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Abstract: In this paper, we consider input-affine invertible MIMO nonlinear systems which
can be transformed into a special normal form by means of the structure algorithm. The normal
form highlights a partial state, a subset of state variables, which plays in this setting a role
similar to that of the outputs and its derivatives in a SISO system. It is shown that, if a system
in this class can be asymptotically stabilized by means of a static feedback from that partial
state, then semiglobal stabilization can be achieved via dynamic feedback driven by the output
of the system. The dynamic feedback in question is based a (non–trivial) extension to MIMO
systems of the standard high–gain observer.

Keywords: MIMO nonlinear systems, structure algorithm, normal forms, minimum-phase
systems, nonlinear observers.

1. INTRODUCTION

A classical problem in nonlinear control theory is the
design of feedback laws to the purpose of asymptotically
stabilizing a given equilibrium point or to asymptotically
track or reject certain signals generated by an independent
system. Specific design methods depend, of course, on the
kind of information available for feedback. Since full state
information is seldom available, design methods based on
the availability of partial state information are important.

A relevant class of systems for which systematic design
methods are available is that of single–input single–output
(SISO) input–affine systems having a well defined relative
degree r, in which asymptotic stability can be achieved
using partial state information, consisting of the output
and its first r − 1 derivatives. Typically, this is the case
when a system possesses an asymptotically stable zero
dynamics (see e.g. Saberi et al. [1990] and Byrnes and
Isidori [1991]). If such partial state is not available, the
output can be used – as shown in the pioneering papers
Esfandiari and Khalil [1992] and Teel and Praly [1994] –
to drive a dynamical system by means of which the partial
state in question can be “roughly” approximated by means
of a high-gain observer (see, in this respect, also Praly
and Jiang [1993], Kaliora et al. [2006], Ahrens and Khalil
[2009] and the expository survey Khalil [2008]). This leads
to the design of a dynamic control law by means of which
asymptotic stability with guaranteed region of attraction
can be achieved.

The problem of asymptotic stabilization multi–input
multi–output (MIMO) nonlinear systems via output feed-
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back, despite of its obvious relevance, has received little
attention in the literature. Of course, there is a class of
nonlinear MIMO systems to which the results indicated
above can be trivially extended, that is the class of systems
having a well-defined vector relative degree {r1, . . . , rm},
possessing a well-defined global normal form (and glob-
ally asymptotically stable zero dynamics), whose so-called
“high-frequency gain matrix” can be rendered “positive”.
But this is indeed a limited class of MIMO systems: even
in the case of linear systems, to have a well-defined vector
relative degree is a quite restrictive property. A much
broader class of MIMO systems is the class of systems that
are invertible (in the sense of Hirschorn [1979] and Singh
[1981]) and in fact, for such systems, it has been shown
in Liberzon [2004] that global asymptotic stability can be
achieved via full state feedback, provided that the system
is “minimum-phase” (in the strong sense of Liberzon et al.
[2002]). But the problem of achieving stability via output
feedback is still largely open.

In this paper we consider – as in Liberzon [2004] – in-
vertible nonlinear MIMO systems, and we additionally
assume that the so–called Structure Algorithm (which,
following Hirschorn [1979] and Singh [1981], is used in
Liberzon [2004] to characterize the property of invertibil-
ity) can be implemented in a simplified manner, by means
of state-independent matrix multipliers (see below). The
class in question can be considered as an “intermediate”
level between the (general) class of invertible systems and
the (quite restricted) class of systems possessing a vector
relative degree. Systems in this class, if certain vector
fields are complete, possess (as shown in Schwartz et al.
[1999] and Liu and Lin [2011]) a globally defined normal
form which can be used as a point of departure for the

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 3676



design of a partial state feedback law yielding, under appro-
priate “minimum-phase” assumptions, global asymptotic
stability or asymptotic stability with guaranteed region
of attraction. The partial state in question, though, does
not simply consists of the collection of outputs and their
derivatives, but rather consists of a set of intermediate
variables that are defined at the various stages of the
structure algorithm (see again Schwartz et al. [1999]). The
purpose of this paper is to show how the components
of such partial state can be “roughly” approximated by
means of a multivariable (and nontrivial) extension of the
high-gain observer of Esfandiari and Khalil [1992], and
this provides the basis for the design of a semi-globally
stabilizing dynamic output feedback law.

