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Abstract: The distributed tracking problem is investigated for a class of multi-agent systems
with high-order stochastic nonlinear dynamics where the subsystem of each agent is driven by
inherent nonlinear drift and diffusion terms. For the case where the graph topology is directed
and the leader is the neighbor of only a small portion of followers, a new distributed integrator
backstepping design method is proposed, and distributed tracking control laws are designed to
ensure that the closed-loop system has an almost surely unique solution on [0,∞), all the states
of the closed-loop system are bounded in probability, and the tracking errors can be tuned
to arbitrarily small with a tunable exponential converge rate. The efficiency of the tracking
controller is demonstrated by a simulation example.
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1. INTRODUCTION

Research on distributed tracking of networked cooperative
systems has attracted much attention in the past two
decades due to their wide practical applications in areas
such as large scale robotic systems (Belta and Kumar
(2002)) and biological systems (Olfati-Saber (2006)). The
main task of the distributed tracking is to drive the states
of the followers to converge to those of a time-varying
leader in the circumstance where only a portion of the
followers has access to the leader’s states and the followers
have only local interactions. For this kind of problems, Zhu
and Cheng (2010) considers the case with time-varying
delays in autonomous agents. Ma et al. (2010) considers
the case with noises in communication channels. Lou et al.
(2012) considers the case with switching topology.

Since all physical systems are nonlinear in nature (Khalil
(2002)), it is necessary and beneficial to study the dis-
tributed problem in a network of nonlinear dynamical
systems. Shi and Hong (2009) considers global target ag-
gregation and state agreement of nonlinear multi-agent
systems with switching topologies. Song et al. (2010)
presents a pinning control and achieves leader-following
consensus for multi-agent systems described by nonlinear
second-order dynamics. Yu et al. (2011) investigates the
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consensus issue for the case where the nonlinear intrinsic
function is Lipschitz and the directed network is gener-
alized algebraically connected. Meng et al. (2013) stud-
ies the distributed robust cooperative tracking problem
for multiple non-identical second-order nonlinear systems
with bounded external disturbances.

Although some progress has been made towards coopera-
tive tracking control of nonlinear multi-agent systems, the
existing literature often assumes a simplified system model
such as single integrators or double integrators. Also, there
are very few results considering stochastic noise. This
limits the validity of the models, since stochastic nonlinear
systems are ubiquitous in practice. Thus, it is important
for us to consider the distributed tracking problem of
multi-agent systems with stochastic nonlinear dynamics.

In this paper, the distributed tracking problem of multi-
agent systems with high-order stochastic nonlinear dy-
namics is investigated under a directed graph topology.
By using the algebra graph theory and stochastic analysis
method, distributed controllers are designed to ensure that
the tracking error converges to an arbitrarily small pre-
given neighborhood of zero. The main contributions of this
paper include:

(1) A new distributed integrator backstepping design is
proposed to effectively deal with the interactions among
agents and coupling terms in dynamics;

(2) The systems investigated is high-order, stochastic and
with inherent nonlinear drift and diffusion terms. Com-
pared with the available results about nonlinear multi-
agent systems such as Shi and Hong (2009), Song et al.
(2010), Meng et al. (2013) and Zhang and Frank (2012),
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the system model investigated is much more general and
practical;

(3) The distributed controllers are designed to ensure
that the tracking error exponentially converges to an
arbitrarily pre-given small neighborhood of zero. The
bound of tracking errors and the convergence rate can be
explicitly given.

The remainder of this paper is organized as follows. Section
2 is on notation. Section 3 is for problem formulation.
Section 4 presents a distributed integrator backstepping
design method. Section 5 analyzes the performance proper-
ties of the closed-loop systems. Section 6 gives a numerical
example to show the effectiveness of the theoretical results.
Section 7 includes some concluding remarks.

