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Abstract: This paper proposes an offset-free model predictive control (MPC) method for
output voltage regulation of the three phase inverter for an uninterruptible power supply (UPS)
application. A use of a disturbance observer (DOB) is made to estimate the unknown disturbance
caused by the load current and a plant-model mismatch. The proposed MPC optimizes the one
step ahead cost function. The online computation considering the input constraint of the inverter
system is very simple. It is shown that the closed-loop system is globally asymptotically stable in
the presence of input constraints and that the integral action in the DOB eliminates the steady
state errors caused by a plant-model mismatch. The effectiveness of the closed-loop system is
experimentally shown under a use of resistive load.

1. INTRODUCTION

It is important for three phase uninturruptible power
supply (UPS) applications to regulate the output volt-
age while keeping other state variables bounded in the
presence of input constraints. Conventionally, the output
voltage of the three phase UPS system is controlled un-
der the cascade control strategy which is comprised of
the current (inner) and voltage (outer) loops Loh et al.
[2003], Kassakian et al. [1991], Mohan et al. [1995], Abdel-
Rahim and Quaicoe [1996], Kawabata et al. [1990], Ito and
Kawauchi [1995], Cho et al. [2012], Lee et al. [2001a,b],
Willmann et al. [2007], Kim et al. [2014]. Since the cur-
rent controller for the inner-loop plays the pivotal role
for the closed-loop performance, various control strate-
gies such as proportional-integral (PI) Loh et al. [2003],
Kassakian et al. [1991], Mohan et al. [1995], Abdel-Rahim
and Quaicoe [1996], deadbeat Kawabata et al. [1990], Ito
and Kawauchi [1995], Cho et al. [2012], H∞ Lee et al.
[2001a], Willmann et al. [2007], and µ-synthesis Lee et al.
[2001b] were applied. On the other hand, the output volt-
age controller in the outer-loop was designed through the
classical PI scheme. The PI controllers Loh et al. [2003],
Kassakian et al. [1991], Mohan et al. [1995], Abdel-Rahim
and Quaicoe [1996] and deadbeat controllers Kawabata
et al. [1990], Ito and Kawauchi [1995], Cho et al. [2012] did
not ensure the closed-loop stability in the presence of input
constraints. Although H∞ Lee et al. [2001a], Willmann
et al. [2007] and µ-synthesis Lee et al. [2001b] methods did
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consider the input constraint, the stability analysis result
is just local.

Recently, in the applications of the power electronics, there
have been several model predictive control (MPC) schemes
for regulation of target variables in the presence of input
constraint via optimizing a cost function such as the finite
control set (FCS)-MPC Vargas et al. [2007], Cortes et al.
[2010, 2009] and the explicit MPC Mariethoz and Morari
[2009]. In the case of FCS-MPC Vargas et al. [2007], Cortes
et al. [2010, 2009], they does not require any use of the
pulse-width modulation (PWM) techniques. This control
structure is very simple to be implemented; nevertheless,
this type MPCs optimize a cost function of the tracking
error at each time through the exhaustive search method.
However, there was no convergence analysis. The explicit
MPC scheme in Mariethoz and Morari [2009] seems to
make up for these weak points in the FCS-MPC Vargas
et al. [2007], Cortes et al. [2010, 2009] using the multi-
parametric programming as in Bemporad et al. [2002],
Borrelli [2003]. They, however, require lots of off-line opti-
mization such as partitioning the state space, and should
perform a lot of online membership tests to determine
the location of the state variables. The load of online
membership tests might be increased significantly as the
state space is finely partitioned.