This paper is organized as follows. Section 2 presents the
basic assumptions and introduces the normal form and the
required stabilizability property via partial-state feedback
law. In section 3, a special “rough–derivatives” observer of
the partial-state is presented, followed by the discussion of
semi–global stabilization via dynamic output feedback.

2. SETUP AND ASSUMPTIONS

In this paper, we consider square MIMO nonlinear systems
defined by equations of the form

ẋ = f(x) + g(x)u,
y = h(x).

(1)

in which x ∈ Rn, u, y ∈ Rm and the mappings f(x),
g(x) and h(x) are smooth mappings, with f(0) = 0 and
h(0) = 0. Throughout the paper we suppose the following
assumptions are satisfied.

Assumption 1. There exists a state feedback law u =
α(x)+β(x)v, with invertible β(x), such that the resulting
system

ẋ = f(x) + g(x)α(x) + g(x)β(x)v,
y = h(x)

has a linear input-output behavior between input v and
output y.

Assumption 2. The system is strongly invertible, in the
sense of Hirschorn [1979], Singh [1981].

Systems satisfying Assumption 1 have been studied in
Isidori [1995], where necessary and sufficient conditions for
the existence of such α(x) and β(x) are determined. We
stress that in the present paper do not make use of the
feedback law u = α(x)+β(x)v indicated in Assumption 1,
because this law requires access to the full state x and this
is not the case in the present setting, where only output
feedback is used. We make use of this Assumption only to
the purpose of identifying suitable structural properties
of the system. In fact, a relevant implication of this
assumption is that the so-called Structure Algorithm of
Silverman Silverman [1969], Hirschorn Hirschorn [1979]
and Singh Singh [1981] can be implemented in a simplified
manner, because the “row reductions” done at each stage
of the algorithm are achieved by means of x-independent
matrix multipliers.

If Assumptions 1 and 2 hold, it is possible to define – by
means of the Structure Algorithm – a local diffeomorphism
in the state space by means of which the system is

transformed in a system expressed in normal form (see
Schwartz et al. [1999] and Liu and Lin [2011]). If, in
addition, certain vector fields commute (see Schwartz et al.
[1999]), the normal form in question – which is globally
defined – consists of equations of the form

ż = f0(z, (ξ
1
1 , ξ

2
1 , · · · , ξm1 ))

ξ̇11 = ξ12
· · ·

ξ̇1n1−1 = ξ1n1

ξ̇1n1
= a1(x) + b1(x)u

ξ̇21 = ξ22 + δ211(a
1(x) + b1(x)u)

· · ·
ξ̇2n2−1 = ξ2n2

+ δ2n2−1,1(a
1(x) + b1(x)u)

ξ̇2n2
= a2(x) + b2(x)u
· · ·

ξ̇i1 = ξi2 +

i−1∑
j=1

δi1j(a
j(x) + bj(x)u)

· · ·

ξ̇ini−1 = ξini
+

i−1∑
j=1

δini−1,j(a
j(x) + bj(x)u)

ξ̇ini
= ai(x) + bi(x)u
· · ·

(2)

with
yi = ξi1

for i = 1, · · · ,m.

In what follows, we assume that the conditions – presented
in Schwartz et al. [1999] – for the existence of a globally
defined normal form of this kind are fulfilled, and we state
it explicitly as follows.

Assumption 3. There exists globally defined diffeomor-
phism transforming system (1) into a system of the form
(2).

The normal form (2) is an obvious point of departure
for the design of globally (or semi-globally) stabilizing
feedback laws. If, in particular, the upper subsystem
of (2), viewed as a system with input (ξ11 , ξ

2
1 , · · · , ξm1 )

and state z, is input-to-state stable, one may guess that
global asymptotic stability could be achieved (maybe
under appropriate additional assumptions) by means of
a feedback law depending only on the partial-state

ξ = col(ξ11 , ξ
1
2 , . . . , ξ

1
n1
, ξ21 , ξ

2
2 , . . . , ξ

2
n2
, . . . , ξm1 , ξm2 , . . . , ξmnm

) .

