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Abstract. The problem Wiener systems identification is addressed in presence of hysteresis nonlinearities, 
presently described by the Bouc-Wen model. The latter is nonlinear differential equation involving 
unknown parameters, some of which coming in nonlinearly. Except for stability, the linear subsystem is 
arbitrary and, in particular, it is not given a particular structure. By using sine excitations, the identification 
problem is reformulated as a set of nonlinear prediction-error optimization problems. The latter will be 
coped with using nonlinear least squares estimators which will formally be shown to be consistent. 



1. INTRODUCTION 

The standard Wiener model is constituted of a linear dynamic 
bloc and a memoryless nonlinearity connected in series as 
shown by Fig. 1. This model structure features a strong 
capability of approximating well nonlinear systems (e.g. 
Boyd and Chua, 1985). The problem of system identification 
based on different variants of the Wiener model has been 
given a great deal of interest, especially on the last decade, 
and several solutions are now available. In the case of fully 
parametric systems, the proposed identification methods 
include stochastic approaches (e.g. Wigren, 1993, 1994; 
Westwick and Verhaegen, 1996; Vanbeylen et al., 2009; 
Lovera et al., 2000; Wills and Ljung, 2010; Vanbeylen and 
Pintelon, 2010; Wills et al., 2011) as well as deterministic 
approaches (e.g. Vörös, 1997, 2010; Bruls et al., 1999). The 
available identification methods for nonparametric Wiener 
systems include stochastic methods  (e.g. Greblicki and 
Pawlak, 2008; Mzyk, 2010) and frequency methods (e.g. 
Crama and Schoukens, 2001, 2005; Bai, 2003; Giri et al., 
2009; Schoukens and Rolain, 2012).  Identification methods 
for semiparametric Wiener systems, where only the linear 
part is parameterized, have been proposed in (e.g. Hu and 
Chen, 2008; Bai and Reyland, 2009; Enqvist, 2010; 
Pelckmans, 2011). As a matter of fact, all proposed 
identification methods are based on several, more or less 
restrictive, assumptions concerning the system nonlinear part 
(invertible, monotone, odd), the linear subsystem (FIR, 
known structure), the input signals (Gaussian, PE). On recent 
year, the research scope concerning Wiener system 
identification has been widen including nonstandard Wiener 
system structures e.g. series-parallel Wiener systems (Lyzell 
and Enqvist, 2012; Lyzell et al., 2012; Schoukens and Rolain, 
2012) and Wiener systems with memory nonlinearities (Dong 
et al., 2009; Cerone et al., 2009; Giri et al., 2013a, 2013b). 
The present work is on Wiener system identification when 
memory nonlinearities are involved. So far, the emphasis has 
been restricted to memory nonlinearities of backlash and 
backlash-inverse types and the identification problem has 
been dealt with using predictive and frequency approaches. 
The problem of identifying Wiener systems containing 
general hysteresis nonlinearities has yet to be studied. 

Presently, this problem is addressed for a class of hysteresis 
nonlinearities described by the Bouc-Wen model. The latter 
is a widely used for describing technological components and 
devices, especially within the areas of civil and mechanical 
engineering (Ismail et al., 2009). It consists in a first-order 
nonlinear differential equation that relates the input 
displacement to the output restoring force in a hysteretic way. 
It involves a finite number of parameters making possible to 
accommodate the response of the model to the real hysteresis 
loops. From an identification viewpoint, the difficulty lies not 
only in the nonlinearity of the model dynamics but also in the 
fact that some of its unknown parameters come in 
nonlinearly. A deep analysis of the Bouc-Wen model can be 
found in (Ikhouane and Rodellar, 2007). Interestingly, it is 
formally shown that the steady-state response of a Bouc-Wen 
model, being excited with a so-called loading-unloading 
periodic input signal, is also a loading-unloading periodic 
signal. Furthermore, the input and output signals have the 
same period and are in phase. These features are presently 
exploited in the design of an semiparametric identification 
method for Wiener systems where the linear part assumes no 
particular structure. The method involves simple sine input 
excitations and an output signal averaging process reducing 
the effect of measurement noise. The filtered signals are 
based upon to estimate the nonlinearity parameters and the 
(linear subsystem) frequency response at a given set of 
frequencies. The first estimation problem is reformulated as a 
nonlinear prediction-error optimization problem and solved 
using a single separable least-squares estimator. The second 
estimation problem is solved using a set of least-squares 
estimators running in parallel. All estimators are formally 
shown to be consistent. 

