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Abstract: We study a networked state estimation problem for a linear system with multiple
sensors, each of which transmits its measurements to a central estimator via a lossy communi-
cation network for computing the minimum mean-square-error (MMSE) state estimate. Under
a general Markov packet loss process, we establish necessary and sufficient conditions for the
stability of the estimator for any diagonalizable system in the sense that the mean of the state
estimation error covariance matrix is uniformly bounded. For the second-order systems under
an i.i.d. packet loss model, the stability condition is expressed as a simple inequality in terms
of open-loop poles and the packet loss rate.
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1. INTRODUCTION

With the rapid development of the sensor network and
communication technologies, the problem of networked
state estimation has received significant attention in the
recent years [Sinopoli et al., 2004, Schenato et al., 2007,
Hespanha et al., 2007]. One of the major difficulties is due
to packet loss in transmitting the sensor measurements.
This work focuses on an estimation framework where
multiple sensors are deployed to observe a large linear
system and send their measurement to a remote estimator
through a lossy network. In particular, each sensor uses an
independent channel for communicating with the central
estimator where the minimum mean-square-error (MMSE)
state estimate is computed.

Under a single sensor case, the estimation framework was
initially studied in Sinopoli et al. [2004]. By treating the
received measurements as intermittent measurements, the
Kalman filter technique is applied to compute the net-
worked MMSE state estimate with single sensor [Sinopoli
et al., 2004]. However, the stability of the state estimator is
known to be seriously influenced by the packet loss model
and the algebraic structure of the system in a coupled and
complicated manner [Huang and Dey, 2007, You et al.,
2011, Mo and Sinopoli, 2010]. Strictly speaking, it is still
not well understood how they jointly affect the stability of
the networked MMSE state estimator.

Two frameworks for the networked state estimation are
proposed in the literature, by transmitting either the raw
measurements directly, or the state estimate instead. The
⋆ This work was in part supported by the National Natural Science
Foundation of China under grant NSFC 61304038.

former approach is easy to implement but the associated
stability condition is difficult to derive, whereas the latter
one yields simpler stability conditions [Schenato, 2008]
but adds the processing burden to the transmitters. The
latter one may not be possible when considering the
constraints of the hardware and power in sensor networks,
and tends to transmit more data through the network.
Under our distributed sensing setting, pre-computing the
state estimate in each sensor might not be sensible due
to the use of only partial state measurements. In Sun and
Deng [2004], each sensor locally computes a state estimate
and the central estimator aggregates these local estimates.
Such an estimate is typically not optimal, and requires the
stability of local estimators. This is an unnecessarily strong
assumption for the distributed setting. For these reasons,
we will adopt the former approach(each sensor transmits
its raw measurements to the estimator) in this paper.

To quantify the effect of packet loss, two channel mod-
els have been widely adopted: 1) the independent and
identically distributed (i.i.d.) model where the packet loss
process is modeled as an i.i.d. Bernoulli process [Sinopoli
et al., 2004]; 2) the Markovian model where the packet
process is described by a binary Markov chain [Huang
and Dey, 2007], which is inspired by the so-called Gilbert-
Elliott (GE) channel. Under the i.i.d. model, references
[Sinopoli et al., 2004, Mo and Sinopoli, 2010, Plarre and
Bullo, 2009, Mo and Sinopoli, 2008] focused on the stabil-
ity of the intermittent Kalman filter with only one sensor
transmitting its raw measurements, and there exists a
critical packet loss rate, above which the mean of the state
estimation error covariance matrix will diverge to infinity
[Sinopoli et al., 2004]. An upper bound and lower bound
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for the critical packet loss rate are also given in Sinopoli
et al. [2004]. For a general vector system, it is known to be
difficult to express the critical packet loss rate. Motivated
but also inspired by the limitation of Sinopoli et al. [2004],
the lower bound is shown to be tight in Plarre and Bul-
lo [2009] for the system with one-step observable, which
continues to hold for the so-called non-degenerate systems
[Mo and Sinopoli, 2010]. However, a counterexample was
found in You et al. [2011] that the critical packet loss rate
strictly lies between the lower and upper bounds. For the
GE packet loss model, the necessary and sufficient stability
condition for the second-order systems and certain classes
of higher-order systems are explicitly given in You et al.
[2011]. In Rohr et al. [2013], they studied a wider class of
Markovian network model.