In this paper we will not discuss the existence of such
partial-state feedback stabilizing law (which will be stud-
ied in a paper in preparation Wang et al. [2013]) but rather
we assume that such law exists and we concentrate on
showing a “separation principle”, that is we show how
it is possible to design a suitable dynamic feedback –
driven by the actual output y of the system – by means of
which asymptotic stabilization with guaranteed region of
attraction can be obtained.

Assumption 4. There exists a smooth function

u = α∗(ξ) (3)

such that the equilibrium (z, ξ) = (0, 0) of the closed-
loop system (2) – (3) is globally asymptotically and locally
exponentially stable.
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Examples of systems for which such a feedback law exists
can be found in the literature. A trivial example is the
case of systems which have well-defined vector relative
degree. A substantially more relevant example is the class
of system studied in Liberzon [2004]. In fact, as a corollary
of Theorem 2 of Liberzon [2004], it is readily seen that a
system satisfying Assumptions 1 – 3 , if dim(z) = 0, can be
globally asymptotically stabilized by means of a feedback
of the form (3).

In what follows, we assume that a feedback with the prop-
erties indicated in Assumption 4 exists and we proceed
with the design of a dynamic feedback, driven by the actual
output y, that provides suitable asymptotic “proxies” of
the ξij ’s. The dynamic feedback in question is based on
a (non-trivial) extension, to the case of MIMO systems
considered in this paper, of the results presented in the
seminal works of Esfandiari and Khalil [1992] and Teel
and Praly [1994].

3. SEMIGLOBAL STABILIZATION VIA DYNAMIC
OUTPUT FEEDBACK

3.1 A recursive observer

In this section we show how the various ξij ’s, which are
needed to implement the feedback law u = α∗(ξ), can be
estimated by means of a multi-output “dirty-derivatives”
observer, driven by the output y of the system. To this
end, it is convenient to proceed first with defining some
“tuning variables”.

Set n2 = n1 + n2, and define recursively

θn1+1(x) = ξ21(x)− δ211ξ
1
n1
(x)

θn1+2(x) = ξ22(x)− δ221ξ
1
n1
(x)

· · ·
θn2−1(x) = ξ2n2−1(x)− δ2n2−1,1ξ

1
n1
(x)

(4)

It is easy to check that

Lgθn1+1(x) = Lgθn1+2(x) = · · · = Lgθn2−1(x) = 0 .

Now set n3 = n2 + n3, and define recursively

θn2+1(x) = ξ31(x)− δ311ξ
1
n1

− δ312ξ
2
n2

θn2+2(x) = ξ32(x)− δ321ξ
1
n1

− δ322ξ
2
n2

· · ·
θn3−1(x) = ξ3n3−1(x)− δ3n3−1,1ξ

1
n1

− δ3n3−1,2ξ
2
n2

(5)

It is easy to check that

Lgθn2+1(x) = Lgθn2+2(x) = · · · = Lgθn3−1(x) = 0 .

This procedure can clearly be continued in a similar way.
At the end, a set of equations consisting of (4), (5), . . .
is obtained, which plays a critical role in the following
observer design. Note that, θn2 , θn3 , · · · are not defined, as
they will not be needed in the sequel.

We proceed now with the design of a “high-gain” observer.
The first n1 variables ξ11 , . . . , ξ

1
n1

can be estimated by a
standard system of the form

˙̂
ξ
1

1 = ξ̂12 + κ0α1(y1 − ξ̂11)
˙̂
ξ
1

2 = ξ̂13 + κ2
0α2(y1 − ξ̂11)

· · ·
˙̂
ξ
1

n1−1 = ξ̂1n1
+ κn1−1

0 αn1−1(y1 − ξ̂11)
˙̂
ξ
1

n1
= κn1

0 αn1(y1 − ξ̂11)

(6)

in which the coefficients κ0 and α1, α2, . . . , αn1 are design
parameters. With the associated estimation errors defined
as

e1 = κn1−1
0 (y1 − ξ̂11)

e2 = κn1−2
0 (ξ12 − ξ̂12)

· · ·
en1 = (ξ1n1

− ξ̂1n1
)

(7)

it is readily obtained that ė1
ė2
· · ·
ėn1

 = κ0

 −α1 1 0 · · · 0
−α2 0 1 · · · 0
· · · · · · ·

−αn1 0 0 · · · 0


 e1

e2
· · ·
en1

+

 0
0
· · ·
1

Z0

in which
Z0(x, u) = a1(x) + b1(x)u.

