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Abstract: The European X-ray Free-Electron Laser will generate high energy light pulses in
the femto-second range. A clock signal, which synchronizes all components, is distributed via
laser pulses. The accuracy of these laser pulses is crucial to achieve precise measurements which
are needed to control the Free-Electron Laser. In order to reach the maximum performance,
advanced model-based control approaches are used to compensate external influences. This
paper shows the modeling of the Master Laser Oscillator by fractional order systems, which
improve known approaches to system modeling by providing a higher accuracy.
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1. INTRODUCTION

At the Deutsches Elektronen Synchrotron (DESY) in
Hamburg, Germany, the European X-ray Free-Electron
Laser (XFEL) is under construction. This linear accelera-
tor with a length of 3.5 km will generate extremely intense
and short X-ray laser light pulses with a duration in the
femto-second range and wavelength down to 0.05 nm. To
generate these light pulses, electron bunches are acceler-
ated up to an energy of 17.5 GeV and lead through an
undulator which forces the electrons to emit X-ray laser
pulses. Further technical specifications of the facility can
be found in Brinkmann et al. (2007). These intense and
ultra-short X-ray laser pulses provide physicist from all
over the world a light source to take a closer look into tiny
structures on atomic scale. It will be possible to reveal
how complex biomolecules are assembled or, due to the
high repetition rate of maximum 4.5 MHz, even to film
the folding and formation of such molecules, Günther et al.
(2011). Such measurements require a timing signal with an
error in femto-second range for all components within the
free-electron laser. One of the main challenges is to fulfill
this requirement.

Usually, a synchronization signal is distributed via an
electric signal by coaxial cables. For long distances in
kilometer-range, this signal needs to be frequently ampli-
fied due to damping of the cable itself, an additional noise
source would be included and hereby this is not suitable
for high precision synchronization system. A laser based
synchronization system for large-scale timing distribution
was proposed in Kim et al. (2004), is used for the Free

electron LASer in Hamburg (FLASH), and will be used
for XFEL, Schulz et al. (2013).

In such a synchronization system a Master Laser Oscillator
(MLO) generates a laser pulse train, which is used as
the timing signal. To control this laser a so-called Phase
Locked Loop (PLL) is used. The linear time invariant
model of a PLL is analyzed in Rubiola (2009) and from
the control theory point of view in Abramovitch (2003).
In Gardner (2005) it is shown that the noise shape, whose
integral is one performance criterion, does not fit the n ·
20 dB rule known for LTI systems. Moreover, fractional
order controller, also known as CRONE controller, see
Oustaloup (1991), have a superior behavior, compared to
their LTI counterparts, e.g. shown in El-Khazali et al.
(2007) an Xue et al. (2006). This motivates the usage of a
fractional order model to describe this plant with its main
noise influences. An overview of fractional order systems
is given in Monje et al. (2010), Das (2008) and Chen et al.
(2009). The paper shows how to build such a model, which
can then be used in a model based controller synthesis.

This paper is organized as follows: Section 2 gives an
overview of the planed laser synchronization system. The
modeling of the MLO is shown in Section 3, where the
system is derived and extended to include the occurring
oscillator phase noise using fractional order models as
noise shape filters. Section 4 shows the identification of
the model parameters for the currently used system at
FLASH, followed by the simulation results in Section 5
and a conclusion and outlook completes the paper.
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Fig. 1. Overview of the European XFEL and the connected laser based synchronization system, including the Master
Laser Oscillator (MLO) and the Link Stabilizing Units (LSU).

2. LASER BASED SYNCHRONIZATION SYSTEM
OVERVIEW

A simplified diagram of the laser based synchronization
system with the main part of the accelerator, the beamline,
is given in Fig. 1. The injector laser triggers a detachment
of electrons at the cathode of the gun. This electron bunch
with a charge up to 1 nC is accelerated by 101 supercon-
ducting cryomodules (I0 and I39H, A1.M1-4, . . . , A25.M1-
4) up to its final energy. A more detailed explanation of
this modules is given in Pfeiffer et al. (2011). At the end of
the beamline the bunch is lead through the undulator, a
periodic arrangement of magnets, which forces the electron
bunches on a sinusoidal trajectory in its transverse direc-
tion. This causes the so-called Self-Amplified Spontaneous
Emission (SASE) process, which generates the high energy
X-ray pulse. Other important devices are, for example,
the Laser to Radio Frequency converter (L2RF), which
is used to connect the electrical systems to the optical
synchronization system. The Bunch Arrival time Monitor
(BAM) is used to measure the relative time of electron
bunches crossing a certain position in the beamline w.r.t.
the synchronization system within a femto-second preci-
sion, see Bock (2012).

