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Abstract: A substantial literature exists on the stability and control of 2D systems, including
repetitive processes where iterative learning control algorithms designed in this setting have
been experimentally verified. Most of this development has assumed that the dynamics can
be adequately represented by linear state-space models, but applications exist where this
assumption does not hold. This paper contributes to the development of a stability theory
for nonlinear discrete-time 2D systems, where main results are on the use of vector Lyapunov
functions to characterize exponential stability. The analysis includes systems where random
failures modeled by a Markov chain with a finite set of states can arise in an iterative learning
control application. An illustrative example is also given.
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1. INTRODUCTION

Vector Lyapunov functions (VLFs) introduced by Bellman
(1962) and Matrosov (1962) are an extension of their
classical counterparts and have been effectively used, see,
for e.g., (Lakshmikantham et al., 1991) in many problem
areas, such as complex standard, or 1D, large scale systems
(Siljak, 1978). The published work on the use of VLFs for
2D systems includes (Kojima et al., 2011) where necessary
and sufficient stability conditions were obtained in terms of
such functions in a linear behavioral model setting. In this
paper the VLF method is developed for stability analysis
of nonlinear discrete 2D systems in form of repetitive
process (Rogers et al., 2007).

Repetitive processes repeat the same finite duration op-
eration over and over again. Each repetition is termed
a pass and the duration the pass length. One industrial
application is long-wall coal mining where the coal is cut
by a machine that passes along the coal face and the
objective is to maximize the volume of coal cut without
penetrating the coal/stone interface. During each pass the
machine rests on the pass profile cut during the previous
pass, i.e., the height of the stone/coal interface above
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some datum line. Once a pass is complete, the machine is
returned to the starting location and then pushed across
to rest on the newly cut floor profile ready for the start of
the next pass. The control problem is that the sequence
of pass profiles generated can contain oscillations that
increase in amplitude in the pass-to-pass direction and
such oscillations cannot be removed by standard, or 1D,
control laws (Rogers et al., 2007).

A major application area where repetitive process stability
theory can be used is Iterative Learning Control (ILC),
where linear model based designs have been experimen-
tally verified (Hladowski et al., 2010). Other representa-
tions for 2D systems exist such as the Roesser (Roesser,
1975) and Fornasini Marchesini (Fornasini and Marchesini,
1985) state-space models. In common with repetitive pro-
cesses, a very large part of the current literature on these
systems is linear model based.

Cases will arise, however, where the assumption that the
dynamics can be represented by a linear model is too weak.
Hence there is a need to develop a stability theory for
nonlinear 2D systems, where this paper focuses on repet-
itive processes given the recent progress to experimental
verification in the ILC application. The eventual aim is to
extend the previous linear model based results to the stage
were nonlinear model based control law design is possible
for applications.
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The major contribution of this paper is the use of VLF's to
characterize pass profile exponential stability of nonlinear
discrete repetitive processes, where the definition of this
property includes stability along the pass for linear pro-
cesses as a special case. Stability along the pass requires
that a bounded initial pass profile produces a bounded
sequence of pass profiles for all possible values of the pass
length. This property is the basis of the ILC design with
experimental verification. Pass profile exponential stability
is an extension of this physically based property to nonlin-
ear dynamics. Results on the stability of other classes of
3D nonlinear systems can be found in, e.g., (Kurek, 2012;
Yeganefar et al., 2013) but no potential applications areas
are given.

In the application of a control system, failures in operation
can arise and this paper also gives the first results on the
control of discrete nonlinear repetitive process where the
failures are modeled as random switching. In particular,
the system with failures is modeled by a state-space model
with jumps in the parameter values and/or structure
governed by a Markov chain with a finite set of states,
often termed Markovian jump systems or systems with
random structure, see, e.g., (Costa et al., 2004). Results
on the development of control theory for Markovian jump
systems, which address issues such as stability, optimal
and robust control problems, in the 1D case can be found
in, e.g., (Pakshin and Peaucelle, 2009) and for 2D linear
systems in (Gao et al., 2004; Wu et al., 2008; Pakshin et al.,
2011).