Setting e0 = col(e1, . . . , en1), the equation in question can
be re-written in compact form as

ė0 = κ0F0e0 +G0Z0(x, u)

in which we assume that F0 is a Hurwitz matrix.

From this point on, it is convenient to continue by estimat-
ing the remaining ξji ’s one-by-one. The resulting design
might be redundant, but the procedure can be described
in a easy recursive fashion. To this end note that, if θn1+1

were available, ξ22 could be estimated by means of a system
of the form

σ̇n1+1 = ξ̂22 + κ1c1(θn1+1 − σn1+1)
˙̂
ξ
2

2 = κ2
1c2(θn1+1 − σn1+1) .

(8)

In fact, defining estimation errors as

εn1+1 = κ1(θn1+1 − σn1+1)

en1+1 = (ξ22 − ξ̂22) ,
(9)

and bearing in mind that

θ̇n1+1 = Lfθn1+1(x) + Lgθn1+1(x)u = Lfθn1+1(x) = ξ22 ,

one would obtain(
ε̇n1+1

ėn1+1

)
= κ1

(
−c1 1
−c2 0

)(
εn1+1

en1+1

)
+

(
0
1

)
Z1(x, u)

in which

Z1(x, u) = ξ23(x) + δ221(a
1(x) + b1(x)u) .

Since θn1+1 is not available, we drive instead system (8)
by

θ̂n1+1 = y2 − δ211ξ̂
1
n1

,

in which ξ̂1n1
is the estimate of ξ1n1

, obtained at the previous

stage. In summary, the estimation of ξ22 is provided by the
system

σ̇n1+1 = ξ̂22 + κ1c1(y2 − δ211ξ̂
1
n1

− σn1+1)
˙̂
ξ
2

2 = κ2
1c2(y2 − δ211ξ̂

1
n1

− σn1+1) .
(10)
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with which we associate estimation errors defined as in (9)
and the fact

θ̂n1+1 = θn1+1 + δ211en1 .

. This yields(
ε̇n1+1

ėn1+1

)
= κ1

(
−c1 1
−c2 0

)(
εn1+1

en1+1

)
+

(
0
1

)
Z1(x, u)

−κ2
1

(
c1
c2

)
δ211en1 .

Setting e1 = col(εn1+1, en1+1), the equation in question
can be re-written in compact form as

ė1 = κ1F1e1 + κ2
1F1,0e0 +GZ1(x, u)

where by construction, we assume that F1 is a Hurwitz
matrix.

To estimate ξ23 we proceed in a similar way. We define

θ̂n1+2 = ξ̂22 − δ221ξ̂
1
n1

,

we observe that

θ̂n1+2 = θn1+2 + δ221en1 − en1+1 ,

and consider a system

σ̇n1+2 = ξ̂23 + κ2c1(ξ̂
2
2 − δ221ξ̂

1
n1

− σn1+2)
˙̂
ξ
2

3 = κ2
2c2(ξ̂

2
2 − δ221ξ̂

1
n1

− σn1+2)
(11)

with which we associate estimation errors defined by

εn1+2 = κ2(θn1+2 − σn1+2)

en1+2 = (ξ23 − ξ̂23) .
(12)

Setting e2 = col(εn1+2, en1+2), we obtain an equation of
the form

ė2 = κ2F2e2 + κ2
2F2,0e0 + κ2

2F2,1e1 +GZ2(x, u)

Proceeding in this way, we can estimate all ξ2i ’s. In
particular, to estimate ξ2n2

, we use

σ̇n2−1 = ξ̂2n2
+ κn2−1c1(ξ̂

2
n2−1 − δ2n2−1,1ξ̂

1
n1

− σn2−1)

˙̂
ξ
2

n2
= κ2

n2−1c2(ξ̂
2
n2−1 − δ2n2−1,1ξ̂

1
n1

− σn2−1) .
(13)

With the latter we associate estimation errors defined by

εn2−1 = κn2−1(θn2−1 − σn2−1)

en2−1 = (ξ2n2
− ξ̂2n2

) .
(14)

for which, setting en2−1 = col(εn2−1, en2−1), we obtain

ėn2−1 = κn2−1Fn2−1en2−1 + κ2
n2−1Fn2−1,0e0 + · · ·+

+κ2
n2−1Fn2−1,n2−2en2−2 +GZn2−1(x, u) .