 
Fig. 1.  Wiener model structure. )(sG  represents a linear 

subsystem, [.]F represents a nonlinear operator 
The paper is organized as follows: the identification problem 
is formulated in Section 2; the identification method is 
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designed and analyzed in Section 3, A conclusion and a 
reference list end the paper. 

2. IDENTIFICATION PROBLEM FORMULATION 

2.1 System Modelling 

Standard Wiener systems consist of a linear dynamic 
subsystem )(sG  followed in series by a memoryless 

nonlinear operator [.]F  (Fig. 1). Presently, hysteresis 
nonlinearities are considered. More specifically, the Wiener 
system is analytically described by the following equations: 
 

)(*)()( tutgtx       with     )(tg L -1 ))(( sG  (1a) 

)]([)( txFtw   (1b) 

)()()( ttwty   (1c) 

where )(tu  and )(ty  denote the control input and the 

measured output; )(tx  and )(tw  are inner signals not 

accessible to measurement. The extra input )(t  accounts for 

measurement noise and other modelling effects; it is 
supposed to be zero-mean and uncorrelated with the control 
input )(tu . The symbol * in (1) refers to the convolution 

operator and L-1 to the Laplace transform-inverse. 
Accordingly, )(tg  is the impulse response of the linear 

subsystem and )(sG  its transfer function. It is just supposed 

that 1Lg   so that the whole system is BIBO stable, making 

possible open-loop system identification. Interestingly, )(sG  

assumes no particular structure and so it is allowed not to be 
finite order. The operator [.]F  undergoes the following 

differential equation referred to hysteresis Bouc-Wen model:   
  wxwwxxw   

 
1

  (2a) 

with 0 , 0  , 0   and 1  . The following 

result is formally established in (Ikhouane and Rodellar, 
2007, p.18). 

Proposition 1. The Bouc-Wen model output signal )(tw  

is bounded, provided the input signal )(tx  is 1C  on ),0[  . 

Furthermore, an upper bound on )(tw  is  0,)0(max ww  

with 
ndef

w
/1

0 













  � 

At this point, it is worth emphasizing the plurality of the 
couple  ][),( xFsG , defining the Wiener model. 

Accordingly, any couple  ][),( xFsG , with )()( skGsG   

and ]/[][ kzFzF  , is also a model whatever the scalar 

0k . From (2a) it turns out that one judicious choice is to 
let /1k  which leads to a model featuring 1 .  Doing 
so, the number of unknown parameters in the corresponding 
hysteresis element reduces to 2. It is readily seen that the 

),(  -parameters, in the model focused on, still satisfy the 

properties 0  , 0  , while the parameter   

remains unchanged. Now, to avoid additional notations, the 

particular model ])[),(( xFsG  with the above features will 

continue to be denoted  ][),( xFsG  and the corresponding 

internal signals will still be denoted )(tx  and )(tw . 

Accordingly, the hysteresis element undergoes the following 
simpler version of equation (2): 

  wxwwxxw   
 

1
  (2b) 

with 0 , 0  , 0   and 1 . The 

identification problem at hand consists in estimating as 
accurately as possible, the nonlinear operator parameters 

),,(   as well as the linear subsystem frequency gain 

)( ijG  )1( mi  , where the si ' and the number m  are, 

to some extent, arbitrarily chosen by the user. Interestingly, 
the user needs not to a priori knows the transfer function 

)(sG . 

2.2. System Response to Sinusoidal Excitation 

The frequency identification approach is based on the 
investigation of the system response to a sinusoidal excitation 

)cos()( tUtu  . Let the Wiener system (1-2) be excited 

with a sinusoidal input )cos()( tUtu   for some 

amplitude/frequency couple ),( U . It follows from (1a-c) 

that the steady-state behaviour is described by the following 
equalities: 

 )(cos )()(,   tjGUtxU  (3a) 

)]([)( ,, txFtw UU                              (3b) 

)()()( ,, ttwty UU    (3c) 

with )()(  jG . An interesting feature of the 

periodic signal )(, txU   is that, on any interval of the form 
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2 kk

 )( Nk , the signal is decreasing 

on the subinterval 



 









 kk 2

,
2

 and is 

increasing on 



 















 22

,
2 kk

. Periodic 

signals of this type are referred to loading-unloading in 
(Ikhouane and Rodellar, 2007) and a key property the Bouc-
Wen hysteresis model, excited with these signals, is 
described in the following proposition: 

Proposition 2. Consider the Bouc-Wen hysteresis operator 
(2b), being excited with the sinusoidal signal )(, txU   defined 

by (3a). Then, the resulting steady-state output )(, twU   

enjoys the following properties: 

1) )(, twU   is a class 1C ,  /2 -periodic, and loading-

unloading signal on ),0[  . 