This paper begins in the next section with the develop-
ment of new results on the stability of nonlinear repetitive
processes using vector Lyapunov functions and then pro-
ceeds to develop new results for processes where failures in
operation can occur, which are modeled as a Markov chain
with a finite set of states. An application to ILC law design
under sensor, or information, failures is also developed and
an illustrative numerical example is given.

2. PASS PROFILE EXPONENTIAL STABILITY OF
NONLINEAR REPETITIVE PROCESSES

The nonlinear discrete repetitive processes considered in
this paper are described by the state-space model

T (t+1) = fi(@ea(t), yx(t)),
Yk+1(t) = fa(@rt1(t), yr(t)), (1)

0<t<T k=0,1,2,..
where the integer T' < 0o denotes the number of samples
over the pass length and on pass k zp(t) € R is the
current pass state vector, yi(t) € R™ is the pass profile
vector and f; and f> are nonlinear functions such that
f1(0,0,0) = 0, f2(0,0,0) = 0. The boundary conditions,
i.e., the pass state initial vector sequence and the initial

pass profile, are assumed to be of the form

T41(0) = dpy1, k>0,

where the entries in the n, x 1 vector diii are known

constants and f(t) is an n, x 1 vector whose entries are
known functions of ¢. Moreover, if |¢| denotes the Euclidian

norm of a vector g, it is assumed that the exists finite real
numbers My > 0 and 0 < z4 < 1 such that di1 and f(?)
satisfy

IFO)F < My, |dpga | < kazh™ k=0,1,..  (3)

In particular, z; represents the rate of convergence in k of
the pass initial state vector sequence.

Note 1. All references to the boundary conditions from
this point onwards will assume that they satisfy (3).

Note 2. The stability theory for repetitive processes is
defined in terms of the pass profile and the model and
results of this and the next section extend directly to the
case when a current pass input is present.

In the control and systems theory developed for linear
repetitive processes, the stability along the pass property
has formed the basis for control law design and experi-
mental verification (Rogers et al., 2007; Htadowski et al.,
2010). This property demands that a bounded initial pass
profile produces a bounded sequence of pass profiles for
all possible values of the pass length and is based on
linear operator theory in a Banach space setting. Hence it
cannot be directly transferred to the nonlinear case. This
paper introduces and characterizes a stability theory for
nonlinear repetitive processes that includes stability along
the pass of linear examples as a special case.

Define the norm of the pass profile vector in (1) as

and introduce the following stability definition.

Definition 1. A nonlinear repetitive process described
by (1) and (2) is said to be pass profile exponentially stable
if

k|| < K25, 0< 2z <1, (5)

where k depends on the pass length T and z, in general,
on zg4.

To obtain conditions for pass profile exponential stability,
a vector Lyapunov approach is used with candidate func-

tion
‘/1 X 1 t
V<“">y>=[ vi(f/la(»))]’ (©)

where Vi(z) > 0, = # 0, Va(y) >0, y #0, V1(0) =
0, V2(0) = 0. The divergence operator of this function
along the trajectories of system (1) is

divV (zg1(8), yx(t) = AVi (@41 (1) + AxVa(y(?)),
(7)

where

AVI(zr41() =Vi(zre1(E+ 1)) — Vi(zr41(2)),
ApVa(yr(t)) = Va(yr1(t)) — Valyw(t)).

Theorem 2. Consider a nonlinear discrete repetitive pro-
cess described by (1) and (2). Suppose also that there exist
positive constants ¢y, cg, c3 such that the vector Lya-
punov function V and its divergence along the trajectories
of (1) satisfy the inequalities
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crlrr (D) < Vi(zra1(t) < calzer (02, (8)
crlye(0))? < Va(ye(t) < colye (@), (9)
divV (21 (1), yr (1)) < —cs(|zrpr (B)]* + |yn(8)]?). (10)

Then this process is pass profile exponentially stable.