With the same technique we can estimate all ξji ’s in (2),
until we arrive at the design of a dynamical system that,
driven by the measured output y, provides estimates of all
the ξji ’s. The estimation errors, defined as above, satisfy a
set of equations of the form

ė0 = κ0F0e0 +G0Z0(x, u)
· · ·

ėi = κiFiei + κ2
iFi,0e0 + · · ·+ κ2

iFi,i−1ei−1 +GZi(x, u)

with i = 1, 2, . . . ,nm−n1−m+1. Setting, for convenience,
ν = nm − n1 − m + 1 these equations can be written
altogether as

ė = F{κ0,κ1,...,κν}e+BZ(x, u) (15)

in which

F{κ0,κ1,...,κν} =


κ0F0 0 0 · · · 0
κ2
1F1,0 κ1F1 0 · · · 0

κ2
2F2,0 κ2

2F2,1 κ2F2 · · · 0
· · · · · ·

κ2
νFν,0 κ2

νFν,1 κ2
νFν,2 · · · κνFν


To the purpose of ensuring convergence when the estimates
are used for feedback stabilization, it is of paramount
importance to be able to assign an arbitrary high rate of
decay to the solutions of the homogeneous equation

ė = F{κ0,κ1,...,κν}e .

To this end, the “gain parameters” κ0, κ1, . . . , κν must be
appropriately scaled. This is actually possible in view of
the following result.

Lemma 1. Consider a matrix of the form

A(ρ1, ρ2) =

(
A1(ρ1) 0
ρ22B ρ2A2

)
in which the elements of A1(ρ1) are polynomial functions
of ρ1. Assume that:

(i) there exist a positive definite matrix P1 (independent
of ρ1) and a number ρ∗1 such that, if ρ1 > ρ∗1,

P1A1(ρ1) +AT
1 (ρ1)P1 ≤ −ρ1I

(ii) the matrix A2 is Hurwitz.

Then, there is a positive definite matrix P (independent
of ρ2) and a number ρ∗2 such that, if ρ2 > ρ∗2,

PA(ρ32, ρ2) +AT(ρ32, ρ2)P ≤ −ρ2I .

Proof. Pick a positive definite matrix P2 satisfying P2A2+
AT

2 P2 = −2I, set b = |P2B| and consider the positive
definite matrix

P =

(
2b2P1 0
0 P2

)
.

Suppose ρ1 > ρ∗1 and compute the derivative of V (x) =
xTPx along the solutions of ẋ = A(ρ1, ρ2)x, to obtain

V̇ ≤ −2b2ρ1|x1|2 − 2ρ2|x2|2 + 2bρ22|x1||x2| .

We seek a choice of ρ1 that makes

V̇ ≤ −ρ2(|x1|2 + |x2|2) ,

which is the case if

(2b2ρ1 − ρ2)|x1|2 + ρ2|x2|2 − 2bρ22|x1||x2| ≥ 0 .

To this end, pick ρ1 = ρ32 and observe that the desired
inequality holds if(

2b2ρ22 − 1 −bρ2
−bρ2 1

)
> 0 ,
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which clearly holds if bρ2 > 1. Picking

ρ∗2 = max{1/b, (ρ∗1)1/3}
completes the proof.

Using this Lemma iteratively, it is easy to arrive at the
following conclusion.

Proposition 1. There are positive integers p0, p1, . . . , pν∗−1,
a positive definite matrix P and a number κ∗ > 0 such
that, if

κ0 = κp0 , κ1 = κp1 , . . . , κν−1 = κpν−1 , κν = κ

the inequality

PF{κ0,κ1,...,κν} + FT
{κ0,κ1,...,κν}P < −κI

holds for all κ > κ∗.

