence of the operating 

point in the parameters of the LTI model should be taken into 

account in some way. In this paper, the use of non-linear 

parameter varying (NLPV) models is proposed to consider 

the variation of the parameters with the operating point. This 

type of models adds a non-linear dynamic map to the 

classical LPV model, which takes into account the scheduling 

variables available for measurement, resulting in a hybrid 

linear/nonlinear model. In this way, the advantages of a 

parametrically varying structure and the generality of the 

NARMAX (nonlinear autoregressive exogenous moving 

average) class (Previdi and Lovera, 2004) are combined.  

Fault detection methods based on mathematical models are 

always affected by modeling errors. These modeling errors 

introduce uncertainty in the model and interfere with the fault 

detection. A fault detection algorithm able to handle 

uncertainty is called robust, and its robustness represents the 

degree of sensitivity to faults compared to the degree of 

sensitivity to uncertainty (Chen and Patton, 1999). In this 

paper, the uncertainty will be located in the parameters and in 

the delay of the NLPV model, bounding their values by 

intervals. One of the FDI approaches, known as passive, 

which enhances the robustness of the fault detection system 

at the decision-making stage, is based on using an adaptive 

threshold (Puig et al. 2008; Fagasaran et al.2004; Sainz et al. 

2002) generated by considering the set of model responses 

obtained by varying the uncertain parameters within their 

intervals. 

The aim of this paper is to address the problem of fault 

diagnosis of a wind farm using interval parity equations 

(Patton and Chen, 1994). Fault detection is based on the use 

of parity equations and unknown but bounded description of 

the noise and modeling errors. The fault detection test is 

based on checking consistency between the measurements 
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and the model, finding out if the formers are inside the 

interval prediction bounds. The fault isolation algorithm is 

based on analyzing the observed fault signatures on-line, and 

matching them with the theoretical ones obtained using 

structural analysis. The proposed approach is tested using the 

wind farm benchmark proposed in the context of the wind 

farm FDI/FTC competition (Odgaard and Stoustrup, 2013). 

The paper is organized as follows. In Section 2, a method 

using interval parity equations for fault detection is 

introduced. Section 3 presents a method for the calibration of 

interval models. In Section 4, the wind farm benchmark is 

presented and the fault diagnosis approach based on interval 

parity equations is applied. The results obtained applying the 

proposed method to the wind farm benchmark, are shown in 

Section 5. Finally, in Section 6, the main conclusions are 

presented. 

2.  FAULT DETECTION USING INTERVAL 

PARITY EQUATIONS 

2.1 Interval model 

Let us assume that the system can be expressed by means 

of the following NLPV model in regression form: 

      

ˆ( ) ( , ( )) ( ) ( ) ( )ky k F k e k y k e k   θ p         (1) 

where: 

- ( , ( ))kF k θ p  is the regressor function that computes the 

estimation ˆ( )y k  which, in general, is assumed to be 

nonlinear in the parameters ( )kθ p and can contain any 

function of inputs ( )u k  and outputs ( )y k ; 

- ( )k kp p@  is a vector of measurable process variables that 

defines the system operating point; 

- ( )k kθ p Θ  is the parameter vector of dimensions 1n   

whose values can vary according to the system operating 

point; 

- kΘ  is the set that bounds the parameter values, and can 

vary according to the system operating point as well. In 

particular, in this paper, the set of uncertain parameters is 

bounded by an interval box in the nominal parameter values: 

 1 1[ ( ), ( )] [ ( ), ( )]k k k n k n k 
     Θ p p p p@ L   

where: 
0( ) ( ) ( )i k i k i k  p p@ ; 0( ) ( ) ( )i k i k i k  p p@  i=1,…, n , 

being 0( )i k p  the nominal parameter values that follow some 

known function ( )kf p , and ( ) 0i k   the parameter 

uncertainties; 

- ( )e k  is an additive error term, which is unknown but 

assumed to be bounded by a constant ( )e k  . 