2) )(, twU   and )(, txU   are in phase in the sense that one 

has, for all (sufficiently large) Nk : 
a) the derivatives )(, twU   and )(, txU   are nonpositive 
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b)  )(, twU   and )(, txU   are nonnegative on 
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 and are positive on 
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The proof of the above results can be found in (Ikhouane and 
Rodellar, 2007, Chapter 3). Note that the fact that )(, twU   is 

a class 1C  is an immediate consequence of Proposition 1, 
which ensures the boundedness of )(, twU  , and of equation 

(2b) which ensures the boundedness of  )(, twU  , using the 

fact that )(, txU   is bounded, due to (3a). 

2.3. Signal Pre-Processing 

One difficulty of the identification problem under study is 
that the system output y  is infected by the disturbance   

whose stochastic law is not known. Then, a suitable output 
signal preprocessing is required to reduce the disturbance 
effect on the quality of the system parameter estimates. As 
stated in Subsection 2.2, all system signals are  /2 -
periodic (in steady-state), except for   and y . Then, just as 

suggested in (Ljung, 1997), a judicious signal filtering is to 
perform the following  /2 -periodic averaging: 
 











 

1

0

21
)(

N

k
N kts

N
ts




,  for 

2

0  t  (4a) 

)
2

()(



 tsts NN ,  otherwise  (4b) 

with 1N , where )(ts  is any signal and )(tsN  its  /2 -

periodic average signal. It readily follows that )()( tstsN   

whenever )(ts  is  /2 -periodic. Presently, this is the case 

(in steady-state) of the signals ),,( wxu  and, consequently, all 

these signals are equal (in steady-state) to their  /2 -
periodic average versions obtained by (4a-b). Then, operating 
the averaging (4) on all terms of (3c) one gets in steady-state: 

)()()( ,,, ttwty NUNU    (5) 

Accordingly, the noise   is presently supposed to be a zero-

mean ergodic stochastic process featuring the  /2 -
periodic stationarity on the set of  's of interests. The 

periodic stationarity means that ))(()
2

( tEktE 

 






  , 

for all kt, .  This implies that: 

))(()( kTtEt
N

N 


    (w.p. 1),   whatever Nk     (6) 

Then, it immediately follows from (5) that, in steady-state 
(i.e. when )(, twU   becomes periodic): 

0)()( ,,,



N

UNU twty    (w.p. 1) (7) 

3. SYSTEM PARAMETER IDENTIFICATION 

Throughout this section, the Wiener system is submitted to 
sinusoidal excitations )cos()( tUtu   so that the signal 

expressions (3a-c) hold along with Proposition 1 and property 
(7). 

3.1 Phase Estimator 

Using Proposition 1 (Part 2), one gets: 

kt )(  (modulo 2 ),  Nk  (8) 

with 


 


)1(2 k
tk  denote the periodic time instants 

where the (undisturbed) output )(, twU   achieves its maxima. 

As )(, twU   is not accessible to measurement, one can only 

use its estimate )(,, ty NU  , obtained by operating (4a-b) on 

)(, tyU  . Letting 




2

0 ,,  NUt  be the time instant where 

)(,, ty NU   achieves its maximum, (8) suggests the following 

phase estimator: 

NUN t ,,)(ˆ    (9) 

It readily follows from (7) that NUt ,,  converges, w.p.1 as 

N , to some 


 


)1(2 k
tk . Then, it follows 

comparing (8) and (9) that: 
)()(ˆ 




N
N , modulo 2   (w.p.1) (10) 

3.2 Nonlinearity Parameter Estimation 

In this subsection, the hysteresis parameters ),,(   will be 

estimated using the data collected on the Wiener system 
being excited by the input )cos()( 11 tUtu   for a given 

amplitude/frequency couple ),( 11 U . The latter is arbitrary 

but one must have 0)( 1 jG . Then, (11) writes: 

 
1111111111 ,

1

,,,, 


  UUUUU wwxxw


   

                                                              



1111 ,, UU wx  (12) 

with: 
 )(cos )()( 1111, 11

  tjGUtxU ;   (13a) 

