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Abstract: The asymptotic stability of distributed-event triggered control for interconnected
linear systems can be achieved with time-dependent trigger functions, whose parameters relies
on some propoerties of the overall system, which are not known a priori. This paper presents
an approach to the distributed estimation of such parameters, which yields to adaptive event-
triggered control. We provide proofs of convergence in finite time while the asymptotic stability
and the existence of a lower bound for the inter-event times are preserved.

1. INTRODUCTION

The centralized control of large-scale systems in a net-
worked environment require an accurate knowledge of the
interaction between subsystems and the consumption of a
lot of computation and network resources. Decentralized
approaches are not the optimal solutions because the sub-
systems do not communicate between them even if they
significantly interact. By contrast, in distributed control,
the local controllers exchange information to compensate
the interconnections, and so, the communication network
turns to be part of the design problem.

Recent contributions have shown the interest in applying
event-triggering to distributed Networked Control Systems
(NCS) [Dimarogonas et al., 2012, De Persis et al., 2011,
Donkers and Heemels, 2012, Guinaldo et al., 2013, Mazo
and Tabuada, 2011, Wang and Lemmon, 2011]. The basic
idea in all these contributions is that each subsystem
(also called agent or node) decides when to transmit the
measurements based only on local information.

The stability of the system is related to algebraic proper-
ties, and many control methods use this information into
the design. The problem is when we require the knowledge
of some properties of the overall system in distributed
control systems but we only have access to nearby nodes.
For instance, analysis on eigenvalues can be used to get
better performance by setting the communication links
in distributed control for interconnected linear systems
[Gusrialdi and Hirche, 2010], to estimate the worst case
of convergence rate in consensus algorithms [Olfati-Saber
and Murray, 2004], or to design trigger rules such that
asymptotic stability and a lower bound on the inter-event
times are guaranteed [Guinaldo et al., 2013, Seyboth et al.,
2013].

There are several algorithms to estimate the matrix eigen-
values in a distributed fashion [Kempe and McSherry,
2008, Trefethen and Bau III, 1997]. Most of them apply to
Hermitian square matrices, and they have been applied,
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for example, to estimate the algebraic connectivity of a
network [Yang et al., 2010, Aragues et al., 2012].

In this paper, we propose a distributed method to estimate
parameters in interconnected linear systems. Since inter-
connections are characterized by uncertainties in these se-
tups, the computation of the eigenvalues of the closed loop
system can be a tough problem. We solve this problem by
estimating the largest eigenvalue of the closed loop system
without the interconnections, and computing an upper
bound on the interconnections for the overall system. The
solution lies on a completely distributed approach. The
computation required by the proposed method is very
low and basically consists of running the max-consensus
algorithm [Tahbaz-Salehi and Jadbabaie, 2006].

The most recent estimates of the parameters are used to
update the trigger functions presented in Guinaldo et al.
[2013]. Adaptive event-triggering was suggested in Aragues
et al. [2012] for average consensus and multi-agent systems.
In our approach, the exchange of information (broadcasted
states and parameters estimates) occurs only at event
times. We further provide proofs of convergence in finite
time, asymptotic stability and exclusion of Zeno behavior.

The rest of the paper is organized as follows: In Section
2 some background and the problem statement are given.
Section 3 presents the distributed parameter estimation
algorithms. Section 4 discusses adaptive event-triggering
and provides the main stability results of this paper. Our
method is evaluated in simulations in Section 5. Finally,
conclusions and future work are presented in Section 6.

2. BACKGROUND AND PROBLEM STATEMENT

2.1 Matrix and perturbation analysis

Let A ∈ Cn×n be a complex matrix, and let us denote
A∗ = (āji), λ(A) = {λ : det(A− λI) = 0}, and

κ(A) = ‖A‖‖A−1‖ (0 /∈ λ(A)), (1)

λmax(A) = max{<e(λ) : λ ∈ λ(A)}, (2)

where ‖ · ‖ denotes the induced 2-norm or spectral norm.