In comparison, this paper studies the networked state es-
timation problem with multiple sensors. This is motivated
by many real-world scenarios where the system covers a
large spatial domain and distributed sensing is needed,
with each sensor measuring partial state information. The
stability analysis of the resulting networked MMSE esti-
mator is challenging, and has not been studied since the
system structure with multiple sensors is rather compli-
cated. Note that the approaches in Huang and Dey [2007],
You et al. [2011], Mo and Sinopoli [2010], Sun and Deng
[2004], Plarre and Bullo [2009], Mo and Sinopoli [2008]
are no longer applicable to this setting. We establish a
necessary and sufficient condition for the stability of the
state estimator for diagonalizable systems under multiple
sensors. An efficient algorithm is also designed to check
the condition. We demonstrate, through a second-order
system under the i.i.d. packet loss model, that the stability
condition reduces to a simple inequality. Thus, how the un-
stable open-loop poles and packet loss rates jointly affect
the stability of the MMSE estimator is clearly revealed.
From this perspective, our results substantially advance
the existing literature, which only consider the case with
a single sensor.

The rest of the paper is organized as follows. The problem
formulation is described and the MMSE estimate for the
system with multiple sensors over a lossy channel is derived
in Section 2. In Section 3, the stability condition for the
MMSE estimator of a diagonalizable system is given. For
second-order systems, stability conditions are given by a
simple inequality in Section 4. Concluding remarks are
drawn in Section 5.

2. PROBLEM FORMULATION

Consider a discrete-time stochastic system
xk+1 = Axk + wk, (1)

where xk ∈ Rn is the system state and wk is a white
Gaussian noise with covariance matrix Q > 0. The initial
state x0 is a Gaussian random vector with mean x̄0 and
covariance matrix P0 > 0. To remotely estimate the system
state, we use a sensor network with d ≥ 2 sensors to take
noisy measurements, i.e.,

yik = Cixk + vik, i ∈ {1, 2, . . . , d}, (2)
where vik ∈ Rmi is a white Gaussian noise of sensor i with
covariance matrix Ri > 0 and

∑d
i=1 mi = m. In addition,

x0, wk and vik are mutually independent. All the random

variables in this paper are assumed to be defined on a
common probability space (Ω,P,F), where Ω is the space
of elementary events, F is the underlying σ-field on Ω, and
P is a probability measure on F . Throughout the paper,
we denote

yk = col{y1k, y2k, . . . , ydk}, C = col{C1, C2, . . . , Cd}, (3)
where col{·} is a column operator, i.e., col{C1, C2} =
[CT

1 , C
T
2 ]

T , and assume that (A,C) is observable.

Each sensor and the central estimator are linked through a
communication network. Due to the channel unreliability,
the transmitted packets may be randomly lost. We use a
binary random process γi

k to describe the packet loss pro-
cess. That is, γi

k = 1 indicates that the packet transmitted
from sensor i is successfully delivered to the estimator at
time k, or γi

k = 0 if the packet is lost.

The implication of packet loss is that the estimator may
fail to generate a stable state estimator. To study how the
packet loss will affect the stability of the MMSE estimator,
we denote

Υk = diag{γ1
kI1, . . . , γ

d
kId}, (4)

where Ii ∈ Rmi×mi is an identity matrix, and define the
packet receival matrix as

Sk = diag{Υ0,Υ1, . . . ,Υk−1}. (5)
The set of all possible Sk will be denoted by Sk which
consists of 2kd elements. The information available to the
estimator at time k is given as follows:

Fk = {(Υ0,Υ0y0), (Υ1,Υ1y1) . . . , (Υk,Υkyk)}. (6)
Denote the MMSE (one-step-ahead) predictor and the
MMSE estimator by

x̂k|k−1 = E[xk|Fk−1] and x̂k|k = E[xk|Fk]

respectively. Their corresponding estimation error covari-
ance matrices are then given by

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
′|Fk−1]

and
Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)

′|Fk].

Then, a Kalman like algorithm is developed to recursively
compute the MMSE estimate and we establish the packet
loss condition under which the mean of the state estima-
tion error covariance matrix is uniformly bounded, i.e.,

lim sup
k→∞

E[Pk|k] < ∞, (7)

where the mathematical expectation is taken with respect
to the random process {Υk}. Here (7) is interpreted that
there exists a positive-definite matrix P̄ > 0 such that for
all k ≥ 0,

E[Pk|k] < P̄ or E[Pk|k−1] < P̄ .