Proof. It follows from (8), (9) and (10) that

Vi(zgy1(t+1)) < AVI(zrp1(t)) + AVa(ye(t))

= Va(yr+1(t)), (11)
where A =1 — 2. Tt is easy to see that A € (0,1). Solving
the inequality (11) with respect to Vi (zg41(t)) gives

Vi(@py1(t) < Vi(zrg1(0))X°

t—1
+ D _AVa(uk(p) — Valyrsr ()N 771
p=0
(12)
On introducing Hy(t ZVQ yr()ATPL it follows
from (3), (8) and (12) that
Hk+1(t) < )\Hk( ) + )‘tvl(karl(O))
S NHL(t) + Negkgzhth (13)
Solving the inequality (13) gives
k—1
Hyo(t) < N Ho(t) + Megraza Y 2oA 7170 (14)
i=0

and it follows from (14
side, that

), by majorization of the right-hand

Cakg\t
; 1_4),

where z = max{\,(}, ¢ = 73, 7 = max{zq4, A\}. Finally,
given (15), setting ¢ = T and using (9) it follows that (5)
holds.

Hy(t) < 2F (Ho (15)

3. EXTENSION TO SYSTEMS WITH FAILURES

An extension of the results in Section 2 to repetitive
processes in the presence of failures is possible. The failures
are modeled by a discrete-time Markov chain with a finite
set of states and the process is described by the following
state-space model

1 (t+ 1) = @1 (@ryp1 (1), yk(t), r(t)),

Yrr1(t) = pa(@rga (b), y(t), r(1)), (16)
where r(t) (¢ > 0) is a discrete-time Markov chain
with discrete state-space N = {1,...,v} and transition
probabilities given by

P(r(t+1)=j|r(t) =i) =my, Y m;=1,i€N.(17)
j=1

In this model ;1 and @4 are nonlinear functions such that

for all r € N ¢1(0,0,7) = 0, ¢2(0,0,7) = 0 and the rest

of the notation, including the boundary conditions, is the

same as the state-space model in Section 2. The failure

model (17) is motivated by the fact that the variable ¢ is
time along the pass and hence it is natural that the failures
evolve over time.

Define the norm of the pass profile vector as

T-1
E[Y  lyr(®)?]
=0

where E denotes the expectation operator. Pass profile
exponentially mean square stability is defined as follows.

yklle =

Definition 8. A nonlinear discrete repetitive process de-
scribed by (16) and (2) is said to be pass profile exponen-
tially mean square stable if there exist scalars k > 0 and
0 < z < 1 such that

lyklle < 2" (19)
To obtain conditions for pass profile exponentially mean
square stability of processes described by (16), consider
the candidate Lyapunov vector function

V(xk+1(t)7yk:(t),7"(t)) = Vl(karl(t)’T(t))

Va(yw(t),r(t)) |
where Vi(x,r) > 0, = # 0, Va(y,r) > 0, y #
0, V1(0,7) = 0, V5(0,7) = 0 Introduce the operators D,

and Dy, defined along the trajectories of (16):

(20)

V(E,n,1) = E[Vi(zk(t+1),r(t+ 1))
*V1($k+1(t)a7’( N 2k (t) =& y(t) = n,r(t) = 1]
DV (€, n,1) = E[Va(yr+1(t), r(t)) — Va(nr,4) | Tr41(2)
=& un(t) =n,r(t) =1l

and define the operator D as the stochastic counterpart of
divergence operator of Section 2:

Theorem 4. Consider a dlscrete nonlinear repetltlve pro-
cess described by (16) and (17) and (2). Suppose also that
there exist positive constants ¢, ¢, c3 such that the
function V' and its operator D along the trajectories of the
process described by (16) and (17) satisfies the inequalities

)

cilél? < Vi€ i) < eal€l?, (22)
c1lnl?) < Va(n,i) < ealnl?, (23)
DV (&m,i) < —c3([€]* + [nl?), (24)

i € N. Then this process is pass profile exponentially mean
square stable.