This paper proposes a new MPC strategy by compen-
sating for the weak points of the previous contributions.
Because the proposed control scheme is designed following
a multi-variable design approach in discrete-time state
space, the extra outer-loop controller is not required unlike
classical cascade approaches using the PI controllers Loh
et al. [2003], Kassakian et al. [1991], Mohan et al. [1995],
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Abdel-Rahim and Quaicoe [1996], the deadbeat controllers
Kawabata et al. [1990], Ito and Kawauchi [1995], Cho
et al. [2012], and the optimal state-feedback controllers
Lee et al. [2001a,b], Willmann et al. [2007]. Specifically, a
Luenberger type disturbance observer (DOB) is designed
to estimate the disturbance comprising the unknown load
current and a plant-model mismatch, and an MPC is
designed in such a way that a one step head cost func-
tion of the error state is minimized without any use of
numerical methods. Thereafter, it is shown that the closed-
loop system is global asymptotic stable in the presence of
inherent input constraints and that the integral action in
the DOB gets rid of an offset error caused by a plant-model
mismatch. The experimental results show that the closed-
loop performance is satisfactory under use of a resistive
load. This paper is organized as follows: Section 2 intro-
duces the mathematical model of the three-phase inverter
with a LC filter in the rotational frame. Section 3 designs
a DOB in order to estimate the disturbance caused by a
plant-model mismatch. Section 4 devises an MPC scheme
and analyzes the closed-loop stability. Section 5 shows the
effectiveness of the proposed MPC scheme by performing
the experiments. Section 6 concludes this paper.

2. SYSTEM DESCRIPTION AND MATHEMATICAL
MODEL IN D-Q FRAME

This paper considers a three-phase UPS system compris-
ing a three-phase inverter and a load depicted in Fig.
1 Willmann et al. [2007], Lim and Lee [2012]. In this
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Fig. 1. The UPS system topology

system, the DC-link voltage Vdc is regarded as an ideal
voltage source since it normally has low impedance. Then,
applying Kirchoff’s law to this system and the standard
d-q transformation, we have following state equation for
the UPS system depicted in Figure 1:

dx(t)

dt
= Acx(t) +Bcu(t) +Bdcio(t), (1)

x(t) :=

[
if (t)
vc(t)

]
, Ac :=

[
Ac,11 Ac,12

Ac,21 Ac,22

]
, Bc :=

[
1

L
I2×2

02×2

]
,

Ac,11 :=

[
−α ω
−ω −α

]
, Ac,12 := − 1

L
I2×2, Ac,21 :=

1

C
I2×2,

Ac,22 :=

[
0 ω
−ω 0

]
, Bdc :=

[
02×2

− 1

C
I2×2

]
, α :=

R

L
,

I2×2 and 02×2 denote 2 × 2 dimensional identity and
zero matrices, respectively, and ω denotes the frequency

of AC output voltage. Note that the control input u(t)
can be viewed as a continuous signal, i.e., u(t) ∈ ℜ2, ∀t,
since the switches Sx of the inverter are controlled by a
PWMmethod with a high sampling frequency Cortes et al.
[2009]. Note that the matrix Ac is stable for any R > 0,
L > 0, and C > 0. i.e., the real parts of the all eigenvalues
of Ac are negative. The input voltages vd(t) and vq(t) in
the d-q frame should be constrained in the hexagon Uhex

defined by

Uhex :=

{
u ∈ ℜ2

∣∣∣∣ |32u1 +

√
3

2
u2| ≤ Vdc,

√
3|u2| ≤ Vdc,

| − 3

2
u1 +

√
3

2
u2| ≤ Vdc

}
. (2)

In order to simply the design procedure of the MPC, the
following input constraint set is taken into account instead
of Uhex:

Uc :=

{
u ∈ ℜ2

∣∣∣∣ ∥u∥ ≤ Vdc√
3

}
. (3)

Since Uc is the largest circle contained in the set Uhex, it is
qualified as a satisfactory approximation. These two sets
are depicted in Fig. 2. The continuous-time state equation

3
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Fig. 2. Input constraint set Uhex and Uc

(1) can be transformed to the following discrete-time state
equation with the sampling time h > 0:

x(k + 1) = Ax(k) +Bu(k) +Bdio(k), (4)

where

x(k) :=

[
if (k)
vc(k)

]
, if (k) :=

[
if,d(k)
if,q(k)

]
,

vc(k) :=

[
vc,d(k)
vc,q(k)

]
, u(k) :=

[
vd(k)
vq(k)

]
,

A := eAch =

[
A11 A12

A21 A22

]
, B :=

h∫
0

eAcτdτBc =

[
B1

B2

]
,

Bd :=

h∫
0

eAcτdτBd,c =

[
Bd,1

Bd,2

]
, io(k) :=

[
io,d(k)
io,q(k)

]
.