The exponential of A is defined as eAt =
∑∞
k=0

(At)k

k! .
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Let Y be an invertible matrix such that A = Y BY −1 and
µmax(A) = max{µ : µ ∈ λ((A + A∗)/2)}. It follows that
‖eAt‖ = ‖Y eBtY −1‖ ≤ κ(Y )eµmax(B)t [Van Loan, 1977],
being κ(Y ) is defined according to (1). Thus, assume that
A is diagonalizable, i.e., there exists a matrix D, where
D = diag(λ(A)), and a matrix V of eigenvectors, such
that A = V DV −1. Then it holds

‖eAt‖ ≤ κ(V )eµmax(D)t = κ(V )eλmax(D)t = κ(V )eλmax(A)t,
(3)

where λmax(A) is defined according to (2).

Let the matrix A be perturbed by some matrix E. A result
from semigroup theory (see Kato [1966]) states that if
‖eAt‖ ≤ ceβt for some constants c > 0 and β, then

‖e(A+E)t‖ ≤ ce(β+c‖E‖)t. (4)

2.2 Maximum and minimum consensus algorithms

Consider a group of N ∈ N agents. Let us denote the
internal state of the agent i at time t > 0 by yi(t) ∈ R,
and yi(0) are the initial state value. Assume that the
agents exchange information with nearby agents. This
information is represented by an undirected graph G =
{V, E}, where V = {1, . . . , N} is the set of agents, and the
pair (i, j) is in E if the nodes i and j exchange data.

The minimum consensus algorithm results in the conver-
gence of all the states to the minimum of the initial state
values. At each step, the node i updates its state to the
minimum state value of the neighboring nodes and its own.
In Tahbaz-Salehi and Jadbabaie [2006], it is proved that
the agents reach the consensus in a finite number of steps
and limt→∞ y(t) = mini=1,...,Nyi(0)1, where 1 represents
the vector with all entries equal to one. Equivalent results
can be obtained for the maximum consensus.

For fixed topologies, connected undirected graphs or
strongly connected digraphs, the max (min) consensus is
reached in a finite number of iterations lmax < N − 1
[Olfati-Saber and Murray, 2004], where lmax is the diam-
eter of the graph, i.e., the length of the longest shortest
path between any two nodes [Godsil and Royle, 2001].

2.3 Problem statement

Consider a system of N linear time-invariant subsystems.
The dynamics of each subsystem is given by

ẋi(t) = Aixi(t) +Biui(t) +
∑
j∈Ni

Hijxj(t), ∀i = 1, ..., N

(5)
where Ni is the set of “neighbors” of the subsystem i,
i.e., the set of subsystems that directly drive agent i’s
dynamics, and Hij is the interaction term between agent
i and agent j.

In Guinaldo et al. [2013], an event-triggered control law
is proposed so that the system (5) can achieve asymptotic
stability while decreasing the average frequency of commu-
nication between nodes, and excluding the Zeno behavior,
i.e., the occurrence of two consecutive transmission events
at the same instance of time.

The control law is computed based on the last transmited
or broadcasted state xb,i, rather than on the continuous
measurements, as

ui(t) = Kixb,i(t) +
∑
j∈Ni

Lijxb,j(t), ∀i = 1, ..., N (6)

where Ki is the feedback gain for the nominal subsystem
i, Lij is a set of decoupling gains, and AK,i = Ai + BiKi

is assumed to be Hurwitz.

Error functions are defined as

ei(t) = xb,i(t)− xi(t). (7)

Each agent i decides when to transmit its state to the
neighborhood based on some function of the local error
(7). More specifically, the proposed trigger functions for
the system (5) are

fi(t, ei(t)) = ‖ei(t)‖ − c1e−αt, α, c1 > 0. (8)

Event times {tik}∞k=0 for each subsystem i are determined
recursively by the event trigger function as tik+1 = inf{t :

t > tik, fi(t, ei(t)) > 0}.
To guarantee the stability of the interconnected system
(5) with control law (6) and update mechanism defined
by trigger functions (8), the parameter α is constrained
by some information of the overall system. Next section
discusses this more in detail and presents a proposed
distributed parameter estimation approach such that the
system reaches the equilibrium asymptotically.