 )(in )()( 11111, 11
  tsjGUtxU  (13b) 

due to (3a). From Proposition 1 (Part 2), one has 
)sgn()sgn(

1111 ,,  UU wx   . Accordingly, (12) becomes: 

111111111111 ,

1

,,,,, )sgn( 


  UUUUUU wwwxxw


    

                                                            



1111 ,, UU wx  (14) 

Substituting to )(
11, txU   its expression given by (13), 

equation (14) rewrites: 
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 )(in )( 11111, 11
  tsUjGwU  

 
111111 ,

1

,,11111 )sgn()(in )( 


 UUU wwwtsUjG


    

                


11,11111 )(in )( UwtsUjG   (15a) 

          *),(  tT  (15b) 

where the parameter vector 
3* R  and the regressor 

3),( Rt  are defined by: 

 TjGjGjG )()()( 111
*    (16a) 

  ..)(in),( 1111   tsUtT  

              

  ..)sgn()(in..
111111 ,

1

,,1111 


 UUU wwwtsU


   

                            3
,1111 11

)(in.. R



 UwtsU  (16b) 

Note that, consistent estimators of the phase )( 1  and the 

signal 
11,Uw  are available. Accordingly, one can 

(temporarily) suppose that )( 1 , 
11,Uw  and 

11,Uw  are 

perfectly known. It turns out that equation (15) involves two 

unknown quantities, the vector 
3* R , on the one hand, 

and the scalar R  on the other. This observation 

motivates the introduction of the following optimization 
problem: 

),(min
3,1




J
R

    (17a) 

with 

 
  1

1 11

/)1(2

/2

2
, ),()(),(


   k

k
T

U dtttwJ   (17b) 

where Nk  is any sufficiently large integer (so that 
)(

11, twU   can be supposed to be periodic for  /2kt  ). It 

readily follows from (15b) and (17b) that 0),( * J  i.e. 

),( J  does achieve its global minimum at ),( * . But, the 

question is whether this global minimum is unique. This will 
be proved to be the case in Proposition 3. Then, it just 
remains to design a search method to explicitly determine the 

unique solution ),( *  to this optimisation problem. The 

main difficulty is that the function ),( J  is quadratic in   

but not in   (see (17b)). Then, the optimization problem 
(17a-b) can be coped with using the separable least-squares 
technique, which is a form of relaxation. Accordingly, one 
temporarily assumes that   is known in (17b). Then, (17a) 
becomes a least-squares problem and its solution is the 
following: 

  1/)1(2

/2
1

1
),(),()(


 

  k

k
T dttt    

                                         
 1

1 11

/)1(2

/2 , ),()(


  k

k U dtttw  (18) 

where Nk is as in (17b). At this point, it is worth noticing 

that, if   is substituted to   in (18) then one gets * , using 

(15b). Specifically, one has: 

  1/)1(2

/2
* 1

1
),(),()(


 

  k

k
T dttt  

                                          
 1

1 11

/)1(2

/2 , ),()(


  k

k U dtttw  (19) 

provided that the matrix to be inversed on the right side of 
(19) is invertible. Now, let us go back to (17b) and let the 
right side of (18) be substituted there to  . Doing so, one 
gets the following nonlinear function which only involves the 
variable  : 

))(,()(   JI
def

 

          
  
  /)1(2

/2

2
, ),()()(

11

k

k
T

U dtttw  (20) 

Note that for this problem to be well posed, )(  must exist. 

In view of (18), this will be the case if the matrix (to be 
inversed) on the right side of (18) is invertible, whatever 

1 .  Under this condition, the separable least-squares 
technique operates this way: first, minimize )(I  to obtain 

an estimate ̂  of  ; then replace the latter by its estimate in 

(18) to get an estimate ̂  of  .  

Proposition 3. Let the Wiener system (1-2) be excited by 
)cos()( 11 tUtu  , where the amplitude 01 U  and the 

frequency 01   are arbitrary but 0)( 1 jG . Then, one 

has the following properties: 

1) The optimization problem (17a-b), involving the cost 
function ),( J  and the equality constraint (15b), has a 

unique solution, namely: ),(),(minarg *

,1 3






J

R
. 