2. NOTATION

The following notation will be used throughout the paper.
For a given vector or matrix X , XT denotes its transpose.
Tr{X} denotes its trace when X is square, and |X | is
the Euclidean norm of a vector X . Let G = (V , E , A)
be a weighted digraph of order n with the set of nodes
V = {1, 2, · · · , n}, set of arcs E ⊂ V×V , and a weighted ad-
jacency matrix A = (aij)n×n with nonnegative elements.
(j, i) ∈ E means that agent j can directly send information
to agent i. In this case, j is called the parent of i, and i
is called the child of j. The set of neighbors of vertex i is
denoted by Ni = {j ∈ V : (j, i) ∈ E , i 6= j}. aij > 0 if node
j is a neighbor of node i and aij = 0 otherwise. In this
paper, we assume that there is no self-loop, i.e. aii = 0.
Node i is called an isolated node, if it has neither parent
nor child. Node i is called a source if it has no parents
but children. Denote the sets of all sources and isolated
nodes in V by Vs = {j ∈ V|Nj = ∅, ∅ is the empty set}.
To avoid the trivial cases, V − Vs 6= ∅ is always assumed
in this paper. A sequence (i1, i2), (i2, i3), · · · , (ik−1, ik) of
edges is called a directed path from node i1 to node ik.
A directed tree is a digraph, where every node except
the root has exactly one parent and the root is a source.
A spanning tree of G is a directed tree whose node set
is V and whose edge set is a subset of E . The diagonal
matrix D = diag(κ1, κ2, · · · , κn) is the degree matrix,
whose diagonal elements κi =

∑

j∈Ni
aij . The Laplacian

of a weighted digraph G is defined as L = D − A.

We consider a system consisting of n agents and a leader
(labeled by 0) which is depicted by a graph Ḡ = (V̄ , Ē),
where V̄ = {0, 1, 2, · · · , n}, set of arcs Ē ⊂ V̄ × V̄. If (0, i) ∈
Ē , then 0 ∈ Ni. A diagonal matrix B = diag(b1, b2, · · · , bn)
is the leader adjacency matrix associated with Ḡ , where
bi > 0 if node 0 is a neighbor of node i; and bi = 0,
otherwise.

Definition 1 (Krstić and Deng (1998)): A stochastic
process x(t) is said to be bounded in probability if |x(t)|
is bounded in probability uniformly in t, i.e.,

lim
c→∞

sup
t>t0

P{|x(t)| > c} = 0.

3. PROBLEM FORMULATION

Consider the following multi-agent systems (the followers)
with high-order stochastic nonlinear dynamics described
by:

dxij = (xi,j+1 + fij(x̄ij))dt + gij(x̄ij)dω, 1 ≤ j ≤ ni − 1,

dxi,ni
= (ui + fi,ni

(x̄i,ni
))dt + gi,ni

(x̄i,ni
)dω,

yi = xi1, (1)

where x̄ij = (xi1, · · · , xij)
T ∈ Rj , ui ∈ R, yi ∈ R are

the state, input, output of the ith follower, respectively,
i = 1, · · · , N . ω is an m-dimensional independent standard
Wiener process defined on the complete probability space
(Ω,F ,Ft, P ) with a filtration Ft satisfying the usual
conditions (i.e., it is increasing and right continuous while
F0 contains all P -null sets). The unknown functions fij

and gij are smooth with fij(0) = 0, gij(0) = 0, i =
1, · · · , N , j = 1, · · · , ni.

The following assumptions are made on system (1).

Assumption 1: The unknown functions fij(x̄ij) and
gij(x̄ij) are bounded by known nonnegative smooth func-
tions. Specifically, there exist known nonnegative smooth
functions f̄ij(x̄ij) and ḡij(x̄ij) such that

|fij(x̄ij)| ≤ f̄ij(x̄ij), |gij(x̄ij)| ≤ ḡij(x̄ij).

Assumption 2: The leader’s output y0(t) ∈ R and
ẏ0(t) are bounded, and they are only available for the ith
follower satisfying 0 ∈ Ni, i = 1, · · · , N .

Assumption 3: The leader is the root of a spanning tree
in Ḡ.

Remark 1: The assumption on the drift term fij(x̄ij)
and diffusion term gij(x̄ij) is very general, i = 1, · · · , N ,
j = 1, · · · , ni. These terms do not need to satisfy global
Lipschitz condition (Li et al. (2013)).

Now, we give the definition for distributed practical output
tracking.

Definition 2: The distributed practical output tracking
problem for system (1) is solvable if for any given ε > 0,
there exists a set of distributed control laws such that:

a) all the states of the closed-loop system are bounded in
probability;

b) for any initial value x(t0), there is a finite-time
T (x(t0), ε) such that

E|yi(t) − y0(t)|
4 < ε, ∀t > T (x(t0), ε), i = 1, · · · , N.

The purpose of this paper is to design distributed tracking
controllers to solve the distributed practical output track-
ing problem for system (1).