Proof. It follows from (22), (23) and (24) that

EVi(zkg1(t+ 1] S AE[VL (241 (2))]

+ENVa(yi(t) — Va(yr+1(2))], (25)
where A =1 — £ Tt is easy to see that A € (0, 1). Solving
inequality (25) Wlth respect to Vi (zg41(t)) gives

E[Vi(2r41(8))] < E[Vi (2141 (0))]A
t—1

* Z E\Va(ye(p)) — Va(yrs1(p)]A P71

(26)

Introduce the notation
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Hy(t) =E

t—1

> V2<yk<t>>] APl
p=0

and then it follows from (26) and (22) that

Hyy1(t) < MH(t) + NE[Vi(241(0))]
< AHp(t) + )\tCQIidZS+1. (27)

Solving the inequality (27) for the given boundary condi-
tions (2) leads to (14) and the rest of the proof follows
identical steps to that for Theorem 2.

4. APPLICATION TO ILC UNDER SENSOR
FAILURES

In this section the stability results developed in Section
3 are applied to ILC design under sensor failures. To
formulate the ILC problem, let the integer k denote the
pass, termed trial in most of the ILC literature, number
and uy(t) € RY, x5 (t) € R™ and yx(t) € R™ the input, state
and output vectors, respectively, at instant 0 <t < T <
00, where T' denotes the pass length. Then the dynamics
of the uncontrolled system are described by

zp(t + 1) = Az (t) + Bug(t),

yr(t) = C(r(t))zk(t) (28)
with assumed boundary conditions
yo(t)=0, 0 <t <T, x(0) =x9, k=0,1,... (29)

and r(t) is the discrete-time Markov chain with a finite
set of states N = {1,...,v} corresponding to a number of
possible failures and transition probabilities given by (17).

Let yref(t) denote the supplied reference vector over 0 <
t < T, where each entry in yrer(t) is assumed to be
differentiable. Then ex(t) = yref(t) — yx(t) is the error
on pass k and the objective of constructing a sequence
of input functions such that the performance achieved
is gradually improving with each successive pass can be
expressed as a convergence condition on the input and
error, i.e.,

lim |ex(t)| =0, lim |ug(t) — uss(t)| = 0. (30)

k—o0 k—o0
A commonly used ILC law is to select the input on the
current pass as that used on the previous pass plus a
correction. In this work the ILC law on pass k+1 is of the
form

U1 (t) = up(t) + Augpa(2), (31)

where Awyy1(t) is the correction term to be designed.
The novel feature of ILC is all information generated on a
completed pass is available for use in the computation of
Auyy1(t). This allows the use of temporal information that
is non-causal in the standard sense provided it is generated
and stored on a previous pass.

Definition 5. A system described by (28) is said to be
convergent if for all 0 <¢ < T

E[lex (t)[*] = Ellyres (t) — yr(t)’] = 0, k = oo
and
Ef|uk(t) — um(t)|2] — 0, k — oo.

To write the ILC dynamics as a discrete linear repetitive
process, introduce, for analysis purposes only, the vector

Okt (t+1) = g (£) = i (t). (34)
Then the controlled dynamics can be written in the form

Ug41(t + 1) = Avgy1 () + BAugya (t - 1),
ert1(t) = =C(r(t)) Ave41 () + ex(t)
= C(r(t))BAug41(t — 1). (35)

Suppose also that in addition to output vector (y(¢)) some
other state variables are available for measurement as
represented by the vector z(t) € R?, where

zk(t) = D(r(t))ar(t) (36)
and D(r), r € N, is a full rank matrix of compatible
dimensions. Also introduce Azg1(t+1) = zp41(t) — 25 (2).

Consider the case when

Auk+1(t) =F (i)Azk+1<t)
+Bent+ 1), r(t) =i, (37)

Then if (37) guarantees pass profile exponential mean
square stability of (35) it follows from Theorem 4 that
the ILC law is convergent. To construct stabilizing control
law matrices Fy(i) and F(i), ¢ € N, the conditions of
Theorem 4 are employed.