Note that matrix A of the discrete time system (4) is also
stable since matrix Ac of the continuous time system (1)
is stable for any R > 0, L > 0, and C > 0. Moreover,
because the load current io(k) is sufficiently slower than
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the state x(k), it is reasonable to assume that the load
current io(k) can be treated as a constant. i.e.,

io(k + 1) ≈ io(k), ∀k. (5)

For details of the validity of the assumption (5), see Cortes
et al. [2009]. An MPC is devised based on the discrete-time
model (4) through the following two sections.

3. DOB DESIGN

This section designs a DOB to estimate the unknown load
current io(k) which is assumed to be an unknown constant
as in Cortes et al. [2009]. Considering the discrete time
system (4), construct the DOB as follows:

x̂(k + 1) =Ax̂(k) +Bd îo(k) +Bu(k)

+L1(x(k)− x̂(k)), (6)

îo(k + 1) = îo(k) + L2(x(k)− x̂(k)), (7)

where L1 and L2 denote the DOB gain. Defining z(k) :=

[ x(k) io(k) ]
T
, ẑ(k) :=

[
x̂(k) îo(k)

]T
, and ez(k) := z(k)−

ẑ(k), we have the following error dynamics by subtracting
(6) and (7) from (4) and (5), respectively,

ez(k + 1) = Aobsez(k), (8)

where

Aobs := Aa − LobsCa, Aa :=

[
A Bd

02×4 I2×2

]
,

Ca := [ I4×4 04×2 ] , Lobs :=

[
L1

L2

]
.

Note that it can be shown that the pair (Aa, Ca) is
observable provided that matrix Bd has full column rank.
It means that there exists Lobs such that (Aa − LobsCa)
is stable. i.e., the all eigenvalues of matrix Aobs = Aa −
LobsCa are located within the unit circle.

4. OFFSET-FREE MPC DESIGN

In this section, an MPC scheme will be designed so that

lim
k→∞

vc(k) = v∗
c(r), (9)

while satisfying the input constraint. Section 4-1 derives
a steady state condition for the the closed-loop system.
In Section 4-2, an MPC solution is analytically found by
solving a constrained optimization problem. Section 4-3
shows that the closed-loop system is globally asymptoti-
cally stable in the presence of input constraints. Section
4-4 proves that the integral action of the DOB eliminates
the steady state error caused by a plant-model mismatch.

4.1 A steady state condition

Consider the steady state equation of the system (4) given
by

x0 = Ax0 +Bu0 +Bdio, (10)

where x0 :=
[
i0f v0

c

]T
and u0 denote the steady state

values of the state x(k) and the control u(k), respectively,

and i0f and v0
c present the steady state value of if (k)

and vc(k), respectively. In order to achieve the control
objective (9), the constraint v0

c = v∗
c(r) must be imposed

to the equation (10). Then, rearranging the equation
(10), it is easy to verify that the steady state values of
the inductor current and the control input are uniquely
determined as[

i0f (r, io)
u0(r, io)

]
=

[
Z1,1

Z1,2

]
v∗
c(r) +

[
Z2,1

Z2,2

]
io, (11)

where[
Z1,1

Z1,2

]
:=

[
I2×2 −A11 −B1

−A21 −B2

]−1 [
A12

A22 − I2×2

]
,[

Z2,1

Z2,2

]
:=

[
I2×2 −A11 −B1

−A21 −B2

]−1

Bd,

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
.

Moreover, it is obvious that the corresponding steady state
control u0(r, io) must satisfy that

u0(r, io) ∈ Uc. (12)

Hence, it turns out that the capacitor voltage reference r
is valid if the corresponding steady state control u0(r, io)
satisfies the condition (12). For the rest of the paper,
the voltage reference r is said to be admissible when the
corresponding steady state control u0(r, io) ∈ Uc.