Similar to that of Sinopoli et al. [2004], the Kalman filter
is still optimal under multiple sensors as shown below.
Theorem 1. The MMSE estimate for the networked sys-
tem in (1)-(2) is recursively computed by

x̂k|k = x̂k|k−1 +KkΥk(yk − Cx̂k|k−1); (8)

Pk|k = Pk|k−1 −KkΥkCPk|k−1, (9)
where the Kalman gain

Kk = Pk|k−1C
∗Υk(ΥkCPk|k−1C

∗Υk +R)−1

and R = diag{R1, . . . , Rd}.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

117



Proof: By following [Sinopoli et al., 2004], the measure-
ment noise distribution with packet loss can be described
by

p(vik|γi
k) ∼

{
N (0, Ri), if γi

k = 1;
N (0, σ2Ii), if γi

k = 0,
(10)

where σ is arbitrarily large. Then, the MMSE estimate is
computed by

x̂k|k = x̂k|k−1 + Pk|k−1C
∗(CPk|k−1C

∗

+ΥkR+ (I −Υk)σ
2)−1(yk − Cx̂k|k−1), (11)

Pk|k = Pk|k−1 − Pk|k−1C
∗(CPk|k−1C

∗

+ΥkR+ (I −Υk)σ
2)−1CPk|k−1. (12)

Without loss of generality, suppose that γ1
k = 1, . . . , γi

k = 1

and γi+1
k = 0, . . . , γd

k = 0. Denote
C̄1 = col{C1, C2, . . . , Ci}; C̄2 = {Ci+1, Ci+2, . . . Cd};
R̄1 = diag{R1, . . . , Ri}; R̄2 = diag{Ri+1, . . . , Rd}.

It follows that

CPk|k−1C
∗ +ΥkR+ (I −Υk)σ

2

=

[
C̄1Pk|k−1C̄

∗
1 + R̄1 C̄1Pk|k−1C̄

∗
2

C̄2Pk|k−1C̄
∗
1 C̄2Pk|k−1C̄

∗
2 + σ2I2

]
.

One can easily derive that

lim
σ→∞

(CPk|k−1C
∗ +ΥkR+ (I −Υk)σ

2)−1

=

[
(C̄1Pk|k−1C̄

∗
1 + R̄1)

−1 0
0 0

]
= Υk(ΥkCPk|k−1C

∗Υk +R)−1Υk. (13)

The rest of proof is complete by taking σ → ∞ in (11) and
(12).

In the sequel, we shall study the stability of the above
MMSE estimator.

3. STABILITY ANALYSIS OF THE MMSE
ESTIMATOR

To establish the stability condition for the MMSE estima-
tor (8)-(9), we define the N -step regression matrix

ON = SNcol{C,CA, . . . , CAN−1}. (14)
Note that ON is closely related to the observability of
the system under packet loss, and is central to stability
analysis. Specifically, the higher the packet loss rate is,
the easier ON becomes column rank deficient, which may
result in the instability of the MMSE estimator. Thus,
we extensively explore the rank condition of ON . Denote
Pk := Pk|k−1, and we have the following result, whose
proof is not difficult, and is omitted due to page limitation.
Lemma 2. Suppose that A is invertible and ON has full
column rank. There exists a positive definite matrix P̄N ,
independent of P0, such that

PN ≤ P̄N . (15)

We define the set of all SN leading to column rank deficient
ON (i.e., not having full column rank) by

RN = {SN |ON is column rank deficient}, (16)

and the probability of this set is

P(RN ) , P(SN ∈ RN ) =
∑

SN∈RN

P(SN ). (17)

This quantity is important to stability analysis as it
characterizes the probability of the regression matrix ON

losing observability. Two cases under different system
structures are discussed in the sequel.

3.1 Single Eigen-Block

All the open-loop poles of this class of systems are with the
same magnitude, i.e., it is characterized by the following
assumption.
Assumption 1. A = α diag(eiθ1 , eiθ2 , . . . , eiθn) for some
common magnitude α > 0.