4. DISTRIBUTED INTEGRATOR BACKSTEPPING
DESIGN

In this section, a distributed integrator backstepping de-
sign technique is developed, by which distributed tracking
control laws are designed for system (1).
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The following lemma is frequently used throughout the
design process.

Lemma 1: If Assumption 3 holds, then, for i = 1, · · · , N ,

di = bi +
∑N

s=1 ais > 0.

Proof: By Assumption 3 and the definition of spanning
tree, one can get the conclusion easily.

With the help of Lemma 1, we have the following theorem.

Theorem 1: For i = 1, · · · , N , j = 2, · · · , ni, let

ξi1 =

N
∑

s=1

ais(yi − ys) + bi(yi − y0), ξij = xij − x∗
ij ,

x∗
ij = −ξi,j−1ρi,j−1(Λi,j−1) +

1

di

N
∑

s=1

aisxsj , (2)

and Vi,ni
= 1

4

∑ni

j=1 ξ4
ij . Then, under Assumptions 1-3 we

have

LVi,ni
≤−

ni−1
∑

j=1

(cij − δi,ni,j)ξ
4
ij + ξ3

i,ni
ui + ξ4

i,ni
ρi,ni,1(Λi,ni

)

−
1

di
ξ3
i,ni

N
∑

s=1

aisus +

ni
∑

s=1

βis, (3)

where cij > 0, j = 1, · · · , ni − 1, are design param-
eters; δi,ni,j > 0 and βis > 0 are constants, j =
1, · · · , ni − 1, s = 1, · · · , ni; ρi,ni,1(Λi,ni

) is a non-
negative smooth function to be designed later, Λi,j =
(x11, · · · , xN1, · · · , x1j , · · · , xNj)

T .

Proof: By Assumption 3 and Lemma 1, one can see that
(2) is well-defined.

The following proof proceeds step by step. Due to the limit
of space, we only give the outline of the the proof process:

Step 1. We firstly construct a distributed virtual controller
x∗

i2 for the ξi1-subsystem;

Step 2. We now construct a distributed virtual controller
x∗

i3 for the ξ̄i2-subsystem, where ξ̄i2 = (ξi1, ξi2)
T ;

Deductive Step. At this step, we aim to construct a
distributed virtual controller x∗

i,k+1 for the ξ̄ik-subsystem,

where ξ̄ik = (ξi1, ξi2, · · · , ξik)T ;

Step ni. We are now in a position to get (3) by analyzing
the ξ̄i,ni

-subsystem, where ξ̄i,ni
= (ξi1, ξi2, · · · , ξi,ni

)T .

Let

M =













1 −
1

d1
a11 −

1

d1
a12 · · · −

1

d1
a1N

...
...

. . .
...

1

dN
aN1 −

1

dN
aN2 · · · 1 −

1

dN
aNN













.

To complete the design of the distributed control laws, the
invertibility of the matrix M should be firstly proved in
the following Lemma.

Lemma 2: If Assumption 3 holds, then M is an invertible
matrix.

Based on Theorem 1 and Lemma 2, the distributed control
laws are explicitly given in the following Theorem.

Theorem 2: Under Assumptions 1-3, if the distributed
control laws are chosen as







u1

...
uN






=−M−1







ξ1,n1
ρ1,n1

(Λ1,n1
)

...
ξN,nN

ρN,nN
(ΛN,nN

)






(4)

with cij > δi,ni,j , then we have

LVi,ni
≤−c0Vi,ni

+

ni
∑

s=1

βis, (5)

where c0 = min
1≤i≤N,1≤j≤ni

4(cij − δi,ni,j) > 0, δi,ni,ni
= 0,

ρi,ni
(Λi,ni

) = ci,ni
+ ρi,ni,1(Λi,ni

).

Proof: By (4) one has







u1

...
uN






= −







ξ1,n1
ρ1,n1

(Λ1,n1
)

...
ξN,nN

ρN,nN
(ΛN,nN

)







+diag

(

1

d1
, · · · ,

1

dN

)

A







u1

...
uN






,

which yields

ui =−ξi,ni
ρi,ni

(Λi,ni
) +

1

di

N
∑

s=1

aisus. (6)

Substituting (6) into (3) gives (5).

Remark 2: The constructive proof in Theorems 1 and
2 proposes a new distributed integrator backstepping de-
sign method for nonlinear multi-agent systems for the
first time. The traditional integrated backstepping design
method used in the single-agent system (Liu et al. (2007);
Liu et al. (2008); Li et al. (2011); Li and Wu (2013))
requires that the agent can only use its own information,
and does not consider how to deal with the neighbors’
information. Moreover, the design method proposed in
Theorems 1 and 2 can deal with the interactions among
agents and coupling terms in dynamics effectively.

