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Abstract: Automatic voltage regulators (AVRs) are controllers used to maintain constant voltage at the 

generator terminals. Artificial Neural Networks (ANNs) are nonlinear maps that have the potential to make 

the realisation of practical nonlinear controllers possible. This paper is concerned with the development of 

a Feedforward Multilayer Perceptron (MLP) Neural Networks and its use as an Automatic Voltage 

Regulator (AVR) with Power System Stabiliser (PSS). The performance of the MLP-AVR is compared 

with that of a conventional AVR with PSS.  The MLP-AVR shows good performance compared to that of 

conventional AVR with PSS.  
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1. INTRODUCTION 

The electric grid is highly dynamic and nonlinear. Its 

complexity continues to rise further due to the integration of 

intermittent renewable energy power sources and 

intensification of demand for capacity. Control of the grid 

must be accurate enough to ensure consistent level of power 

quality and robust enough to fortify its stability. The ability 

for synchronous generators to remain in step determines the 

stability of the grid. Excitation systems which comprise of an 

automatic voltage regulator (AVR) and power system 

stabilizer (PSS) are used to keep generators in synchronism 

(Glover et al, 2008), (Kundur, 1994), (Rogers, 2000). These 

control systems are designed using linear control techniques 

and only perform well around the nominal operating points 

(Kundur, 1994), (Rogers, 2000). However power systems are 

nonlinear and highly complex; intuition would suggest that 

nonlinear techniques would better serve the purposes of 

ensuring efficient control and stability. Nonlinear control 

techniques have been investigated for a number of years, but 

they have produced very little in the form practical methods 

of synthesis as well as procedures for practical 

implementation (Ogata, 2008).  

Artificial Neural Networks (ANNs) are adaptive nonlinear 

maps that accept inputs from one finite dimensional space 

and produce outputs in another finite space. This inherent 

nonlinearity makes them very useful tools in complex, 

uncertain and dynamic environments (Engelbrecht, 2007), 

(Narendra, 1996). The power grid is a highly complex, 

uncertain and dynamic where ANNs have proved to be useful 

in providing effective control. 

The Feedforward Multilayer Perceptron (MLP) is designed in 

this paper to replace the conventional AVR with PSS. The 

performance of the MLP is evaluated by subjecting the 

system (a single-machine infinite bus power system) to a 

50ms three-phase-to-ground fault. Simulation results show 

that the MLP based excitation system has a superior 

performance when compared to a conventional AVR+PSS 

excitation system.   

This paper is organized as follows:Section 2 presents a 

literature review. Section 3 presents the system model and 

design procedure for neuro-controlled excitation system. 

Section IV presents simulation results and section V gives 

conclusions and future work. 

 

2. LITERATURE REVIEW 

2.1  Overview of Artificial Neural Networks 

The human brain is a continually evloving, fast acting and 

highly parallel computing unit. It has the ability to perform 

tasks such as inference, abstraction, deduction and 

classifcation almost instantly. It is able to perform  these 

tasks many thousands of times faster than modern computers; 

where computers may not even be able to perform some of 

them. 

Artificial Neural Networks (ANNs) are modeled after the the 

brain. They attempt to replicate the biological mechanisms 

that govern how it works (Engelbrecht, 2007), (Qiao, et al, 

2007), (Venayagamoorthy, 2004). An ANN is a layered 

network of artificial neurons. An ANN may consist of an 

input layer, hidden layer and an output layer. The artificial 

neurons are modeled using a nonlinear function with 

convieniant mathmatical properties such as differntiability 

and limitted output range. Figure 1 illustrates the structure of 

an ANN. 

Learning is facilitated in ANNs with the use of the back 

propagation supervised learning algorithm. There are two 

steps in the learning process, namely forward propagation 

and back propagation. 

 

 

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 8218



 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.  Multilayer Perceptron Artificial Neural Network 

Architecture (Venayagamoorthy, 2004) 

 

Forward Propagation 

 

The input signals received at the input layer are sent through 

to the hidden layer, aggregated and then squashed into an 

activation function. The hidden layer signal outputs are then 

sent to the output layer where they are again aggregated and 

then squashed into another activation function. For any 

pattern zp this single pass through the network can be 

represented as follows: 
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Where oi,p is the output corresponding to a particular pattern, 

i is the activation function of a neuron, zoi,p is the 

aggregation of all the signals from the neurons in the final 

hidden layer, wi,j is the weight of a particular synaptic 

connection, vj,i  is the weight corresponding to a particular 

input and ui,p  is an input signal. 