To provide a clock signal to these devices the laser based
synchronization system is used. It consists of two parts,
the Master Laser Oscillator (MLO), which generates the
laser pulse train, i.e. the timing signal of the system, and
the Link Stabilizing Units (LSU), which are responsible to
stabilize the up to 3.5 km long fiber link through which the
pulse train is feed from the synchronization hutch at the
beginning of the accelerator to the different devices.

The lower right part of Fig. 1 shows the control scheme
of a LSU. If a pulse enters the LSU, a small fraction of

the laser pulse is branched off and the main part goes
through a piezo stretcher into the fiber to the device in
the accelerator. A piezo stretcher allows to slightly change
the length of the fiber, hence it is used as an actuator in
this scheme. At the device the pulse is partly reflected and
travels back the way to the LSU. This returning pulse and
the fraction of the subsequent pulse are correlated twice
in an Optical Cross Correlator (OXC). Inside the OXC
both polarizations have different velocity and therefore
the correlations are different. A balanced detector can
measure the timing difference between these two pulses
by measuring the difference between both correlations. If
the pulses within the pulse train are equidistant and the
signal of the balanced detector is zero, the length of the
attached fiber is a multiple of the MLO repetition rate
added with a constant bias. With this scheme it is possible
to suppress the error of the timing signal induced by length
changes of the fiber caused by stress, temperature and/or
humidity changes acting on the fiber. The performance of
this control unit dependents first of all on a very precise
frequency of the laser pulse train, generated by the MLO.

The MLO control scheme is shown in the lower left
part of Fig. 1. This is the main component of the laser
synchronization system and provides the stable laser pulse
train at a repetition rate of 216.66 MHz 1 , which is used
as the clock signal for synchronization. A variation in this
frequency has a direct influence on the sampling quality of
all attached devices and on the control performance of the
LSUs. Therefore it is necessary to stabilize the frequency
of the MLO and suppress all possible noise sources. This
noise suppression is done via a locking against the RF-
Master Oscillator (MO) of the facility.

1 The sixth harmonic of the main Master Oscillator (MO) at 1.3 GHz
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3. MODELING OF THE MLO

In this section a model for the MLO control scheme shown
in Fig. 1 is derived. The signals denoted with a tilde are
high frequency sinusoidal clock signals, whereas the ones
without are the down-sampled signals only describing a
phase relation.

As light source for the MLO a laser with a center
wavelength of 1550 nm with a pulse repetition rate of
216.66 MHz is chosen. Special properties of this laser are a
pulse duration of less than 100 fs, an average power up to
120 mW and an amplitude noise of less than 0.2% (rms). A
wavelength of 1550 nm is often used in telecommunication
industries, therefore a wide spectrum of components is
available.

To tune the repetition rate of the laser, one can either use a
piezo crystal or the temperature expansion of a beam. It is
known, that a piezo crystal has a higher bandwidth and it
is obvious to expect much better results with this actuator
for the frequency tuning. Therefore this input is chosen as
the control input u(t) for the laser. The band pass filtered
output of the laser is given as sinusoidal signal ỹ(t), where
the frequency of this signal is adjustable by the laser input.

The scheme of the control loop used to stabilize the
repetition rate of this laser is called Phase Locked Loop
and will be described in the following subsection.

3.1 Phase Locked Loops

Phase Locked Loops have a wide field of application and
one can find them in almost every modern electronic device
such as mobile phones, laptops or other components with
micro controllers.

In general, those are used to synchronize one frequency
with respect to an other. Fig. 2 shows the structure of a
general PLL as described in Gardner (2005).

Phase
Detector

Loop
Filter

Local
Oscillator

r̃(t)
e(t) u(t)

ỹ(t)

Fig. 2. Block diagram of a Phase Locked Loop

The Local Oscillator generates a sinusoidal signal ỹ(t)
which has to be synchronous to the sinusoidal reference
signal r̃(t). If the phase error e(t), generated by the phase
detector, is zero over time, the two signals are equal in
frequency and phase. This error signal is used by the
controller, here called Loop Filter, to generate a control
value adjusting the Local Oscillator frequency in a way,
that the phase error goes to zero.

The setup is shown in the lower left part of Fig. 1. To
get an electrical signal of the 216.66 MHz light pulses, a
photo diode and bandpass filter are used to measure the
sixth harmonic (1.3 GHz) of the pulse train. The resulting
signal is mixed with the MO signal.