5. PERFORMANCE ANALYSIS

Theorem 3: Under Assumptions 1-3 and the distributed
control law (4), the distributed practical output tracking
problem for system (1) is solvable.

Proof: Defining V =
∑N

i=1 Vi,ni
, by (5) we have

LV ≤−c0V + β0, (7)

where β0 =
∑N

i=1

∑ni

s=1 βis.

By (7) and Theorem 1 in Liu et al. (2007), the closed-loop
system (1) and (4) has an almost surely unique solution
on [0,∞).

Let
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χ(t) = (ξ11, · · · , ξ1,n1
, · · · , ξN1, · · · , ξN,nN

)T ,

ηl = inf{t : t ≥ t0, |χ(t)| ≥ l}, ∀l > 0,

and tl = min{ηl, t} for all t ≥ t0. Since |χ(·)| is bounded
in the interval [t0, tl] a.s., V (χ) is bounded on [t0, tl] a.s..
From (7), it can be obtained that LV is also bounded on
[t0, tl] a.s.. Note lim

l→∞
ηl = ∞. Then, letting l → ∞, by (7)

and Dynkin formula in Mao and Yuan (2006) we have

EV (χ(t)) ≤ e−c0(t−t0)EV (χ(t0))

+
β0

c0
(1 − e−c0(t−t0)). (8)

Step 1. We firstly show that for any given ε and initial
value x(t0), there is a finite-time T (x(t0), ε) such that

E|yi(t) − y0(t)|
4 < ε, ∀t > T (x(t0), ε), i = 1, · · · , N.

Let y = ξ1 = (ξ11, · · · , ξN1)
T . By (8) one has

E|ξ1|
4 ≤ 8

(

e−c0(t−t0)EV (χ(t0))

+
β0

c0
(1 − e−c0(t−t0))

)

. (9)

From the definition of ξs1, s = 1, · · · , N , it can be seen that

ξ1 = (L + B)(y − 1Ny0). (10)

By Assumption 3 and (9)-(10) we have

E|y − 1Ny0|
4 ≤ 8|(L + B)−1|4

(

e−c0(t−t0)EV (χ(t0))

+
β0

c0
(1 − e−c0(t−t0))

)

. (11)

By (11) and the definition of c0 and β0, for any ε > 0 and
x(t0), one can find a finite-time T (x(t0), ε) and choose cij ,
βij , i = 1, · · · , N, j = 1, · · · , ni, such that

E|ys(t) − y0(t)|
4 < ε, ∀t > T (x(t0), ε), s = 1, · · · , N.

Step 2. We now show that all the states of the closed-loop
system are bounded in probability.

Let ξ = χ(t) and note that

EV (ξ)≥

∫

|ξ|>c

V (ξ)P (dw) ≥ inf
|ξ|>c

V (ξ)P (|ξ| > c). (12)

Then, by (8) and (12) we have

P (|ξ| > c)≤
EV (χ(t0)) + β0

c0

inf |ξ|>c V (ξ)
.

By the definition of V (ξ) one has

lim
c→∞

sup
t>t0

EV (χ(t0)) + β0

c0

inf |ξ|>c V (ξ)
= 0. (13)

By Definition 1 and (13), ξ is bounded in probability. This
together with Assumption 2 and (10) implies yi = xi1 is
bounded in probability, i = 1, · · · , N .

From the definition of ξi2 and (3) we arrive at

ξi2 = xi2 + ξi1ρi1(Λi1) −
1

di

N
∑

s=1

aisxs2,

which yields









ξ12

ξ22

...
ξN2









=









ξ11ρ11(Λ11)
ξ21ρ21(Λ21)

...
ξN1ρN1(ΛN1)









+ M









x12

x22

...
xN2









. (14)

Notice that ξi1, ξi2 and xi1 are bounded in probability, by
Lemma 2 and (14) one can conclude that xi2 is bounded in
probability, i = 1, · · · , N . Similarly, one can prove that xij ,
i = 1, · · · , N , j = 3, · · · , ni, are bounded in probability.
Therefore, all the states of the closed-loop system are
bounded in probability.

Thus, the theorem is true.

Theorem 4: Assumption 3 is necessary for the solvability
of the distributed practical output tracking problem of the
system (1).