We define the period of A as the minimum positive integer
τ such that Aτ = ατI. We say that A is periodic with a
period of τ if τ < ∞. If such a τ does not exist, we say that
A is aperiodic, and set τ = ∞. The packet loss process is
modeled as a general Markov process in Assumption 2.
Assumption 2. The packet loss process Υk is a Markov
process with finite order ν ≤ τ satisfying
P{Υk|Υk−1, . . . ,Υk−ν} = P{Υk|Υk−1, . . . ,Υk−ν−s} > 0

for any s ∈ N.
Remark 3. If ν > τ , we select an integer k0 such that
k0τ ≥ ν, and let the period of A be k0τ . Then, the
following results continue to hold.

Now, we are in the position to deliver our main result on
the single eigen-block case.
Theorem 4. Under Assumptions 1 and 2, the necessary
and sufficient condition for lim supN→∞ E[PN ] < ∞ is that

α2 lim sup
N→∞

(P(RN ))1/N < 1. (18)

Two lemmas below are needed to prove Theorem 4.
Lemma 5. Under Assumption 1 and ON is column rank
deficient. Given any p > 0 satisfying pI ≤ min{P0, Q}, it
holds that Tr(PN ) ≥ pα2N .

Proof: Consider a special case that wk = 0 and vik = 0
for all k ∈ N and i ∈ {1, 2, . . . , d}. Then the estimation
error covariance matrix of the MMSE estimate is denoted
by PN , and is computed as
PN = ANP0(A

N )∗ −ANP0O
∗
N (ONP0O

∗
N )†ONP0(A

N )∗.
(19)

Obviously, PN ≤ PN . Since the right hand side (RHS)
of (19) is monotonically increasing in P0[Sinopoli et al.,
2004], it follows that

PN ≥ pAN (I −O∗
N (ONO∗

N )†ON )(AN )∗. (20)

By the singular value decomposition [Horn and Johnson,

1985], it holds that ON = U

[
D 0
0 0

]
V, where U and V are

unitary matrices, and D is an a× a invertible matrix with
a = rank(ON ) < n. Subsequently, O∗

N (ONO∗
N )†ON =

V ∗
[
Ia 0
0 0

]
V. Together with (20), it follows that

PN ≥ pANV ∗
[
0 0
0 In−a

]
V (AN )∗. (21)
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Using Assumption 1 and that Tr(XY ) = Tr(Y X) for
any compatible matrices X and Y , the above implies
Tr(PN ) ≥ pα2NTr(In−a) ≥ pα2N . The proof is complete
by noting that Tr(PN ) ≥ Tr(PN ).

To explicitly express the dependence of PN on SN and P0

(the covariance matrix of x0), we denote it by ϕ(P0, SN ).
Let P0 = xI for x > 0, the associated E[PN ] is

ξN (x) =
∑

SN∈SN

ϕ(xI, SN )P(SN ). (22)

Then, we have the following result.
Lemma 6. For any P0 > 0, if there exists N0 > 0 and
x̃ > 0 such that x̃I ≥ ξN0(x̃) and x̃I ≥ P0, then
lim supN→∞ E[PN ] < ∞.

Proof: By the monotonicity of ϕ(·, SN )[Sinopoli et al.,
2004], we have ϕ(P0, SN ) ≤ ϕ(x̃I, SN ), which further
implies that

E[PN ] =
∑

SN∈SN

ϕ(P0, SN )P(SN )

≤
∑

SN∈SN

ϕ(x̃I, SN )P(SN )

= ξN (x̃). (23)
By the concavity of ξN (x)[Sinopoli et al., 2004], we ob-
tain that ξkN (x) ≤ ξN ◦ ξN ◦ · · · ◦ ξN (x) , ξ

(k)
N (x). This

implies that

lim sup
k→∞

ξkN0(x̃) ≤ lim sup
k→∞

ξ
(k)
N0

(x̃) ≤ x̃I. (24)

For any integers 0 ≤ k1 < k2, we define the notation
(generalized from Sk)

Sk1,k2 = diag{Υk1 ,Υk1+1, . . . ,Υk2−1}. (25)
Given any integer 0 < l < N0, it obtains that

ξN+l(x) =
∑

SN∈SN ,SN,N+l∈Sl

ϕ(ϕ(xI, SN ), SN,N+l)

P(SN )P(SN,N+l|SN ). (26)
Note that, for any SN and P > 0, we have∑

SN,N+l∈Sl

ϕ(P, SN,N+l)P(SN,N+l|SN )

≤ (AlP (Al)∗ +GlΣQ,lG
∗
l ),

where Gl =
[
Al−1 . . . A I

]
and ΣQ,l = diag{Q, . . . , Q︸ ︷︷ ︸

l

}.