4.2 MPC design

In this section, using the DOB (6)-(7), an MPC is designed
such that the output voltage vc(k) converges to its refer-
ence v∗

c(r) while fulfilling input constraints. To this end,
defining the error state as e(k) := x(k)−x0(r, io), it holds
that

e(k + 1|k) = x(k + 1)− x0(r, io)

=Ax(k) +Bu(k) +Bdio − x0(r, io). (13)

Note that, since the load current io is unavailable, so is
x0(r, io). Hence, it is impossible to use the predicted error
state e(k + 1|k) generated by the equation (13). Thus, we
modify the equation (13) as follows:

ê(k + 1|k) = Ax(k) +Bu(k) +Bd îo(k)− x̂0(r, k), (14)

where

x̂0(r, k) := x0(r, io)

∣∣∣∣
io=ˆio(k)

=

[
î
0

f (r, k)
v∗
c(r)

]
, ∀k, (15)

î
0

f (r, k) := i0f (r, io)

∣∣∣∣
io=ˆio(k)

= Z1,1v
∗
c(r) + Z2,1 îo(k), ∀k,

(16)

and îo(k) denotes the load current estimates generated by
the DOB (6)-(7). Using the equation (14), the cost function
is constructed as

J(x(k), îo(k),u(k)) := ∥ê(k + 1|k)∥2P + ru∥êu(k)∥2,(17)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11131



where êu(k) := u(k)− û0(r, k),

û0(r, k) := u(r, io)

∣∣∣∣
io=ˆio(k)

= Z1,2v
∗
c(r) + Z2,2 îo(k), (18)

∥ · ∥2A is defined as ∥ · ∥2A := (·)TA(·) for a given square
matrix A, and ru > 0 and P = PT > 0 are design
parameters. The corresponding optimization problem is
given by:

min
u(k)∈Uc

J(x(k), îo(k),u(k)). (19)

In order to find the MPC explicitly, rewrite the cost
function (17) as

J(x(k), îo(k),u(k)) = uT (k)(BTPB + ruI)u(k)

+ 2uT (k)(BTPw(k)− ruû
0(r, k))

+ ∥w(k)∥2 + ru∥û0(r, k)∥2, (20)

where w(k) := Ax(k) + Bd îo(k) − x̂0(r, k). Let u∗
uc(k) be

the unconstrained optimizer of the problem (19). Then,
the unconstrained optimizer u∗

uc(k) is obtained by solving

∂J(x(k), îo(k),u(k))

∂u(k)
= 0:

u∗
uc(k) = −(BTPB + ruI)

−1(BTPw(k)− ruû
0(r, k)).

Hence, it is obvious that the constrained optimizer u∗(k) of
the problem (19) is equal to the unconstrained one u∗

uc(k)
if u∗

uc(k) ∈ Uc. Whereas, if u∗
uc(k) /∈ Uc, the optimizer

u∗(k) is the tangential point of the boundary of Uc with

the level set of J(x(k), îo(k),u(k)). Note that the input
constraint region Uc represents a circle in the vd-vq plane,
where vd and vq are the first and the second element of
u(k), respectively, but the level sets of the cost function

J(x(k), îo(k),u(k)) are ellipsoids in the vd-vq plane. So
the problem is how to find the tangential point of the

boundary of Uc with the level set of J(x(k), îo(k),u(k)).
The constrained optimizer taking these points into account
is summarized as Theorem 1.