2) The optimization problem (20), involving the cost function 
)(I  and the equality constraints (15b), has a unique 

solution, namely: 





)(minarg
1

I    � 

Proof. Appendix A. 
The above result is quite important. But, it still is not 
practical because the function )(I  involves unavailable 

signals, i.e. )(
11, twU   and ),( t  (see (20)). In turn ),( t  

involves )( 1  (see (16b)) which is unknown. A practical 

cost function to estimate   is the following: 

   
  /2

0

2
,, ),()()()(

11
dtttyI N

T
NNUN

  (21) 

with: 

  1/2

0
),(),()(


   dttt T

NNN  

                                            


 /2

0 ,, ),()(
11

dttty NNU
  (22) 

  ..)(ˆin),( 1111  N
T
N tsUt   

     NUNUNUN yyytsU ,,

1

,,,,1111 111111
)sgn()(ˆin.. 





   

                        3
,,1111 11

)(ˆin R



 NUN ytsU  (23) 
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where we have used the fact that )(,, 11
ty NU 

  is constructively 

 /2 -periodic (by definition (4a-b)). With the above 

notations, the ),( * -estimator writes as follows: 

)(minargˆ
1




NN I


  (24a) 

)ˆ(ˆ
NNN    (24b) 

It is readily seen from (16a) that estimates of )( 1jG ,   

and   are easily obtained from N̂ . 

Proposition 4. Let the Wiener system (1-2) be excited by 
)cos()( 11 tUtu  , where the amplitude 01 U  and the 

frequency 01   are arbitrary but 0)( 1 jG . Then, the 

estimator )ˆ,ˆ( NN   converges to ),( * , w.p.1, as 

N � 
Proof: provided upon request by the authors  • 

3.3 Frequency Gain Estimator 

We have already got an accurate estimate of the particular 
gain modulus )( 1jG  and the phase )()( 11  jG .  

Now, the aim is to estimate the frequency gain )( ijG   for 

)1( m  further frequencies i  )2( mi  , arbitrarily 

chosen by the user. Again, we will separately estimate the 
gain modulus )( ijG   and the phases )()( ii jG   . 

The latter can be estimated using the consistent estimator 
defined by (9).  Then, it remains to design an estimator for 
the gain modulus. To this end, let us rewrite equation (15a) 
for an arbitrary amplitude/frequency couple ),( iiU  :  

 )(in )(, iiiiiU tsUjGw
ii

   

 
iiiiii UUUiiiii wwwtsUjG 


 ,

1

,, )sgn()(in )(


   

                  


iiUiiiii wtsUjG ,)(in )(   

          )(),( ijGt   (25) 

with: 
T][    (26a) 

 )(in),( iiii tsUt    

               
iiiiii UUUiiii wwwtsU 


 ,

1

,, )sgn()(in


   

                


iiUiiii wtsU ,)(in   (26b) 

Since at this stage an accurate estimate of   is available, 

)( ijG   turns out to be the only real unknown quantity in 

(25). The latter immediately yields the following least-
squares solution: 

  1/)1(2

/2
2)),(()(


 

  k

ki dttjG  

                                    
 
  /)1(2

/2 , ),()(
k

k U dtttw
ii

  (27a) 

for any integer k . This suggests the following estimator: 

  1/2

0
2)),ˆ(()(ˆ 

   dttjG NNiN  

                                   


 /2

0 , ),ˆ()( dttty NNU ii

  (27b) 

with: 
T

NNNN ]ˆˆˆ[ˆ    (28a) 

 )(ˆin),ˆ( iNiiiN tsUt    

  NUNUNUiNiiiN iiiiii
yyytsU ,,

1ˆ

,,,, )sgn()(ˆinˆ






   

           


ˆ

,,)(ˆin ˆ NUiNiiiN ii
ytsU   (28b) 

where we have used the fact that (by definition (4a-b)) 

NU ii
y ,,
  is  /2 -periodic. 

Proposition 5. Let the Wiener system (1-2) be excited by the 
input )cos()( tUtu ii   )2( mi  , where the amplitude 

0iU  and the frequency 0i  are arbitrarily chosen but 

0)( ijG  . Then, the estimator )(ˆ
iN jG    converges to 

)( ijG  , w.p.1, as N � 

The proof is provided upon request by the authors.  

4. CONCLUSION 

The problem of system identification is addressed for Wiener 
systems where nonlinear element is a hysteresis operator 
described by the Bouc-Wen model. The latter is a nonlinear 
differential equation containing unknown parameters, some 
of which come in nonlinearly. The identification method 
involves sine input signals and the output filtering (4a-b). 
Based on these signals, the phase estimator (9), the hysteresis 
parameters estimator (24a-b), and the frequency gain 
estimator (27b) are successively designed  and formally 
shown to be consistent. To the author's knowledge no 
previous study has dealt with the identification problem for 
Wiener systems containing hysteresis nonlinearities. 
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