Proof: If the leader is not the root of any spanning tree in
the digraph Ḡ, one can find some followers which are not
connected to the leader. For these followers, by choosing
different initial values from the leader, the tracking error
is not guaranteed to be bounded.

Remark 3: From (8) and (11), the outputs of the fol-
lowers can track the dynamic leader’s output y0(t) with
an exponential rate. Specifically, the convergence rate de-
pends on the parameter c0 = min

1≤i≤N,1≤j≤ni

4(cij − δi,ni,j).

One can choose larger cij to get a faster convergence rate,
at a cost of larger control effort.

Remark 4: For any ε > 0 and ε0 > 0, by (11) and
Chebychev’s inequality in Mao and Yuan (2006), there
exists T > 0 such that for all t > T ,

P{|y − 1Ny0| > ε} ≤
E|y − 1Ny0|

4

ε4

≤

8β0

c0

|(L + B)−1|4 + ε0

ε4
≤ ε

′

,

where ε
′

can be made small enough by choosing parame-
ters appropriately. Therefore, the asymptotic tracking in
probability can be achieved in some sense.

Remark 5: Let d(t) be an unknown continuous distur-
bance or parameter belonging to a known compact set
Ω ⊂ Rs. Consider the following more general multi-agent
systems with high-order stochastic nonlinear dynamics of
the form:

dxij = (xi,j+1 + f̃ij(x̄ij , d(t)))dt + g̃ij(x̄ij , d(t))dω,

j = 1, · · · , ni − 1,

dxi,ni
= (ui + f̃i,ni

(x̄i,ni
, d(t)))dt + g̃i,ni

(x̄i,ni
, d(t))dω,

yi = xi1, (15)

where f̃ij and g̃ij are unknown smooth functions bounded
by known nonnegative smooth functions (a same condition
presented by Assumption 1), i = 1, · · · , N , j = 1, · · · , ni.
If Assumptions 2-3 hold, then by repeating the controller
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design and performance analysis process above, the solv-
ability of the distributed practical output tracking problem
for system (15) can be shown similarly. Thus, from this
point, the results in this paper have some robustness.

6. A SIMULATION EXAMPLE

Consider the following stochastic nonlinear multi-agent
systems with i = 3:

dxi1 = (xi2 + fi1(xi1))dt + gi1(xi1)dω,

dxi2 = (ui + fi2(x̄i2))dt + gi2(x̄i2)dω,

yi = xi1, (16)

where f11(x11) = 1
2x11 sin x11, g11(x11) = 1

3x1, f12(x̄12) =
0, g11(x̄12) = x1 sin x2, fij(x̄ij) = 0, g2j(x̄2j) = 0, i =
2, 3, j = 1, 2, g31(x31) = 0, g31(x̄32) = x31 cos2 x32.

The topology Ḡ is described by a32 = b1 = b2 = 1,
a12 = a13 = a21 = a23 = a31 = b3 = 0. The leader’s
output y0(t) = 1

2 sin t.

By choosing c11 = 3
4 , c12 = 1, c21 = 3

8 , c22 = 1, c31 = 1,

c32 = 5
32 in the distributed integrator backstepping design

procedure developed in Section 4, one can get

u1 = −30(2x11 + x12 − sin t),

u2 = −56(
1

2
x21 + x22 −

1

4
sin t),

u3 = −
(9

8
x4

31 + 1 +
3

4

(

(x32 + 55x22 + 28x21 − 14 sin t)2

+
1

4

)2/3
)

(x31 + x32 − x21 − x22). (17)

Letting
ei = yi − y0, i = 1, 2, 3,

and randomly, setting the initial values x11(0) = 3,
x12(0) = −3, x21(0) = −0.1, x22(0) = −0.4, x31(0) =
−3, x32(0) = −0.2, we obtain Fig. 1, which depicts the
response of the closed-loop system and shows the efficiency
of the distributed tracking controller.

7. CONCLUDING REMARKS

The distributed tracking problem for multi-agent systems
with high-order stochastic nonlinear dynamics is investi-
gated. A distributed integrator backstepping design tech-
nique is developed, by which distributed tracking con-
trollers are designed to guarantee that all the sates are
bounded in probability, and the tracking errors can be
tuned to arbitrarily small with a tunable exponential con-
verge rate.

For the distributed control of stochastic nonlinear multi-
agent systems, many important issues are still open and
worth investigating, such as the distributed controls in
the case where communication channel is with unknown
parameters, quantization error, etc.
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