2.2  Interval fault detection using parity equations 

The principle of model-based fault detection using parity 

equations is to test whether the measured input and output of 

the system are consistent with the behavior described by a 

model of the faultless system or not. If an inconsistency is 

detected, a fault is indicated. The residual usually describes 

the consistency check between the real behavior, y(k),  and 

the predicted one , ˆ( )y k , as follows: 

 

ˆ( ) ( ) ( )r k y k y k                           (2) 

where ˆ( ) ( , ( ))ky k F k θ p , considering the system described 

by (1).  
 

Ideally, residuals should only be affected by the faults. 

However, the presence of disturbances, noise and modeling 

errors causes residuals to become non-zero, interfering with 

the detection of faults. Therefore, the fault detection 

procedure must be robust against these undesired effects 

(Chen and Patton, 1999). In this work, only noise and 

modeling errors will be considered in the robust fault 

detection method, following the passive approach recalled in 

the introduction. 
 

In the case of modeling a dynamical system using the 

interval NLPV model (1), the predicted output behavior can 

be bounded at any iteration by an interval ˆ ˆ( ), ( )y k y k 
 

 

computed by solving the two following optimization 

problems: 

     ˆ ( ) max ( , ( )) . . ( )k k ky k F k s t θ p θ p Θ           (3a) 

 ˆ( ) min ( , ( )) . . ( )k k ky k F k s t θ p θ p Θ           (3b) 

Then, the fault detection test is based on propagating the 

parameter uncertainty and the error bounds to the residual (2) 

and checking if: 

 

  ˆ ˆ0 ( ), ( ) ( ) ( ) , ( ) ( )r k r k y k y k y k y k          (4) 

or, alternatively: 

ˆ ˆ( ) ( ) , ( )y k y k y k                     (5) 

holds or not. In case it does not hold, a fault can be indicated.  

2.3 Fault detection for uncertain varying time delay systems 

In case that (1) is used to represent a system with transport 

delay between input and output, this delay can also vary with 

the operating point and can be characterized by some 

measured variables. Considering such varying transport delay 

( )k p  in the model (1), the output prediction can be 

expressed as: 

ˆ( ) ( , ( ), ( ))k ky k F k d θ p p                         (6) 

with 
( )

( ) k
k

s

d
T

 
  
 

p
p , where    denotes the nearest integer 

and sT  is the sampling time. Some uncertainty  in the 

delay is also considered such that: 

 

0 0( ) [ ( ) , ( ) ]k k k      p p p             (7) 
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where the nominal delay satisfies: 0 ( )k   p  and  

0 ( ),k


  p  .  

Then, as was suggested in Blesa et al. (2010), the interval 

for the predicted output given by (6) can be expressed as 

follows: 

 

 

 

( ) , ( ) ( ),..., ( )

( ) , ( ) ( ),..., ( )

ˆ ( ) max ( , ( ), ( ))

ˆ( ) min ( , ( ), ( ))

k k k k k

k k k k k

k k
d d d

k k
d d d

y k F k d

y k F k d

 

 





θ p Θ p p p

θ p Θ p p p

θ p p

θ p p
   (8)                                                 

with: 

0 ( )
( ) k

k
s

d
T

   
  
 

p
p  and  0 ( )

( ) k
k

s

d
T

   
  
 

p
p                                                    

3. WIND FARM BENCHMARK 

 

3.1 Wind farm model 

 

The wind farm benchmark is made up by 9 wind turbines 

in a square grid layout (Fig. 1). The distance between the 

wind turbines in both directions is 7L, where L is the rotor 

diameter. Two measuring masts are located in front of the 

wind turbine, one for each possible wind direction considered 

in the benchmark. The distance between the measuring mast 

and the wind farm is 10L. Each turbine is a generic 4.8 MW 

wind turbine, as the one described in Odgaard et al. (2013), 

and is numbered using the corresponding row and column in 

the wind farm. Each wind turbine is driven by the wind farm 

controller that provides a power reference. 
 

The model consists of three parts: the wind & wake model, 

wind turbine model and the wind farm controller. The details 

can be found in Odgaard et al. (2010) and Odgaard and 

Stoustrup (2013). 