3. DISTRIBUTED PARAMETERS ESTIMATION

3.1 Motivation

The system (5) with control law (6) can be rewriten in
terms of the error (7) as

ẋi(t) = AK,ixi(t)+BiKiei(t)+
∑
j∈Ni

(
∆ijxj(t)+BiLijej(t)

)
,

(9)
where ∆ij = BiLij + Hij are the coupling terms. In
general, ∆ij 6= 0.

Note that if ∆ij 6= 0, the dynamics of ẋi(t) explicitly
depends on xj(t), ∀j ∈ Ni. To solve this coupling problem,
we can study the stability for the overall system.

Let us define x = (xT1 , x
T
2 , ..., x

T
N )T , e = (eT1 , e

T
2 , ..., e

T
N )T ,

and the following block matrices

AK = diag(AK,1, AK,2, ..., AK,N ) (10)

∆ = {∆ij}, ∆ij = 0 if i = j or j /∈ Ni, (11)

B = diag(B1, B2, ..., BN ), and K = {Kij} where Kij = Ki

if i = j and Kij = Lij otherwise.

Thus, the dynamics of the overall system is given by

ẋ(t) = (AK + ∆)x(t) +BKe(t). (12)

Under the assumptions that AK,i, ∀i = 1, . . . , N are
diagonalizable, and that the coupling terms are such that
κ(V )‖∆‖ < |λmax(AK)| holds, the system is asymptoti-
cally stable and the state is upper bounded by

‖x(t)‖ ≤ κ(V )
(
e−(|λmax(AK)|−κ(V )‖∆‖)t(‖x(0)‖

− c1
|λmax(AK)|−κ(V )‖∆‖−α )

)
+ e−αt ‖BK‖

√
Nc1

|λmax(AK)|−κ(V )‖∆‖−α

)
,

if the parameter α of the trigger functions (8) is con-
strained as α < |λmax(AK)| − κ(V )‖∆‖ [Guinaldo et al.,
2013]. λmax(AK) is defined according to (2) and κ(V )
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is the condition number (1), where V is the matrix of
eigenvectors of AK . ‖∆‖ is the induced 2-norm of ∆.

Hence, the parameter α is restricted by the values of three
parameters of the global system, and this information is
not accessible by the individual nodes.

The next section presents distributed algorithms to esti-
mate λmax(AK) and κ(V ), and an upper bound for ‖∆‖.

3.2 Distributed computation of λmax(AK) and κ(V )

The definition of AK (10) corresponds to the direct sum
of AK,i. The following properties are used in the sequel:

(A1 ⊕A2) · (B1 ⊕B2) = A1B1 ⊕A2B2 (13)

(A⊕B)−1 = A−1 ⊕B−1, (14)

if A−1 and B−1 exist.

Proposition 1. If AK is defined according to (10) and
AK,i = ViDiV

−1
i holds ∀i = 1, . . . , N , it follows that

λmax(AK) = max
i=1,...,N

{λmax(AK,i)} (15)

κ(V ) = max
i=1,...,N

{‖Vi‖} · max
i=1,...,N

{‖V −1
i ‖}. (16)

Proof. Using the property (13), it follows that AK =
⊕iAK,i = ⊕iViDiV

−1
i = ⊕iVi⊕iDi⊕i V −1

i . Let us denote
D = ⊕iDi. Since D is a diagonal matrix that contains the
eigenvalues of all the matrices AK,i, (15) is proven.

Let V = ⊕iVi. Since V is a block diagonal matrix, it holds
that ‖V ‖ = max{‖Vi‖i=1,...,N}. From (14), it follows that

V −1 = ⊕iV −1
i and so, ‖V −1‖ = max{‖V −1

i ‖i=1,...,N},
which yields (16), from the definition (1).