The nonlinear equations describing the system, similar to
the ones in Abramovitch (2003), are

r̃(t) = sin(ωMOt) , (1)

ỹ(t) = a cos(ωLO(t)t+ φ(t) + φn(t)) , (2)

ẽ(t) = r̃(t)ỹ(t), (3)

=
a

2
sin((ωMO + ωLO(t))t+ φ(t) + φn(t))︸ ︷︷ ︸

γhigh

+

a

2
sin((ωMO − ωLO(t))t− φ(t)− φn(t))︸ ︷︷ ︸

γlow

, (4)

φ̇(t) = ωMO − ωLO(t) , (5)

φ(0) = φ0 , (6)

where r̃(t) is the signal from the MO with the angular
frequency ωMO = 2π · 1.3 GHz. The signal ỹ(t) generated
by the laser pulse train with an angular frequency ωLO(t),
phase shift φ(t) and noise φn(t) acting on the phase shift.

In order to linearize the system, the following commonly
used assumptions, as in Abramovitch (2003), are used:

1. The system is close to the operating point
|ωMO − ωLO(t)| → 0

2. There are just small phase changes sin(φ(t)) ≈ φ(t)
3. High order harmonics are low pass filtered and there-

fore vanished, γhigh → 0
4. An input to the local oscillator leads to a linear

change around the operating point
ωLO(t) = ku(t) + ωMO

The first assumption allows us to just take a look at
the frequency differences, i.e. r(t) as the reference phase
and y(t) as the output phase, both with respect to the
sinusoidal signal r̃(t). Assumption 1. and 2. are used to
linearize γlow and together with 3. to linearize (4). The last
assumption sets the piezo transfer function to a constant
gain, which is valid if the piezo is much faster than the
frequency changes.

With this simplifications the linearized system dynamics
can be described by an integrator, i.e. in time domain as

φ̇(t) = − ku(t) , (7)

e(t) = − a

2
(φ(t) + φn(t)) , (8)

and in frequency domain as

G(s) =
E(s)

U(s)
=
ak

2s
. (9)

This shows, as expected, that the phase shift φ(t) between
both frequencies and therefore the error e(t) will diverge
if both frequencies are not equal.

3.2 Phase Noise and Timing Jitter

An ideal oscillator has a Dirac impulse as its frequency
spectrum. This is not true in real world measurements.
Fig. 3 shows an ideal and a real oscillator. The real oscilla-
tor spectrum has components near the center frequency fc,
due to a noise term φn(t) on the phase. This noise term
at the MLO output directly influences the zero crossing
of timing pulse and acts as a disturbance to the LSU
OXC measurement. Therefore it is crucial for the precise
sampling of the connected devices in the accelerator.

To measure the term φ(t) + φn(t) one can mix the noisy
oscillator signal ỹ(t) with an ideal one r̃(t) as shown in
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Fig. 3. Time (upper subplot) and frequency (lower subplot)
domain behavior of an ideal and a real oscillator

Fig. 4. In this case this is what the phase detector of
the MLO, described in the last section, does and with
the linearizations the noise term is equal to the measured
phase error signal e(t).

ẽ(t) =

r̃(t) · ỹ(t)
r̃(t)

ỹ(t)

f [Hz]

Sẽ(f)

Lỹ(fo)

1
2J1,2

f2f1 fc

Fig. 4. Frequency domain behavior of an ideal oscillator
mixed with a real oscillator

The root mean square value of this error signal is called
timing jitter J . It can be calculated in the time or in the
frequency domain by using the theorem of Parseval as

J2
rad = ‖φn(t)‖2rms =

∫ ∞
−∞
|φn(t)|2 dt

=

∫ ∞
−∞
|Ŝφn

(f)|2 df =

∫ ∞
−∞

Sφn
(f) df , (10)

where Sφn
(f) is the power density spectrum of φn(t).

The jitter in the unit seconds, with the carry frequency fc,
is

Js =
Jrad
2πfc

. (11)

Under the assumption that there is only phase and no
amplitude noise, the spectrum Sỹ(f) of the signal ỹ(t)
is symmetric around the center frequency fc. Therefore,
as described in Gardner (2005), only one side of the
spectrum near the center frequency is considered for the
characterization, the so-called single-sided phase noise
spectrum

Lỹ(fo) =
Sỹ(fo + fc)

2
, ∀fo > 0 , (12)

which is a function of the offset frequency fo.