Theorem 1. Assume that there exist β > 0 and P = PT >
0 such that

BTPB = βI. (21)

Then, the optimal solution to the constrained optimization
problem (19) is given by

u∗(k) =

{
u∗
uc(k) if u∗

uc(k) ∈ Uc,
γ∗(k)u∗

uc(k) if u
∗
uc(k) /∈ Uc,

(22)

where

γ∗(k) :=
Vdc√

3||u∗
uc(k)||

. (23)

Proof. Suppose that u∗
uc /∈ Uc. If the level set of the cost

function (17) is a circle as well as the input constraint
region Uc, the constrained optimizer to the optimization
problem (19) can be obtained by finding the intersection
between the boundary of the set Uc and the line segment
of the two points from u(k) = 0 to the unconstrained

cU

0
dv

qv
*
ucu

* * *
ucγ=u u

( )3F c

( )2F c ( )1F c

Fig. 3. Relationship between ū∗ and ū∗
uc

optimizer u∗
uc(k) as shown in Fig. 3 where F (c) is the level

set of the cost function defined by

F (c) := {u(k) | J(x(k), îo(k),u(k)) ≤ c}, ∀c ≥ 0.

Thanks to the assumption (21), the cost function can be

written as J(x(k), îo(k),u(k)) as

J(x(k), îo(k),u(k)) = (β + ru)

(
∥u(k)∥2 + 2uT (k)z(k)

+ ∥z(k)∥2
)
+ δ(k),

= (β + ru)∥u(k) + z(k)∥2 + δ(k),(24)

where

z(k) :=
1

β + ru

(
BTPw(k)− ruû

0(r, k)

)
,

δ(k) := −(β + ru)∥z(k)∥2 + ∥w(k)∥2 + ru∥û0(r, k)∥2.

It implies that the level set of the cost function (17) is a
circle. If u∗

uc(k) /∈ Uc, the optimizer u∗(k) of the problem
(19) is given by the point of intersection between the
boundary of the set Uc and the line segment of the two
points u(k) = 0 and u∗

uc(k) since the level set of the
cost function is a circle as well as the input constraint
set Uc. Therefore, the optimizer u∗(k) is given as u∗(k) =
γ∗(k)u∗

uc(k) where γ∗(k) is defined in (23).

Theorem 1 shows that the solution to the optimization
problem (19) can be obtained without any use of numerical
methods when the assumption (21) holds. Note that, since
matrix A of the discrete time system (4) is stable, there
exists P = PT > 0 such that

ATPA− P = −qI, ∀q > 0. (25)

Actually, it can be shown that the assumption (21) holds
for any matrix P = PT > 0 satisfying the equation (25).
Thus, the result of Theorem 1 is not restrictive since it is
always possible to pick matrix P so that the assumption
(21) holds.

4.3 Stability Analysis

In this section, it will be shown that x(k) and îo(k) con-
verge to x0(r, io) and io, respectively, using the proposed
MPC method (22).
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Theorem 2 proves that the closed-loop system is globally
asymptotically stable by showing that the proposed MPC
(22) with the DOB makes the positive definite function
defined as

V (e(k), ez(k)) := ∥e(k)∥2P + ρ∥ez(k)∥2Po
,

∀k ≥ 0, ρ > 0, Po = PT
o > 0, (26)

decrease monotonically. For details, see Theorem 2.

Theorem 2. Suppose that matrix P of the cost function
(17) is chosen to be satisfied the inequality (25) for some
q > 0 and that the DOB gain Lo is selected for matrix
Aobs = Aa − LoCa to be stable. Then, the closed-loop
system with the MPC (22) and the DOB (6)-(7) is globally
asymptotically stable.

By Theorem 2, it is clear that the main control objectives
limk→∞ vc(k) = v∗

c(r) is successfully achieved by the
proposed MPC since the errors e(k) and ez(k) converge
to zero.

4.4 Proof of zero steady-state error

Here, we show that the proposed MPC (22) eliminates the
steady state error. Consider the following state values:

lim
k→∞

x(k) = x∞(=

[
if,∞
vc,∞

]
), lim

k→∞
îo(k) = îo,∞,

and lim
k→∞

u∗(k) = u∗
∞ ∈ Uc. (27)

Note that the integration effect in (7) of the DOB ensures
that x̂∞ = x∞, where x̂∞ denotes the steady state of
x̂(k) of the DOB. Then, the state estimation part (6) of
the DOB becomes

x∞ = Ax∞ +Bu∗
∞ +Bd îo,∞, (28)

The corresponding steady state MPC u∗
∞ is given by

u∗
∞ =−(BTPB + ruI)

−1

(
BTP (Ax∞ +Bd îo,∞ − x̂0

∞(r))

− ruû
0
∞(r)

)
, (29)

where

x̂0
∞(r) := lim

k→∞
x̂0(r, k), û0

∞(r) := lim
k→∞

û0(r, k),

since u∗
∞ ∈ Uc. Using the equation (28), the equation (29)

can be written as:

u∗
∞ =−(BTPB + ruI)

−1

(
BTP (x∞ − x̂0

∞(r))

+ ru(u
∗
∞ − û∞(r))

)
+ u∗

∞.