From the results of Proposition 1, the algorithm for the
distributed computation of λmax(AK) and κ(V ) basically
consists of running three max-consensus algorithms:

Algorithm 1. Each node i mantains estimates λ̂imax(AK),
p̂i(V ), p̂i(V

−1), and κ̂i(V ) = p̂i(V ) · p̂i(V −1), where p̂i(X)
denotes the estimation by the node i of the norm of a
matrix X.

(1.1) At k = 0, each node initializes λ̂imax(AK) =
λmax(AK,i), p̂i(V ) = ‖Vi‖, p̂i(V −1) = ‖V −1

i ‖, and
κ̂i(V ) = p̂i(V ) · p̂i(V −1) that are computed offline by
each node.

(1.2) At each step k ≥ 1, each node i broadcasts the

estimates λ̂imax(AK), p̂i(V ), and p̂i(V
−1) to all j ∈

Ni.
(1.3) Then, the node i updates all the variables as

λ̂imax(AK) = max
j∈Ni∪{i}

{λ̂jmax(AK)},

p̂i(V ) = max
j∈Ni∪{i}

{p̂j(V )}, p̂i(V −1) = max
j∈Ni∪{i}

{p̂j(V −1)},

and κ̂i(V ) = p̂i(V ) · p̂i(V −1).

3.3 Distributed computation of ‖∆‖

The definition of ∆ is given in (11), and includes the
coupling terms, which might not be well known. The
algorithm proposed in this section will provide an upper
bound for ‖∆‖ under the following assumption.

Assumption 2. Each subsystem i does not have full infor-
mation about ∆ij , j ∈ Ni, but it has the knowledge of
some upper bounds δij so that ‖∆ij‖ ≤ δij .

Proposition 3. If Assumption 2 applies, then ‖∆‖ can be
upper bounded as

‖∆‖ ≤
√(

max
i=1,...,N

{
∑
j∈Ni

δij}
)(

max
j=1,...,N

{
∑
i∈Nj

δij}
)
. (17)

Proof. For a block partitioned matrix A = {Aij}, where
Aij ∈ Rni×nj , it holds that ‖A‖ ≤ ‖µ(A)‖ [Smoktunowicz,
2008], where (µ(A))ij = ‖Aij‖.
Another useful inequality between matrix norms is ‖A‖ ≤√
‖A‖1‖A‖∞, where ‖ · ‖1 and ‖ · ‖∞ are the induced 1-

norm and ∞−norm, respectively [Meyer, 2001].

Thus, it follows that

‖∆‖ ≤ ‖µ(∆)‖ ≤
√
‖µ(∆)‖1‖µ(∆)‖∞. (18)

Since Assumption 2 applies, and from the definition of ‖·‖1
and ‖ · ‖∞, it yields (17) straightforwardly.

Remark 4. According to the the definitions of the norms
‖A‖1 = maxj

∑m
i=1 |aij | and ‖A‖∞ = maxi

∑n
j=1 |aij | for

any m × n matrix, the main advantage of using (18) is
that the sums are computed row/column by row/column,
so that the distributed computation is easier.

The following algorithm is used by each node i to compute
an upper bound for ‖∆‖ in a distributed manner.

Algorithm 2. Each node i mantains estimates p̂i(∆2),
p̂i(∆1), and p̂i(∆∞) to compute an upper bound for ‖∆‖,
‖∆‖1, and ‖∆‖∞, respectively.

(2.1) At k = 0, each node i initializes p̂i(∆2) =
∑
j∈Ni δij ,

and sends to each neighbor j ∈ Ni the upper bound
δij for the corresponding coupling term.

(2.2) At k = 1, the local estimates p̂i(∆2), p̂i(∆1),
and p̂i(∆∞) are updated to p̂i(∆1) =

∑
j∈Ni δji,

p̂i(∆∞) =
∑
j∈Ni δij , p̂i(∆2) =

√
p̂i(∆1)p̂i(∆∞).

(2.3) At each step k ≥ 2, it broadcasts the estimates p̂i(∆1)
and p̂i(∆∞) to the neighbors j ∈ Ni.