 

3.2 Fault scenarios 

Three different faults are considered in the benchmark, 

affecting the three measured variables P (power) , β (pitch 

angle) and ωg (angular velocity). The faults are hard to detect 

at a wind turbine level, but can be detected at the wind farm 

level comparing the performances of the other wind turbines. 

Fault 1: debris build-up on the wind turbine blades, changing 

the aerodynamics of the wind turbine, lowering the maximum 

obtained power. 

Fault 2: misalignment of one or more blades originated at the 

time of installation of the wind turbine.  

Fault 3: change in the drive train damping due to wear and 

tear.  

 
3.3 Wind estimation 

The wind sequence considered in each wind turbine is 

estimated by considering the distance between the measuring 

mast and the wind turbine itself. The delay in the wind 

sequence is the distance divided by the mean wind velocity 

while the wake is modeled by a wind deficit between the 

wind turbines by a factor of 0.9. 

 
Fig. 1. Illustration of the layout of the example wind farm.  

 

4. FAULT DIAGNOSIS APPROACH 

 

4.1 Residual generation 
The models considered for FDI in the wind farm take into 

account the temporal and spatial redundancy existing in the 

wind farm. 

The temporal redundancy in each wind turbine can be 

taken into account by considering the estimated wind that 

each wind turbine receives and the estimated power, pitch 

angle and angular velocity, as follows: 
 

 
, , ,, ,( ) ( ), ( ), ( )

i j i j i ji j P i j w rP t f P t v t P t                 (9) 

 
, , ,, ,( ) ( ), ( ), ( )

i j i j i ji j i j w rt f t v t P t                (10) 

 
, , ,, ,( ) ( ), ( ), ( )

gi j i j i jgi j g i j w rt f t v t P t              (11) 

 

where 
,i jPf , 

,i j
f  and 

,gi j
f  are non-linear functions, 

,
( )

i jrP t is 

the control signal provided to the turbine i,j by the wind farm 

controller and 
,

( )
i jwv t  is the wind speed at the turbine i,j, that 

can be estimated from the wind speed  measured in a wind 

mast ( )wv t  with: 
 

 
, , , ,,

,
ˆ( ) ( ( )) ( ) ( ) ( )

i j w i j i j i ji j
w v w i j w w wv t f v t t e t v t e t       (12) 

 

where 
,

( )
i jwe t  is the wind estimation error in turbine i,j 

considered unknown but bounded 
, ,

( )
i j i jw we t   and ,i j  is 

the wind transport delay from the wind mast to the turbine i,j, 

that can be calculated as: 
  

, , ,

0

, ,( ) ( , ( )) ( ),        ( )
i j i j i ji j i j wt f D v t e t e t             (13) 

 

where ,i jD  is the distance from the wind mast to the turbine 

i,j, 
0 ( )wv t   is the mean wind speed at the wind mast point (see 

Fig. 1) obtained by filtering the wind measurement ( )wv t , 

and the bounded additive error 
,

( )
i j

e t  is the error in the 

delay estimation. In the wind and wake model used in this 
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work, for the wind scenario 1 (0 deg wind direction), the 

transport delays , ( )i j t  can be estimated as follows: 

 

0

,1 0

0

,2 0 0

0

,3 0 0 0

10
( , ( )) ,   1, 2,3

( )

10 7
( , ( )) ,   1, 2,3

( ) 0,9 ( )

10 7 7
( , ( )) ,   1, 2,3

( ) 0,9 ( ) 0,81 ( )

i w

w

i w

w w

i w

w w w

L
f D v t i

v t

L L
f D v t i

v t v t

L L L
f D v t i

v t v t v t

  

   

    

   

(14) 
 

Redundancy equations (9)-(11) can be discretized and 

expressed in regression form as (6): 

 

 
, , ,, ,

ˆ ( ) , ( ), ( ), ( )
i j i j i ji j P i j k P k rP k F k d P k p θ p                (15) 

 
, , ,, ,

ˆ ( ) , ( ), ( ), ( )
i j i j i ji j i j k k rk F k d P k   p θ p               (16) 

 
, , , ,,

ˆ ( ) , ( ), ( ), ( )
i j gi j gi j i jg i j k k rk F k d P k   p θ p               (17) 