 

 Backpropagation 

 

The most widely used ANN training algorithm is the back 

propagation algorithm originally proposed in the 1970’s 

(Venayagamoorthy, et al., 2003). Back propagation is also a 

stochastic search that aims at minimising an objective 

function. The most commonly used objective function is the 

derivative of the Mean Square Error (MSE) as given in the 

following equations:  
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where Ep is the MSE, tpj is the target output of the neuron j 

for pattern p and opj is the output produced by the ANNs.  

When neuron j is in an output layer, equation (5) is used and 

when j is in a hidden layer equation (6) is used. The 

minimisation of the objective function is achieved through 

calculating the Jacobian matrix of the synaptic weights by 

using gradient decent algorithm to find update values for the 

weights. The update procedure is as follows: 
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where wkij  is weight of neuron i in layer k of previous neuron 

j, 𝜆 is learning rate, 𝛿 is local gradient, ej is output from error 

function and 𝜓’j  is derivation of activation function.  

The main problem with the back propagation algorithm is its 

susceptibility to get stuck at local optima during stochastic 

search. 

2.2  Artificial Neural Networks for Control 

ANNs have been used in a wide range of applications such as 

modelling tools for regression, classification, and system 

approximation (Wolf and Shashua, 2005), (Starzyk, et al., 

2005), (He and Starzyk, 2010), (Xiao, et al., 2010). They are 

also attractive as nonlinear controllers (Fukuda and Takanori, 

1992), (Cong and Liang, 2009) due to their inherent 

nonlinearity, insensitivity to noise and robustness. Research 

in the use of ANNs for automatic voltage regulation has been 

explored using recurrent neural networks (RNN) (Salem, et. 

al., 2003), (Bulic, et. al., 2007), (Karnavas, Y.L., and 

Papadopoulos, 2004) which show superior performance as 

compared to the conventional AVR with PSS. Extensive 

work has also been done on the use of ANNs in adaptive 

critic design (ACD) used for synchronous generator voltage 

regulation (IEEE Power Eng. Society,2006).  

This work is an extension of (Salem, et. al., 2003) where 

different classes of input features to the MLP are explored. 

3. A NEURO-CONTROLLED EXCITATION SYSTEM 

3.1  System Model 

A MLP is designed to function as the AVR and PSS of a 

single machine infinite bus (SMIB) power system. The 

system model is shown in figure 2. The parameters of the 

machines are given in the Appendix, table A1. 
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The excitation system consists of an ST1A configuration 

AVR (Kundur, 1994) and the PSS consists of two stages 

lead-lag network. The parameters of the PSS were obtained 

using phase compensation method coupled with trial and 

error approach to obtain a suitable gain. The AVR and PSS 

are shown in figure 3 and 4, respectively. The parameters for 

the SMIB system, AVR and PSS are given in Appendix A 
 

 

 

 

 

 

 
Fig 2:  Single Machine Infinite Bus Model 

 

 

 

 

 

 
 

 

 

 

Fig 3:  AVR and Regulator 

 

 

 

 

Fig 4:  Power System Stabilizer 

 
AVR and PSS parameter are given in Table A2. 

3.2  MPL Design 

 

The development of the ANNs comprises three tasks:  

 

1. Determine the best class input signals. 

2. Determine the optimum number of neurons in the 

hidden layer by incrementally growing the hidden 

layer and then evaluating the network’s 

performance. 

3. Determine the optimum value of the learning rates 

 

 

The AVR function of the MLP is facilitated by back 

propagating the following error: 
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where Vref  is the reference terminal voltage signal, Vt is the 

terminal voltage of the generator , and   is the 

derivate of the voltage error. 

 
The PSS function of the MLP is facilitated by the back 

propagation the following error: 
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where wdeviation is the rotor speed deviation and   

is the derivate of the speed deviation. 

In order for the MLP to provide the function of both the AVR 

and PSS, the following error is back propagated through the 

network: 
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where kV and kW are constants. 