Then, it follows that

ξN+l(x)≤
∑

SN∈SN

(Alϕ(xI, SN )(Al)∗ +GlΣQ,lG
∗
l )P(SN )

=AlξN (x)(Al)∗ +GlΣQ,lG
∗
l .

Since l is finite, it holds that lim supk→∞ ξkN0(x) < ∞ ⇔
lim supk→∞ ξkN0+l(x) < ∞. Together with (24), we obtain
that lim supN→∞ ξN (x̃) < ∞. By (23), it finally yields that
lim supN→∞ E[PN ] < ∞.

Proof of Theorem 4:

Necessity: Denote the complement of set RN by Rc
N ,

which contains all SN leading to a full column rank ON .

Let m0 be the minimum integer such that P(Rc
m0

) > 0.
Note that such a finite m0 must exist. Indeed, since
(A,C) is observable, Om0 must be possible to have full
column rank for some m0 ≤ n, e.g., Υk = I for all k ∈
{0, 1, · · · ,m0 − 1}, which in turn implies that P(Rc

m0
) ≥

P{Υk = I, 0 ≤ k ≤ m0 − 1} > 0.

Since PN ≥ Q > 0[Anderson and Moore, 1979], let p be the
minimum of minimum eigenvalues of matrices Q and P0.
Then, PN ≥ pI for all N ∈ N. Given a sufficiently large
integer N , consider a time horizon from 0 to Nm0. We
shall use Tr(E[PNm0 ]) to derive the necessary condition
for stability.

Base on (25), the associated regression matrix is

Ok1,k2 = Sk1,k2col{C,CA, . . . , CAk2−k1−1}.
Let l be any integer with 0 ≤ l < m0, the set of all possible
Sl,Nm0 is divided into the following disjoint subsets.

• Subset 1: Ol,Nm0 is column rank deficient;
• Subset 2: Ol,Nm0 has full column rank but Om0+l,Nm0

is column rank deficient;
• Subset 3: Om0+l,Nm0 has full column rank but
O2m0+l,Nm0 is column rank deficient;

• . . . . . .
• Subset N : O(N−2)m0+l,Nm0

has full column rank but
O(N−1)m0+l,Nm0

is column rank deficient;

Then the probability of each Subset is studied: The prob-
ability of Subset 1 is given by P(Sl,Nm0 ∈ RNm0−l).
Similarly, the probability of Subset j + 1 is given
by P(Sjm0+l,Nm0 ∈ R(N−j)m0−l)P(S(j−1)m0+l,Nm0

∈
Rc

(N−j+1)m0−l|Sjm0+l,Nm0 ∈ R(N−j)m0−l), j = 1, . . . , N −
1.

Under Assumption 2, for any t ∈ N, there exists positive
βν and εν such that

minp∈NP(Sp,p+t ∈ Rt) ≥ βνP(Rt);

minp∈NP(Sp,p+t ∈ Rc
t) ≥ ενP(Rc

t). (27)

Using the above decomposition, Lemma 5 and (27), it can
be shown that

Tr(E[PNm0 ]) =
∑

SNm0
∈Subset 1

Tr(ϕ(P0, SNm0))P(SNm0) +

. . . +
∑

SNm0
∈Subset N

Tr(ϕ(P0, SNm0))P(SNm0)

≥ pβνενP(Rc
m0

)
N∑
j=2

α2(jm0−l)P(Rjm0−l).(28)

Note that βν and εν are independent of N , and strictly
positive. By lim supN→∞ Tr(E[PNm0 ]) < ∞, it is necessary
that α2(jm0−l)P(Rjm0−l) < 1 as j → ∞, or equivalently,
α2(P(Rjm0−l))

1/(jm0−l) < 1 as j → ∞. Since l is arbi-
trarily selected from the set {0, . . . ,m0 − 1}, we conclude
that

lim sup
N→∞

E[PN ] < ∞ ⇒ α2 lim sup
N→∞

(P(RN ))1/N < 1. (29)
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Sufficiency: Let S0
N be the event that there is no packet

received up to time N , i.e., Υk = 0 for all 0 ≤ k < N .
Take any scalar q with qI > Q. Given any x > 0, it follows
that