Due to the mixing and low pass filtering, the power density
spectrum of e(t) is equal to the phase noise spectrum:

Lỹ(fo) = Se(f) . (13)

K(s) G(s)

Wr(s) Wn(s)

r(t)
e(t)

y(t)
−

Lr(f) Ln(f)

wr(t) wn(t)

Fig. 5. Block diagram of the linearized system including
the noise shaping filters Wr(s) for the MO and Wn(s)
for the MLO

The output jitter in a certain frequency range

Jrad,f1,f2 =

√
2

∫ f2

f1

L (f) df, 0 < f1 < f2 (14)

is commonly used to compare performances of oscillators
and depends on the integration bounds. It is not possible to
take ranges from 0 to ∞, because this jitter would always
go to infinity, caused by a constant bias of the spectrum
called noise floor which is unavoidable due to thermal noise
effects 2 , hence a principle performance bound.

To model the noise Lr(f) and Ln(f) of the plant, the
assumption that the reference oscillator is ideal is dropped,
because it is also influenced by phase noise. Fig. 5 shows
the resulting structure with the noise shape filters Wr(s)
for the MO and Wn(s) for the MLO, respectively, both
fed with white gaussian noise ωr(t) and ωn(t). The arising
question is:

• How to choose the filter functions Wr(s) and Wn(s),
that the noise Lr(f) and Ln(f) fits with the mea-
sured power density spectrum.

The propagation of an input power density spectrum
Su(ω) trough a linear time invariant system H(jω) results
in an output power density spectrum

Sy(ω) = |H(jω)|2Su(ω) . (15)

From (10) and (15) follows, that if a zero mean unit vari-
ance white noise signal u(t) with Su(f) = 1, propagates
through an LTI system, the rms value of the output signal
y(t) is given by

‖y(t)‖2rms =
1

2π

∫ ∞
−∞

Sy(ω)dω

=
1

2π

∫ ∞
−∞
|H(jω)|2dω = ‖H(s)‖22 , (16)

which is the H2 norm of the system H(s).

Choosing the noise filters as

|Wr(s)|2 = Lr(f) and |Wn(s)|2 = Ln(f) , (17)

the H2 norm of the system from wr(t) to y(t) represents
the jitter Js,r induced through the MO and theH2 norm of
the system from wn(t) to y(t) represents jitter Js,n induced
through the MLO with 3

Js,r =
‖Wr(s)‖2

2πfc
and Js,n =

‖Wn(s)‖2
2πfc

. (18)

2 The thermal noise power is given by P = kBT∆f . The noise floor
at room temperature is −174 dBm/Hz.
3 Remember, that ω = 2πf, df = dω(2π)−1
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3.3 Shape of the Phase Noise

To determine the noise filters Wr(s) and Wn(s), the open
loop phase noise of the MO was measured. The result
(blue, solid) and the theoretical shape of the MLO (red,
dashed) are shown in Fig. 6. In the low frequency range
the noise power of the MO is much lower than the one
of the MLO, which changes for higher frequencies at
an intersection point. A controller which minimizes the
output jitter would have a good reference tracking up
to the frequency of the intersection point even if the
bandwidth could be higher.

Another very important aspect is the slope of the graphs.
This correspond to different physical effects listed in Ru-
biola (2009) and for completeness introduced:

∆ dB S(f) Physical meaning

−30 dB f−3 Flickering noise on the frequency
−20 dB f−2 White noise on the frequency
−10 dB f−1 Flickering noise on the phase

0 dB 1 White noise on the phase

The shape can be piecewise-linearly approximated with
stable transfer functions of the type

Sl(f) =
k

fα + 1
(19)

where α correspond to the slope of the element and k gives
the crossing with f = 1. One point is to keep in mind, that
these values are power signals therefore the following rule
holds:

∆P [dB] = 10 log10

(
P2 [W]

P1 [W]

)
(20)

For that reason a slope of −20 dB leads to a spectral
behavior of f−2 and due to (15) to a linear system behavior
of f−1 as commonly known.

Fig. 6 shows, that this system contains parts which does
not fit to the n · 20 dB rule with n ∈ Z for LTI systems.
To model this behavior, it is possible to fit the shape with
a high order LTI system or use a fractional order system
description.

3.4 Fractional Order Systems

The required filter Wr(s), has to hold

|Wr(s)|2 =
k

s
⇐Wr(s) =

k
1
2

s
1
2

, (21)

in the frequency domain and has to be stable.