(2.4) Then, the node i updates the variables as p̂i(∆1) =
max

j∈Ni∪{i}
{p̂j(∆1)}, p̂i(∆∞) = max

j∈Ni∪{i}
{p̂j(∆∞)}, and

p̂i(∆2) =
√
p̂i(∆1)p̂i(∆∞).

Algorithms 1 and 2 basically solve three and two max-
consensus problems, respectively. For periodic and syn-
chronous updates in the nodes, the max-consensus to es-
timate λmax(AK), κ(V ), and ‖∆‖ are reached in a finite
number of iterations lmax < N − 1, as commented in Sec-
tion 2.2. However, this does not hold for event-triggering
in general. Next section describes how the previous algo-
rithms can be adapted to event-triggering and some other
properties regarding the stability of the system.

4. ADAPTIVE EVENT-TRIGGERED CONTROL

Trigger functions (8) depend on two parameters c1 and α.
Both parameters determine the performance, and more-
over, α is constrained by |λmax(AK)| − κ(V )‖∆‖ in
Guinaldo et al. [2013].

According to the discussion and the results of the previous
section, we propose new trigger functions as

fi(t, ei(t), αi(t)) = ‖ei(t)‖ − c1e−αi(t)t, αi(t) > 0, (19)
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where the parameter αi(t) is updated at local event
instances of time denoted by {tik}∞k=0 as follows:

αi(t
i
k) = γ(|λ̂imax(AK)| − κ̂i(V )p̂i(∆2)), 0 < γ < 1, (20)

and remains constant in the inter-event times: αi(t) =
αi(t

i
k), ∀t ∈ [tik, t

i
k+1).

Assumption 5. Let us assume that the interconnection
terms are such that κ(V )

√
‖µ(∆)‖1‖µ(∆)‖∞ < |λmax(AK)|

holds.

The previous assumption is just a little more restrictive
than the case of study of Guinaldo et al. [2013] already
discussed, in which κ(V )‖∆‖ < |λmax(AK)| was required
to ensure the stability of the system (12). This way,
Assumption 5 guarantees a positive value for α.

The adaptive event-triggered control algorithm can be
summarized as follows:

Algorithm 3. Each node mantains the estimates for λmax(AK),
κ(V ), and ‖∆‖ as described in Section 3, computes the
control law based on the broadcasted states, and transmit
the values of the state and the parameters at event times
{tik}∞k=0.

(3.1) At t = 0, all nodes perform the initialization steps
(1.1) and (2.1) of algorithms 1 and 2, respectively.

They also set αi = γ(|λ̂imax(AK)| − κ̂i(V )p̂i(∆2)),

λ̂jmax(AK) = −∞, p̂j(V ) = p̂j(V
−1) = 0, and

p̂j(∆1) = p̂j(∆∞) = 0 ∀j ∈ Ni.
(3.2) Once (3.1) has concluded, each node performs the

update (2.2) of Algorithm 2.
(3.3) In the node i, any time new information (state and

parameters estimates) is received from the neighbors

j ∈ Ni at some tjk, the control law (6) as well as the
parameters are updated according to steps (1.3) and
(2.4) of algorithms 1 and 2, respectively.

(3.4) When a local event is detected, the state xi(t
i
k), and

the estimates λ̂imax(AK), p̂i(V ), p̂i(V
−1), p̂i(∆1), and

p̂i(∆∞) are broadcasted to the neighbors j ∈ Ni.
(3.5) Then, it updates the values of αi according to (20)

and computes the control law (6).

Remark 6. The value of αi(t) is only updated at the local
event times to avoid discontinuities in the error threshold
in the inter-event times that could cause Zeno behavior.

As a result of Algorithm 3, the set of αi converges to the
same value αm = γ(|λmax(AK)|−κ(V )

√
‖µ(∆)‖1‖µ(∆)‖∞).

Note that αm corresponds to the minimum value of αi(t),
∀i, t. The value αm is reached by all agents in finite time.
However, due to the asynchronous and aperiodic update
of the triggering mechanism, it is not straightforward to
determine this instance of time analytically. Next results
state this more rigorously.