ϕ(xI, S0
N ) =AN (AN )∗x+

N−1∑
j=0

AjQ(Aj)∗

≤ (α2Nx+

N−1∑
j=0

α2jq)I

= (α2Nx+
α2N − 1

α2 − 1
q)I

≤ α2N (x+
q

α2 − 1
)I. (30)

It is known that without using any measurement, the
estimation error covariance matrix cannot decrease. This
implies that for any SN ∈ RN ,

ϕ(xI, SN ) ≤ ϕ(xI, S0
N ). (31)

Splitting the set SN into RN and its complement Rc
N , it

follows from Lemma 2 that

ξN (x) =
∑

SN∈RN∪Rc
N

ϕ(xI, SN )P(SN )

≤ P(Rc
N )P̄N +

∑
SN∈RN

ϕ(xI, SN )P(SN )

≤ P(Rc
N )P̄N + P(RN )ϕ(xI, S0

N )

≤ P(Rc
N )P̄N + P(RN )α2N (x+

q

α2 − 1
)I.

Since lim supN→∞ α2NP(RN ) < 1, it is clear that
for sufficiently large x > 0 and xI > P0, we have
ξN (x) ≤ xI as N → ∞. By Lemma 6, it follows that
lim supN→∞ E[PN ] < ∞ for any P0 > 0.

3.2 Extension to Multiple Eigen-Blocks

We now generalize the result on single eigen-block to the
multiple eigen-blocks.
Assumption 3. A = diag{A1, A2, . . . , Ag}, where Ai =
αi diag{eiθi1 , eiθi2 , . . . , eiθini} is a ni×ni matrix with αi >
0, αi ̸= αj for any i ̸= j and

∑g
i=1 ni = n.

In light of the structure of A with multiple eigen-blocks,
we decompose ON into

ON =
[
O1

N O2
N . . . Og

N

]
,

where Oi
N is a mN × ni matrix.

The main result for the multiple eigen-block case is given
below.
Theorem 7. Under Assumptions 2 and 3, the necessary
and sufficient condition for lim supN→∞ E[PN ] < ∞ is that

α2
i lim sup

N→∞
(P(RN (i)))1/N < 1, ∀ i ∈ {1, 2, . . . , g}, (32)

where RN (i) = {SN |Oi
N is column rank deficient}.

Remark 8. It is clear that Theorem 7 covers the result in
Theorem 4. The proof of Theorem 7 is very complicated
and technical, although the idea is the same as that of
Theorem 4.

3.3 Computation of P(RN )

Using Theorem 4, the key factor in determining the
stability condition for systems satisfying Assumption 1
is to compute the probability P(RN ). We show how to
compute this in this subsection. Note that the computation
of P(RN (i)) for systems satisfying Assumption 3 can be
done similarly.

If Aτ = ατI, then the packet received at time k is
equivalent to the packet received at time k + τ as far
as the rank deficiency of ON is concerned for a large N .
Thus the sequence SN can be projected onto a shorter
sequence S̃N using the algorithm below, and we will have
P(SN ∈ RN ) = P(S̃N ∈ Rτ ).

Algorithm 1 Projection Algorithm
Step 1: For any k ∈ {1, 2, . . . , τ}, define γ̃i

k = γi
k ∨

γi
k+τ∨, . . . ,∨γk+⌈N/τ⌉τ and Υ̃k = diag(γ̃1

kI1, . . . , γ̃
d
kId),

where ∨ is Boolean OR operator, and ⌈·⌉ is the ceiling
function.

Step 2: Define S̃N = diag(Υ̃1, . . . , Υ̃τ ).

Because Rτ is a finite set for a periodic A, we denote its
elements by {s1, s2, . . . , sr} and rank them by P(S̃N+τ =

si|S̃N = sj) = 0 if j > i. In particular, s1 designates the
event that no packets have arrived.

Define Γi as the set of all combinations of SN−ν,N con-
ditioned on S̃N = si, and we further assume that the
elements in Γi are {Γi(1),Γi(2), . . . ,Γi(ti)}.

Under Assumption 2, for P(S̃(N+1)τ = si|S̃Nτ = sj) =
0, j > i, we define a lower triangular transition matrix M
with r × r blocks as

M =


E11 0 . . . 0
E21 E22 . . . 0
...

...
. . .