Such systems, where the exponent of the complex vari-
able s is a real value are called fractional order systems,
explained in Monje et al. (2010). One example of frac-

tional order control is the PIλDµ controller, which extends
the PID controller with two new tuning knobs and new
possible properties, for example iso-damping where the
overshoot is independent of the system gain, shown in Luo
and Chen (2012).

Here a first impression is given how the generalization
of integration and differentiation looks like. The new
fractional operator for n-th integration D−n looks like
Rieman-Lioville’s definition:

D−n{f(t)} =
1

Γ(n)

t∫
0

f(y)(t− y)n−1 dy, n ∈ R+ , (22)

with Γ(n) as Eulers Gamma function, an extension of the
factorial function to real numbers.

The n-th differentiation follows the Grünwald-Letnikov’s
definition with:

Dn{f(t)} = lim
h→0

1

hn

n∑
k=0

(−1)n
(
n

k

)
f(t− kh), n ∈ R+ .

(23)

With this definitions the commonly known rules for the
Laplace transform L{·} can be extended to cover fractional
orders, by

Dn{f(t)} = snL{f(t)}, n ∈ R . (24)

Example: The Laplace transform of a fractional order
integrator is given by

L−1
{

1

sn

}
=
tn−1

Γ(n)
, n ∈ R . (25)

One can see that fraction changes to the Gamma function
which is reasonable, because this is the generalization of
the fraction.

There are a couple of Matlab Toolboxes for fractional order
system available, e.g presented in Tepljakov et al. (2011)
or Oustaloup et al. (2002).

4. IDENTIFICATION

4.1 Closed Loop Identification of the MLO dynamics

The system of the laser dynamics itself, given in equa-
tion (9), is unstable. A PID controller is used to keep
the system stable and the response to band limited white
noise, added to the reference and the control value, is
measured. Using a grey box model with the knowledge
of the controller and the structure of the laser plant, leads
to the transfer function:

G(z) =
−7.384 · 10−3 z−1

1− 1.002 z−1
. (26)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9239



4.2 Phase Noise Identification

In order to get the noise transfer functions, the mea-
surements shown in Fig. 6 are used, performed with an
Agilent Vector Signal Analyzer (VSA). The parameter
of the approximation are determined by minimizing the
squared error between the linear approximation and the
measurements using the fmincon function in Matlab.

The different slopes with the resulting behavior of the MO,
dashed line in Fig. 6, are:

Frequency range ∆ dB α k

1 kHz − 32 kHz −26.35 dB −2.635 −29.38 dB

32 kHz − 501 kHz −11.84 dB −1.184 −94.75 dB

501 kHz − 10 MHz 0 dB 0 −162.24 dB

This leads to the filter transfer function

Wr1(s) = 7.551 ·10−9 +
1.943 · 10−5

s0.598 + 1
+

3.495 · 10−2

s1.322 + 1
, (27)

which has too high amplitudes in the crossing of the linear
parts, dash-doted line in Fig. 6. With this starting point an
additional optimization leads to the fractional order filter

Wr2(s) = 7.30 · 10−9 +
2.353 · 10−4

s0.847 + 1
+

1.572 · 10−1

s1.540 + 1
, (28)

which is the solid line in Fig. 6.

The filter for the MLO can be estimated accordingly.

5. SIMULATION RESULTS

To validate the model, the jitter values of the model with
the noise shaping filters, calculated by equation (14), are
compared to the measured ones of the VSA. In following
up papers this is intended to be done using the fractional
order frequency limited H2 norm. The jitter for the MO,
in the range of 1 kHz to 10 MHz, is as follows:

JMeasured = 16.710 fs, JLin.Approx. = 16.713 fs

Jr1 = 18.129 fs, Jr2 = 17.108 fs

The linear approximation is the best estimation for the
jitter, but is not suitable for a common model based
controller design. Therefore the filter Wr2(s) should be
used.

6. CONCLUSION AND OUTLOOK

In this paper a brief overview of the laser based syn-
chronization system for the European XFEL is given.
Furthermore, the master laser oscillator is described from
the control theory point of view. In order to synthesize
an optimal controller it is necessary to model the main
factors influencing the system, in this example the phase
noise, and the required performance criterion, here the
resulting timing jitter. It has been shown, that fractional
order systems are appropriate candidates to model the
behavior of this noise source. Furthermore, the calculation
of the timing jitter can be done by the developed methods.

With a model for that system, the next step is to use
modern control synthesis strategies to design a controller
which minimizes the output timing jitter. For example due
to a minimization of theH2 norm of performance channels,
which include the fractional order noise shape filters.
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