 

with 
,i jPF , 

,i j
F  and 

,gi j
F nonlinear discrete functions of 

outputs ,
ˆ ( )i jP k , ,

ˆ ( )i j k  and ,
ˆ ( )gi j k respectively, with the 

same input 
,

( )
i jrP k . Parameters 

,
( )

i jP kθ p , 
,

( )
i j kθ p  and 

,
( )

gi j kθ p  vary with the same scheduling variables: 

 0 ( ), ( )
T

k w wv k v kp  

 

Finally, , ( )i j kd p  is the discrete time delay that can be 

computed as: 
0

,

,

( , ( ))
( )

i j w

i j k

s

f D v k
d

T

 
  
  

p                        (18) 

Remark: the filtered wind measurement 0 ( )wv k  is used for 

delay estimation (13) and the direct wind measurement 

( )wv k  (without filtering) is used for the wind estimation (12). 

 
Subtracting estimations (15)-(17) from real data 

measurements, three residuals are obtained for every wind 

turbine, resulting in 27 residuals. The main drawback of these 

27 temporal parity equations is that they depend directly on 

the scheduling variable which, in this case, is the wind that is 

measured with a high noise level, leading to a big wind speed 

estimation error bound 
,i jw  in (12). On the other hand, the 

spatial redundancy is based on comparing those wind 

turbines that receive the same wind. This allows generating 

other relations that are less dependent on the wind 

measurements. For example, in wind scenario 1 (wind 

direction 0 deg) the wind for all the wind turbines that are in 

the same y-column (see Fig. 1) is expected to be the same at 

every instant k that implies: 

 

1, 2, 3,
( ) ( ) ( ) ( )    1,...,3  

i i i iw w w wv k v k v k v k i k             (19) 

 

Then, if the reference power is the same for all the generators 

in the wind farm, as it usually happens or can be imposed for 

a while for fault detection purposes, the following topological 

relations can be deduced: 

 

1, 2, 3,( ) ( ) ( )        1,...,3  i i iP k P k P k i k           (20) 

1, 2, 3,( ) ( ) ( )        1,...,3  i i ik k k i k            (21) 

1, 2, 3,
( ) ( ) ( )     1,...,3  

i i ig g gk k k i k            (22) 

 

In a real scenario (19) would include some noise: 

 

1, 1, 1,

2, 2, 2,

3, 3, 3,

( ) ( ) ( ),       ( )

( ) ( ) ( ),       ( )

( ) ( ) ( ),       ( )

i i i i i

i i i i i

i i i i i

w w w w w

w w w w w

w w w w w

v k v k e k e k

v k v k e k e k

v k v k e k e k







  

  

  

        (23) 

 

and (20) would lead to: 

 

1_ 2,

1_ 3,

2 _ 3,

1, 2, 1, 2,

1, 3, 1, 3,

2, 3, 2, 3,

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) 

ˆ ˆ( ) ( ) ( ) ( ) ( ) 

i

i

i

i i i i P

i i i i P

i i i i P

P k P k P k P k e k

P k P k P k P k e k

P k P k P k P k e k

   

   

   

              (24) 

 

In this way, 9 spatial relations between the power wind 

turbine magnitudes can be obtained in wind scenario 1.  The 

same relations are obtained for the pitch and the angular 

velocity. This means that 27 additional parity equations are 

added to the 27 temporal parity equations. On the other hand, 

in wind scenario 2 the following wind speed ideal relations 

can be deduced: 

2,1 1,2 3,2 2,3

3,1 2,2 1,3

( ) ( ),    ( ) ( )
      

( ) ( ) ( )

w w w w

w w w

v k v k v k v k
k

v k v k v k

 


 
               (25) 

Hence, 15 additional spatial parity equations can be 

obtained. 

The main advantage of spatial versus temporal relations is 

that spatial relations are not affected by uncertainty in 

transport delay 
ij

 (13). 

Remark: As spatial relations depend on the wind 

direction, they have to be reconfigured according to this wind 

direction provided by a sensor or estimated with the available 

measurements. 