...
Er1 Er2 . . . Err

 . (33)

Note that each block Eij ∈ Rti×tj , j ≤ i is a transition
matrix with its (p, q)-th element

P(S̃(N+1)τ = si, S(N+1)τ−ν,(N+1)τ = Γi(p)

|S̃Nτ = sj , SNτ−ν,Nτ = Γj(q)). (34)
Based on Assumption 2, M is independent of N .

It is interesting that the stability condition can be charac-
terized by the maximum eigenvalue of M in the following
result, whose proof is omitted to save space.
Theorem 9. Let m0 be the minimum positive integer that
P(Rc

m0
) > 0. Suppose Assumption 2 holds and that A is

periodic with a period τ ≥ m0. Then,
P(RNτ ) = uMNv (35)

for any integer N ≥ 0, where u = [1 1 . . . 1], v =
[1 0 . . . 0]′. Moreover,

lim sup
N→∞

(P(RN ))1/N = (λmax(M))1/τ

= max
1≤i≤r

{λmax(Eii)
1/τ}, (36)
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where λmax(M) and λmax(Eii) are the largest eigenvalues
of M and Eii in magnitude, respectively.
Remark 10. If τ < m0, we could find a minimum integer
k0 such that k0τ ≥ m0, and replace τ by k0τ in Theorem
9.

4. SECOND-ORDER SYSTEMS WITH MULTIPLE
SENSORS

In this section, the necessary and sufficient stability condi-
tion for the MMSE estimator of a second-order system(as
defined in Assumption 5) with multiple sensors is explicitly
expressed as simple inequalities under i.i.d. packet loss
model. The system is also given in (1)-(2), but with some
additional assumptions.
Assumption 4. {γi

k} is an i.i.d. process with the packet
arrival rate pi = E{γi

k = 1}, and {γi
k} and {γj

k} are two
independent processes for any 1 ≤ i ̸= j ≤ d.
Assumption 5. A = α diag{eiθ1 , eiθ2} and τ is the mini-
mum integer that Aτ = ατI(τ = ∞ if A is aperiodic),
where α > 0 and θ1 ̸= θ2.
Assumption 6. rank(col{Ci, Cj}) = 2 and (A,Ci) is ob-
servable for any 1 ≤ i ̸= j ≤ d.
Remark 11. If rank(col{Ci, Cj}) = 1 and rank(Ci) ̸= 0 for
any i ̸= j, then Ci and Cj are dependent. This means that
receiving the packet from sensor i is equivalent to that
of sensor j. We can combine sensors i and j, and endow
it a smaller packet loss probability 1 − (1 − pi)(1 − pj).
This implies that there is no loss of generality to adopt
Assumption 6.

For each sensor, a Congruent Set is introduced, which is
key to the rank analysis of regression matrix ON .
Definition 1. For each sensor 1 ≤ i ≤ d, a congruent
set Ji is defined as Ji = {j|∃kij ∈ N, s.t. span{Ci} =
span{CjA

kij} and 0 ≤ kij < τ}.
Since i ∈ Ji, the congruent set is not empty. The proba-
bility that all sensors in Ji lose their packets at the same
time is computed by

p∗i =
∏
j∈Ji

(1− pj). (37)

Using Theorems 4 and 9, the stability condition for the
case of second-order systems can be explicitly expressed
as a simple inequality as below, whose proof is omitted.
Theorem 12. Consider the second-order system (1)-(2)
under Assumptions 4-6, the MMSE estimator is stable if
and only if ∏d

i=1(1− pi)
τ

mindj=1 p
∗
j

α2τ < 1. (38)

Remark 13. Substituting the number of sensor d = 1 into
Theorem 12, our result is the same as Theorem 7 in You
et al. [2011] for i.i.d. packet loss model. Thus, it generalizes
a result in You et al. [2011] for a single sensor case.

5. CONCLUSION

In this paper, we have studied the networked estimation
problem of a stochastic discrete-time system with multiple
sensors. The networked MMSE estimate was recursively

computed using the technique of the Kalman filter. Then
we study the stability of the MMSE estimator under a gen-
eral Markovian packet loss process. We have derived the
necessary and sufficient condition for the stability of the
networked MMSE estimator for diagonalizable systems. A
method is proposed to compute the stability condition. For
second-order systems under the i.i.d. packet loss model, the
stability condition can be given by a simple inequality.
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