Choose the candidate vector Lyapunov function as (20)
with Vi (Vrr1(8),7(8))) = vi4q () PrL(r(8) v (1), Valex(t),
r(t)) = el (t)Py(r(t))ex(t), where P; and P, are com-
patibly dimensioned symmetric positive definite matrices,
denoted by > 0 from this point onwards. Also the stochas-
tic divergence operator D of the function (20) in this
case must satisfy (24). Calculating this operator along the
trajectories of the system described by(35)—(37) gives the
following sufficient conditions for pass profile exponential
mean square stability

P(i) = diag[P1 (i) P2(i)] > 0,
A7 (4) Zﬂini(j)Ac(i) — P(i) + Qi) <0, i € N, (38)

where Q(i) = Q" (i) > 0, H;(j) = diag[P1(j) P2(i)], Fip (i)
ALi) = [ A+ BFyp(i) BF,(i)

¢ —C(i)A — C(i)BFyp(i) I — C(i)BFy(i)
ting X (i) = P~1(i) and introducing the additional vari-
ables Y(4), Y2(7), Z1(4), routine calculations give the fol-
lowing coupled set of Linear Matrix Inequality (LMI) and
linear matrix equalities with respect to these variables

. Set-

S11(4) S12(i) S13(7)
i) Sx(i) 0
Sia(i) 0 Ss3(d)
X()>0,i€eN,
D(i) X1 (i) = Z1 (i) X1(d),
Where. Sll(Z) = d1ag[X1 (Z) XQ(Z)], Slg(’b) = [Slgl(i) ‘e
3 AG)
—C()AG) X2(j) — C(4)BY2(j)

R
oS

>0,
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= AX1(j) + BY1p(j), S13(i) = diag[X: (i) Xa(i)], S2(i)
=Q71(i), Y1(i) = F1(i)Z1(3), Ya(i) = F2(i) X1, Yip(i)

= Y1(¢)D(i), m;; is defined by (17) and the following result
has been established.

Theorem 6. Consider the ILC dynamics described by (35)
and (37) and suppose that the conditions of (39) and (40)
are feasible and set Fy(i) = Y1(i)X[ (i) and Fy(i) =
Y2(i)X5 (i), i € N. Then ILC convergence occurs.

In the case without failures the inequality (38) reduces to
the 2D Lyapunov inequality that guarantees stability along
the pass (Rogers et al., 2007) of discrete linear repetitive
processes.

Note 3. If D(r(t)) = 0 then the update law takes the form

Augi1(t) = Fo(i)er(t) if r(t) = i.
In this case Fi(i) = 0,7 € N and matrix F5(4) is found
from the LMD’s (39) with obvious simplifications.

5. NUMERICAL EXAMPLE

Consider the case when the process state, input and output
matrices are

—0.002961 1 0
A= | —0.0008363 —0.002961 0.3035 | ,
0 0 1

B=[000.1563]",
C = [0.0003718 0.007077 0.02335).

Suppose also that the failures are modeled as a discrete-
time Markov chain r(t) with two states corresponding to
two possible modes. In the first mode D(1) = I and in the
second D(2) = 0 . Also let m1; = 0.95 and w9y = 0.05,
i.e., the measured vector z(t) is lost for a short period of
time. In this case the control law matrices obtained from
Theorem 6 and Note 3 are

Fi(1)=[-0.0096 — 0.2814 — 51.9978],
Fy(1) =922.88,
Fi(2)=[0 00], Fy(2) = 7.3787.

(41)

Suppose that the reference signal shown in Fig. 1 is used.
Then Fig. 2. confirms that without failures the error (ey)
converges rapidly in k. The information failures break
the monotonicity of error convergence, as confirmed in
Fig. 3. However, effects will be limited in the case when
the failures are fixed and feedback control law is switched
using (41), see Fig. 3. a), in comparison to the use of the
same F2 without failures Fig. 3. b).

6. CONCLUSIONS

This paper has used VLFs to characterize a physically
based definition of stability for nonlinear discrete repet-
itive processes, a class of 2D systems with physical ap-
plications. Also new results on the practically relevant
case where sensor failures occur have been developed.
These results provide the basis for future research on the
development of an applicable control systems theory for
repetitive processes.
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