4.2 Fault isolation 

Fault 1 influences the power residuals, Fault 2 influences 

the pitch angle residuals and, finally, Fault 3 influences the 

power and the generator speed residuals. 

The effects of Fault 3 are the increase of the amplitude of a 

10 Hz sine function, while Faults 1 and 2 are low frequency 

faults. This fact, and the need of filtering the residuals in 

order to decrease the effect of measurement noises, lead to 

filter power residuals with low pass (LP) and band pass (BP) 

filters so as to better detect Fault 1 and Fault 3, respectively. 

On the other hand, low pass and band pass filters have been 

used in pitch angle and speed residuals, respectively, in order 
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to enhance the detectability of Faults 2 and 3 respectively. 

Table 1 shows the theoretical signature matrix that can be 

derived from the temporal residuals of a particular wind 

turbine. As can be deduced from Table 1, temporal residuals 

allow detecting and isolating the proposed 3 faults for each 

wind turbine. Moreover, the extra information provided by 

the spatial residuals increases the robustness in the 

detectability and isolability, as illustrated in Table 2, where 

the power residuals (LP filtered) of column 1 (wind scenario 

1) extracted from (24) are related to the Fault 1 of the wind 

turbines of this column.  
 

Table 1. Signature matrix temporal residuals 

Residuals Fault 1 Fault 2 Fault 3 

LPP  x   

BPP    x 

      
LP   x  

g BP    x 

 
Table 2. Signature matrix spatial residuals PLP column 1 wind 

case 1 (0 deg) 

Residuals Fault 1 

turbine 1,1 

Fault 1 

turbine 2,1 

Fault 1 

turbine 3,1 

1,1 2,1( ) ( )LP LPP k P k   x x  

1,1 3,1( ) ( )LP LPP k P k  x  x 

2,1 3,1( ) ( )LP LPP k P k   x x 

 

5. RESULTS 

In the following, the results obtained applying the 

methodologies described above to the realistic benchmark 

implemented in Matlab-Simulink
©

 and available in: 

http://www.kk-electronic.com/Default.aspx?ID=9593 are 

presented. 

5.1 Model Calibration 

Because of space limitation, only the results obtained in 

wind scenario 1 (0 deg) are illustrated. Applying 4400 s long 

wind sequences to the Matlab-Simulink
©
 benchmark, a set of 

input/output data 
,

( )
i jrP t , , ( )i jP k , , ( )i j k  and , ( )gi j k , 

1,...,k N  has been obtained.  

At first, the three different wind speed estimation 

sequences (
1 2 3

ˆ ˆ ˆ,   and w w wv v v ) have been computed applying 

(12) to the wind speed provided by the measuring mast and 

considering transport delays (14). Fig. 2 shows the real 

sequence of wind speed in turbine 1,1 (
1,1wv ) and the one 

estimated for all the turbines in the y-column 1 i.e. 

1 1,1 2,1 3,1
ˆ ˆ ˆ ˆ

w w w wv v v v    (see Fig. 1). Delay uncertainties
1

 , 

2
  and 

3
 have been computed following the signal 

processing method described in Blesa et al. (2010). 

Uncertainty bounds   of wind speed error estimation (12) 

and noise (23) have been obtained by a noise analysis of the 

error between the wind speed variables and estimations. 

 

Continuous functions (9)-(11) have been obtained by 

means of the physical knowledge of the system and 

discretized with Ts=0.01s. Then, the nominal parameters 

,

0 ( )
i jP kθ p , 

,

0 ( )
i j kθ p  and 

,

0 ( )
gi j kθ p  have been obtained and 

54 parity equations (27 temporal and 27 spatial) have been 

defined. LP and BP filters have been designed in order to 

minimize the effect of the noise that has been bounded in 

each parity equation (uncertainty bounds   in temporal and 

spatial parity equations). Finally, an optimization problem as 

proposed in Blesa et. al. (2014) has been applied, in order to 

compute a tolerance  in parameters of each parity equation 

 0( )= ( ),    1,...,i i kk i n  p  such as the predicted 

behavior contains all the data in the fault free scenario (5). 