3.2 Convergence analysis

The “dirty-derivatives” observer designed in the previous
section is such that the “estimation” error e satisfies (15)
and Proposition 1 holds. Thus, at this point, it should be
clear that a “separation principle” for asymptotic stability
with guaranteed region of attraction holds. For the sake of
completeness and for the readers’ convenience, we sketch
in what follows the basic arguments needed to arrive at
the desired result.

Let α∗(ξ) be a partial-state feedback law with the proper-
ties indicated in Assumption 4. Since ξ is not directly and
fully available, it is replaced by the corresponding estimate

ξ̂ = col (y1, ξ̂
1
2 , · · · , ξ̂1n1

, y2, ξ̂
2
2 , · · · , ξ̂2n2

, · · · , ym, ξ̂m2 , · · · , ξ̂mnm
)

provided by the observer described in the previous section,
which is a linear system, modeled by the equations (6),
(10), (11), . . . , (13), · · ·. Altogether, these can be written
in the form

φ̇ = Aκφ+Bκy

ξ̂ = Cφ+Dy
(16)

with state

φ = col(ξ̂11 , ξ̂
1
2 , . . . , ξ̂

1
n1
, σ1, ξ̂

2
2 , σ2, ξ̂

2
3 . . . , σν , ξ̂

m
nm

) .

According to Proposition 1 the gain parameters κ0, . . . , κν

in (6), (10), (11), . . . , (13) have to be powers of a single
gain parameter κ and this is reflected in the notation used
in (16). Along with this, we consider the equation that

relates ξ̂, ξ and estimation error e,

ξ̂ = ξ −Dκe

in which Dκ is a matrix whose entries are non-positive
powers of the parameter κ (see (7), (9), (12), · · · , (14), · · ·).
As originally proposed in Esfandiari and Khalil [1992] in
a similar setting, the actual control to be implemented on
the system is

u = σL(α
∗(ξ̂)) (17)

in which σL(r) is a saturation function, e.g. any function
that coincides with r when |r| ≤ L, is strictly increasing
and satisfies σL(r) ≤ 2L for all r ∈ R.

In this way, a closed-loop system is obtained modeled by
the equations

ẋ = f∗(x) + ∆1(x, e)
ė = Fκe+∆2(x, e)

(18)

after having set (and invoking, once again, the dependence
of the various κ0, κ1, . . . , κν∗ on the single parameter κ)

f∗(x) = f(x) + g(x)α∗(ξ)
∆1(x, e) = g(x)[σL(α

∗(ξ −Dκe))− α∗(ξ)]
Fκ = F{κ0,κ1,...,κν}

∆2(x, e) = BZ(x, σL(α
∗(ξ −Dκe))) .

By assumption system (18) has the following properties:

• the equilibrium x = 0 of ẋ = f∗(x) is globally asymp-
totically stable and locally exponentially stable.

• there exist a positive definite matrix P and a number
κ∗ such that, if κ > κ∗,

PFκ + FT
κP < −κI .

Using these properties, it is possible to conclude – by
means of known methods – the desired semiglobal stabi-
lization result. Details are essentially similar to those used
in the context of the problem of semi-global stabilization
of a minimum-phase SISO system (see for instance Isidori
[1990], Chapter 12) and are not repeated here for the sake
of brevity.

Theorem 1. Consider system (1), suppose Assumptions
1 through 4 hold and let the control be provided by
(16)–(17). Then, for every choice of a compact set K,
there is a choice of the design parameters L, κ such
that the equilibrium (x, φ) = (0, 0) of the closed-loop is
asymptotically stable, with a domain of attraction that
contains the set K.

4. CONCLUSION

In this paper, we have considered the class of input–affine
MIMO nonlinear systems which are invertible, input–
output linearizable and for which a well–defined normal
form is obtained by means of the so–called Structure
Algorithm. This class includes, as a trivial special case, the
class of MIMO systems possessing a well–defined vector
relative degree. Then, a “rough–derivatives” observer that
extends the principles of Esfandiari and Khalil [1992] and
Teel and Praly [1994] in a nontrivial way is designed, so
as to arrive at dynamic output feedback that guarantees
asymptotic stability with guaranteed region of attraction.
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