It implies that(
BTP (x∞ − x̂0

∞(r)) + ru(u
∗
∞ − û∞(r))

)
= 0. (30)

Now assume that matrix B has full column rank so that
there exists (BTB)−1. Then, using the equation (28), u∗

∞
can be written as

u∗
∞ = (BTB)−1BT

(
(I −A)x∞ −Bd îo,∞

)
. (31)

Moreover, using the definitions in (16) and (18), we have

x̂0
∞(r) = Ax̂0

∞(r) +Bû0
∞(r) +Bd îo,∞,

where

û0
∞(r) = (BTB)−1BT

(
(I −A)x̂∞(r)−Bd îo,∞

)
, (32)

x̂0
∞(r) :=

[
î
0

f,∞(r) v∗
c(r)

]T
. Subtracting (32) from (31),

the equation (30) can be expressed as(
BTP + ru(B

TB)−1BT (I −A)

)
(x∞ − x̂0

∞(r)) = 0.(33)

It follows from the relations (16) and (18) that

(F1Z11 + F2)(vc,∞ − v∗
c(r)) = 0, (34)

where

F = [ F1 F2 ] := BTP + ru(B
TB)−1BT (I −A).

Thus, the equation (34) implies that the proposed MPC
rejects steady-state errors if matrix F1Z11 + F2 is invert-
ible. The following two sections evaluate the closed-loop
performance using the MPC (22) through simulations and
experiments.

5. EXPERIMENTS

In this experiments, the parameters of the three phase UPS
system are given by

R = 0.1Ω, L = 1.3mH, C = 20µF, ω = 120π, Vdc = 450V.

For PWM (pulse width modulation), the switching fre-
quency is chosen as 10kHz. The proposed MPC is imple-
mented by using the digital signal processor TMS320F28335
with the sampling time of h = 0.1ms. The control weight
ru of the cost function (17) is set to be ru = 0.2. First, the
closed-loop performance is shown with the use of resistive
load RL = 35Ω and the output voltage reference r = 156V ,
which means 156V in root mean square (RMS). Fig. 5
depicts the voltage regulation performance with the output
current behavior in the a-b-c frame. The corresponding the

4ms

Resistive Load 
Connected

156V

156V−

,c av
,o ai

( )100 10V A10ms

Fig. 4. The a-frame output voltage (vc,a) and the a-frame
output current responses for the voltage reference
r = 156V
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Fig. 5. Voltage tracking performance in the d-q frame

output voltage responses is depicted in Fig. 5. In Fig. 6,
the steady-state voltage, output current responses, and the
corresponding voltage total harmonic distortion (THD)
analysis results are presented. These results show that
there is no steady-state error in the the output voltage and
that the corresponding THD value is satisfactory (1.2%)
with respect to a resistive load.

Steady state voltage response Steady state current response

Voltage THD analysis result

Fig. 6. Steady-state voltage and current responses with the
voltage THD analysis result (resistive load)

6. CONCLUSIONS

In this paper, an offset-free MPC scheme is presented. The
proposed MPC minimizes the one step ahead cost function
by performing a simple membership test while the DOB
estimates the disturbance; any numerical methods and any
off-line optimization such as partitioning the state space
are not required. Besides, it is shown that the closed-loop
system is globally asymptotically stable in the presence
of input constraints and that the integral action in the
DOB eliminates the steady state errors caused by a model-
plant mismatch. The effectiveness of the proposed MPC is
experimentally shown using a resistive load.
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