500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

Time [s]

W
in

d
 s

p
e
e
d
 [

m
/s

]

 

 

real wind

estimation

real wind filtered

estimation filtered

 
Fig. 2. Real and estimated wind speed in turbine 1,1. 

 

Fig. (3) shows the evolution of the power spatial residual 

P1,2-P2,2 with its interval bounds in the fault free scenario 

used for the model calibration. 

As it can be observed from Fig. 3, the residual interval 

bounds vary strongly with the operating point in the power 

spatial residual. This is due to the fact that small differences 

in the wind speed produce different effects in the power 

generation. These differences are much lower in the pitch 

residual and negligible in the angular speed residual (the 

corresponding figures are omitted due to lack of space). 

The same procedure has been carried out to calibrate the 

42 parity equations (27 temporal and 15 spatial) for wind 

scenario 2 (45 deg). In this scenario, 5 different wind speed 

estimation sequences, corresponding to the number of wind 

turbine sets that are supposed to receive the same wind speed, 

have been estimated. 

 

5.2 Fault scenarios 

The proposed FDI approach is tested in Fault 1 (the debris 

build-up on the blades), Fault 2 (pitch misalignment) and 

Fault 3 (decrease in drive train damping) cases that are 

described in Section 3.2. These faults are occurring twice in 

three different wind turbines at different time intervals, i.e. no 

multiple faults are present at any time. All faults occur once 

before 2300 s (a) and once after 2300 s (b). In the first period, 

the wind farm cannot deliver the required power, while it can 

do it in the second one. Fig. 4 shows, for fault scenario 1(b), 

the evolution of  spatial residual 
1, 2 3, 2

P P  that is sensitive to 

this fault in wind scenario 1. 
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Fig. 3. 

1, 2 2 , 2
P P residual and bounds in fault free scenario. 
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Fig. 4. Evolution of residual 

1, 2 3, 2
P P  and bounds in fault scenario 1(b): 

Debris build-up the wind turbine blades lowering maximum power 6% in 
wind turbine 1,2 from t=3000s to t=3100s. 

 
Fault detection and isolation results in wind scenarios 1 

and 2 of the proposed FDI method implemented in Matlab-

Simulink
©
, have been obtained after an exhaustive Monte 

Carlo analysis where the condition of false positive 

detections proposed in Odgaard and Stoustrup (2013) has 

been verified. In general, the behavior of the FDI method is 

better in the wind scenario 1 than in wind scenario 2 due to 

the higher number of spatial relations (27 in wind scenario 1 

and 15 in wind scenario 2). Fault 1 (Debris build-up) is 

detected better in case (b) (after 2300s) due to the fact that 

the available power is higher and the scaling effect is more 

important than in case (a) (before 2300s), where the available 

power is lower. Fault 2 (pitch misalignment) is better 

detected in case (a) because the uncertainty is slightly lower 

than in case (b). In order to have a sensitivity of 0.3º in fault 

detection in this fault, a very restrictive low-pass filter has 

been implemented due to the pitch sensor noise. Then, 

despite the FDI block can detect and isolate 0.3º in 

misalignment, the magnitude has to be increased to 10º-14
º
 in 

order to guarantee the correct detection and isolation in less 

than 3s as was proposed in Odgaard and Stoustrup (2013).  

Finally, Fault 3 (decrease in drive train damping) is detected 

and isolated correctly (Odgaard and Stoustrup, 2013).  

6. CONCLUSIONS 

In this paper, the problem of the fault diagnosis of a wind 

farm has been addressed using interval parity equations and 

NLPV models. Fault detection is based on the use of parity 

equations and unknown but bounded description of the noise 

and modeling errors. The fault detection test is based on 

checking the consistency between the measurements and the 

model by finding if the measurements are inside the interval 

prediction bounds. The fault isolation algorithm is based on 

analyzing the observed fault signatures on-line, and matching 

them with the theoretical ones obtained using structural 

analysis. Finally, the proposed approach has been tested 

using the wind farm benchmark proposed in the context of 

the wind farm FDI/FTC competition obtaining satisfactory 

results. 
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