Proposition 7. Let us assume that the node i1 has at time
t = 0 the maximum value of a parameter π, so that
πi1 = πmax. If ‖xj(0)‖ > 0 ∀j = 1, . . . , N , then there exist

sequences of broadcasting finite times ti11 < ti2k2 < · · · <
t
ilmax
klmax

< ∞, so that at time t
ilmax
klmax

the max-consensus is

reached for the parameter π, i.e. πj = πmax, ∀j = 1, . . . , N .

Proof. The max-consensus is reached when the informa-
tion is transmited from the agent i1 to any other node

in the network following a path that has at most a lmax
length, being lmax the diameter of the graph.

At the first event instance of time ti11 for the node i1,
πmax reaches the neighborhood Ni1 . When the next event

occurs at t > ti11 for any of the neighbors j ∈ Ni1 , πmax
reaches the neighborhoods {Nj}, and so on. The process

is repeated no more than lmax times. Let us call t
ilmax
klmax

the time at which the last node in the network updates
πilmax = πmax. At this time, the consensus is reached.

The existence of the sequence of broadcasting times is
guaranteed by the triggering mechanism for non zero
initial conditions ‖xi(0)‖, since the equilibrium is reached
asymptotically. Therefore, there always exists a sufficiently
large t such that ‖ei(t)‖ ≥ c1e−αi(t)t.
Corollary 8. The trigger functions (19) end to

fi(t, ei(t)) = ‖ei(t)‖ − c1e−αmt, ∀i = 1, . . . , N,

in finite time, and the time at which this occurs is
when the max-consensus is reached for all the esti-
mated parameters. Moreover, αm = γ(|λmax(AK)| −
κ(V )

√
‖µ(∆)‖1‖µ(∆)‖∞) is the minimum value of all the

sequences of values αi(t), ∀i, ∀t.

Proof. The first part follows straightforward from Propo-
sition 7. For the second part, note that λmax(AK,i) <
0,∀i = 1, . . . , N . Thus, running a max-consensus to es-

timate λmax(AK) causes that |λ̂imax(AK)| is a sequence
of decreasing values. Moreover, the max-consensus to esti-
mate κ(V ) and ‖∆‖ yields sequences of increasing values
for the estimates κ̂i(V ) and p̂i(∆2). Thus, {αi(t)} are a
piecewise constant decreasing functions.

Theorem 9. Consider the interconnected linear system (5)
with the adaptive event-triggered control described in
Algorithm 3. Then, for all initial conditions x(0) such
that ‖xi(0)‖ > 0, ∀i = 1, . . . , N , the closed-loop system
does not exhibit Zeno behavior, and moreover, it converges
asymptotically to the equilibrium.

Proof. From (12), it follows that x(t) = e(AK+∆)tx(0) +∫ t
0
(e(AK+∆)(t−s)BKe(s))ds. Thus, the state x(t) can

be upper bounded by ‖x(t)‖ ≤ ‖e(AK+∆)t‖‖x(0)‖ +∫ t
0
‖(e(AK+∆)(t−s)‖‖BK‖‖e(s)‖)ds. Because AK is diago-

nalizable, (3) can be applied to bound the exponential of
AK such that ‖eAKt‖ ≤ κ(V )eλmax(AK)t. Therefore, (4)
can be used to compute an upper bound for ‖e(AK+∆)t‖,
giving as a result ‖e(AK+∆)t‖ ≤ κ(V )e(λmax(AK)+κ(V )‖∆‖)t.
From (18) and noting that λmax(AK) < 0, it follows that
‖e(AK+∆)t‖ ≤ κ(V )e−λM t, where λM = |λmax(AK)| −
κ(V )

√
‖µ(∆)‖1‖µ(∆)‖∞.