MLP networks are typically slow to converge and so the 
addition of the derivative to the error makes them appropriate 
for real-time control applications. A model of the neuro-
controller is shown in figure 5 

 
Fig 5:  Neuro-controller Model 

 

There neuro-controller consists of 7 inputs, 3 hidden neurons 

and 1 output. The terminal voltage, Vt, and the speed 

deviation, w_dev signals are delayed three times and input 

into the controller, where the TDL block stands for Time 

delayed. The voltage signal is delayed once and input into the 

controller, giving a total of 7 input signals. Through 

experimentation it was determined that a sample period of 20 

ms will be used. The number of hidden layer neurons is 

determined empirically and so are the learning rates. A 

learning rate of 0.1 is used and kV and kW are set to 0.3 

 

4.  SIMULATION RESULTS  

A 2100MVA generator is used in the Single machine infinite- 

bus (SMIB) system with a transmission line reactance of  X = 

0.6 p.u. 
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AVR and PSS

Neurocontroller

Figure 6 shows the tracking performance of the neuro-

controller. A random set point voltage is generated every 15 

seconds. Figure 6 shows that the neuro-controller has 

superior tracking performance to the conventional AVR and 

PSS. It is both faster and more accurate 

The transient performance of the ANN is evaluated by 

subjecting the SMIB system (line 2) to a 3 phase-to-ground 

fault. Figures 7 and 8 show the terminal voltage and rotor 

speed deviation curves, respectively. The fault was self- 

cleared after 50ms and the line system returns to its original 

state. Figures 9 and 10 show the terminal voltage and rotor 

speed deviation curves, respectively. The fault is cleared by 

removing the line after 50ms. The above Figures were 

obtained when the system is operating at conditions P = 0.6 

p.u. and pf = 0.85 lagging before the fault occurs. Figures 11 

and 12 show the terminal voltage and rotor speed deviation 

curves when the SMIB system is operating at the conditions 

P = 0.7 p.u. and unity power factor. The fault was self- 

cleared after 50ms and the line system returns to its original 

state 

 

 

 

 

 

 

 

Fig 6:  Terminal Reference Voltage Deviation Tracking 

 

 

 

 

 

 

 

Fig 7:  Terminal Voltage (P = 0.6p.u, pf = 0.85 lagging) 

 

 

 

 

 

 

 

 

Fig 8:  Rotor Speed Deviations (P = 0.6p.u, pf = 0.85 lagging 

 

 

 

 

 

 

 

 

 

 

Fig 9:  Terminal Voltage after the line 2 was removed (P = 

0.6p.u, pf = 0.85 lagging) 

 

 

Fig 10:  Rotor Speed Deviations after line 2 was removed (P 

= 0.6p.u, pf = 0.85 lagging) 

 

Figures 7 and 8 show that the neuro-controller is able to 

recover quicker from the 3 phase-to-ground fault than the 

conventional AVR with PSS. Figures 9 and 10 show that the 

neuro-controller is robust than the conventional AVR with 

PSS. This is because this controller it is able to maintain the 

stability of the system even under severe disturbance.  

Figures 11 and 12 show that the neuro-controller gives a 

better performance than the conventional AVR with PSS 

under heavy loading conditions. 

 

 

Fig 11:  Terminal Voltage (P = 0.7p.u, pf = 1) 
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Parameter (Unit) Value Parameter 

(Unit) 

value 

P (MVA) 2100  Xl (pu) 0.15 

Xd (pu) 2.0 Tdo’ (s) 5 

Xd’ (pu) 0.245 Tdo’’ (s) 0.031 

Xd’’ (pu) 0.2 Tqo’ (s) 0.66 

Xq (pu) 1.91 Tqo’’ (s) 0.061 

Xq’ (pu) 0.42 Rs (pu) 0.003 

Xq’’ (pu) 0.2 H (s) 4 

 

Parameter (Unit) Value Parameter 

(Unit) 

Value 

Ka 190 Tw 4.58s 

Ta 0.0001s T1 0.25 

Kf 1 T2 0.08 

Tf 0.05 T3 0.25 

Tb 1 T4 0.08 

Tc 10 Ts 0.05 

Ks 0.12   

 

 

 

Fig 12:  Rotor Speed Deviations after line 2 was removed (P 

= 0.7p.u, pf = 1) 

 

5. CONCLUSIONS 

The nonlinear nature of ANNs makes them attractive 

nonlinear controllers for nonlinear systems such as power 

systems. One can conclude that static MLPs are promising 

viable alternatives to conventional AVR and PSS excitation 

systems. They are robust and are able to guaranty the stability 

of the system under heavy load conditions. They are useful 

tools for the implementation of nonlinear controllers.  

Future work entails research on an indirect approach to 

calculating the objective function that will facilitate even 

faster convergence. As well as examining the performance of 

the neuro-controller on a multi machine power system. 
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APPENDIX 

Table A1.  Parameters of the synchronous generator  

 

 

 

 

Table A2.  AVR and PSS Parameters  
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