Note that from the definition of the error e(t) and Corol-

lary 8: ‖e(s)‖ ≤
√
Nmax

i
‖ei(s)‖ ≤

√
N max
i=1,...,N

c1e
−αi(s)s ≤

√
Nc1e

−αms. Hence, it yields ‖x(t)‖ ≤ κ(V )
(
e−λM t‖x(0)‖

+
∫ t

0
(e−λM (t−s)‖BK‖

√
Nc1e

−αms)ds
)

. Solving the inte-

gral and retriving the expression for αm, it follows that

‖x(t)‖ ≤κ(V )
(
e−λM t‖x(0)‖

+ ‖BK‖
√
Nc1

λM (1−γ)

(
e−γλM t − e−λM t

))
, (21)
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that converges asymptotically to the origin if 0 < γ < 1.

Before proving the exclusion the Zeno behavior, let us first
show that there exists a constant c2 such that c2e

−αmt ≤
c1e
−αi(t)t ≤ c1e

−αmt, ∀i = 1, . . . , N and t ≥ 0. Denote
αmax = maxi=1,...,N{αi(0)}. According to Corollary 8,
{αi(t)} are piecewise constant decreasing functions, so
they take the maximum value at t = 0, and therefore
c1e
−αmaxt ≤ c1e

−αi(t)t. Moreover, all the nodes reach the
value αm in finite time. Let us denote this instance of
time as tαm . Thus, there exists a constant c2, 0 < c2 ≤ c1,
such that c2e

−αmtαm = c1e
−αmaxtαm . For instance, c2 =

c1e
−(αmax−αm)tαm ≤ c1. Then, it holds that

c2e
−αmt ≤ c1e−αi(t)t ≤ c1e−αmt,∀i,∀t. (22)

Finally, we show that the inter-event times are lower-
bounded by a positive constant T . In the inter-event times,
it holds that ėi(t) = −ẋi(t), since the broadcasted state
xb,i remains constant. Thus, ‖ėi(t)‖ ≤ ‖ẋi(t)‖ ≤ ‖ẋ(t)‖ ≤
‖AK + ∆‖‖x(t)‖+ ‖BK‖‖e(t)‖ in the inter-event times.

Assume that the subsystem i triggers at t? ≥ 0. It holds

‖ei(t)‖ ≤
∫ t
t?

(‖AK + ∆‖‖x(s)‖ + ‖BK‖‖e(s)‖)ds. From
(21) and using that ‖x(t)‖ ≤ ‖x(t?)‖ for t ≥ t?, it yields

‖x(t)‖ ≤ κ(V )
(
e−λM t

?‖x(0)‖ + ‖BK‖
√
Nc1

λM (1−γ) e−γλM t
?
)
. If

the following constants are defined: k1 = κ(V )‖AK +

∆‖‖x(0)‖, k2 = ‖BK‖
√
Nc1

(
1 + κ(V )‖AK+∆‖

λM (1−γ)

)
, it follows

that |ei(t)‖ ≤
∫ t
t?

(k1e
−λM t?+k2e

−γλM t?)ds ≤ (k1e
−λM t?+

k2e
−γλM t?)(t− t?). The next event is not triggered before

‖ei(t)‖ = c2e
−αmt = c2e

−γλM t, according to (22). If
we denote T = t − t?, the minimum inter-event time
is the solution of (k1e

−λM t? + k2e
−γλM t?)T = c2e

−γλM t,
or equivalently (k1c2 e

−(1−γ)λM t
?

+ k2
c2

)T = e−γλMT , whose
right hand side is always positive. This also holds for the
left hand side, which is upper bounded by k1+k2

c2
and lower

bounded by k2/c2 for 0 < γ < 1. This yields to a positive
value of T for all t? ≥ 0.

5. SIMULATION RESULTS

5.1 System description

The system considered is a collection of N × N inverted
pendulums of mass m and length l coupled by springs with
rate k. The topology of the system is depicted in Fig. 1.
Each subsystem can be described as

N 

N 

Y 

X 

(θx,θy) 

Fig. 1. Scheme of the coupled pendulums mesh.

ẋi =

(
Ai 0
0 Ai

)
xi +

(
Bi 0
0 Bi

)
ui +

∑
j∈Ni

(
Hij 0
0 Hij

)
xj ,

where Ai =

(
0 1;

g

l
− |Ni|k

ml2
0

)
, Bi =

(
0;

1

ml2

)
,

Hij =

(
0 0;

k

ml2
0

)
, xi = (xi1 xi2 xi3 xi4)

T
and ui =

(ui1 ui2)
T

.

The feedback gains Ki are designed to place the poles
at {−2,−2,−1,−1}. The decoupling gains are designed
to decouple the system. Let us assume that ‖∆ij‖ ≤
δij , where δij are generated randomly in the interval
(0, 0.35|λmax(AK)|/κ(V )) to illustrate the algorithm.

5.2 Distributed parameter estimation

Let us consider a 8 × 8 pendulum mesh with initial
conditions generated in the interval (−π/2, π/2). With
the proposed design, the closed-loop matrices {AK,i} are
identical for all the subsystems, AK,i = (0 1; −2 −3), so
that λmax(AK,i) = −1 and κ(Vi) = 6.1623. Hence, in this
case it follows that λmax(AK) = λmax(AK,i) and κ(V ) =
κ(Vi). The coupling terms ∆ij are generated randomly
according to the constraint set before. For the 8× 8 mesh
and a particular simulation, it results in ‖∆‖ = 0.1136.

Since λmax(AK,i) and κ(Vi) are identical for all the nodes,
the estimate that affects the proposed adaptive event-
triggering mechanism is the upper bound on ∆. The
sequence of values of {αi(t)} are depicted in Fig. 2. Note
that the final value is the same for all nodes, being αm =
0.17 and tαm = 14.4 s.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

t (s)

α
i
(t
)

Fig. 2. Sequence of values of αi(t).

5.3 Performance of the adaptive event-triggered control

Fig. 3 shows the output of the system in a 3D space for
the mesh of 8× 8 pendulums. The coordinates (θx, θy) in
the XY plane over time are plotted. The parameter c1 of
the trigger functions (19) is 0.8 and the evolution of αi(t)
has been illustrated in the previous section. Note that the
system converges asymptotically to the origin.

5.4 Comparative and discussion

Fig. 4 compares the performance for the node (1,1) in three
situations:

• Adaptive event-triggering (19) with the same param-
eters than the previous simulations (solid blue line).
• Event-triggering with constant parameters (8) (dashed

red line) with α = 0.3 < |λmax(AK)| − κ(V )‖∆‖.
• Time-driven control (dotted green line) with sampling

period Ts = 0.1 s.
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Fig. 3. xi1(θx) and xi3(θy) for a 8 × 8 mesh of inverted
pendulums.
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Fig. 4. Adaptive event-triggering, static event-triggering,
periodic.

Note that the behavior of the system is very similar in
all three situations (see Fig. 4 above) but the need of
communication is dramatically reduced with event-based
control (see Fig. 4 below). For instance, the number of
events generated for the first five seconds of the experiment
are 6, 5, and 5 s/Ts = 50, respectively.

Let us compare the time of convergence for the parameters
estimation. For the proposed approach, this time is tαm =
14.4 s, whereas for the periodic version of the algorithm
it would be, at most, Ts · lmax = 0.1 · 14 = 1.4 s, since
the longest path is 14. Hence, periodic and synchronous
transmissions would yield a 10 times faster convergence.
Nevertheless, it can be argued that the parameter estima-
tion algorithm in this scenario is no more than a means of
guaranteeing a safe value of α so that the Zeno behavior
is excluded, and this is achieved as proven in Theorem 9.

6. CONCLUSION

We have presented a distributed method to compute
three parameters for a linear interconnected system: the
maximum of the real parts of the eigenvalues of AK , and
the condition number of the eigenvectors matrix κ(V ), and
an upper bound for the norm of the matrix of coupling
terms ‖∆‖. Neighboring nodes exchange information and
run max-consensus for the estimation process following
event-based policies. The estimated parameters are used
to update the adaptive trigger functions. The convergence
of the estimates in finite time, the asymptotic stability of
the system and the exclusion of the Zeno behavior have
been proved. The results have been illustrated through
simulations. Future work will include the study of the

impact of model uncertainties and the extension to non-
linear systems.
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