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Abstract: This paper considers global asymptotic stability and robustness of cascaded
nonlinear stochastic systems, and presents Lyapunov-based criteria. Constituent systems are
characterized in terms of dissipation inequalities almost in the form of input-to-state stability
(ISS) which is popular for both stochastic and deterministic systems. As an important unique
feature of stochastic systems, this paper first demonstrates that assuming ISS systems having
unbounded decay rate is restrictive, which contrasts sharply with the deterministic case. This
motivates the second part of the main results focusing on ISS systems with bounded decay rate
as well as systems which are not ISS. With these developments, this paper proposes a framework
based on integral input-to-state stability (iISS) and demonstrates its usefulness.
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1. INTRODUCTION

Dynamical systems often have fluctuant elements and ex-
hibit distributions due to fluctuations. Stochastic differ-
ential equations of Itô form is useful for modeling the
fluctuations. In control engineering and systems science,
one often starts from modules and then connect them for
understanding and synthesizing a lager system. How much
do the fluctuations affect this module approach? This
paper addresses this question in view of integral input-to-
state stability (iISS) by solving problems of stability and
robustness of cascaded systems. The aim is at spotlighting
unique points arising from the random fluctuations.

Lyapunov-type methods has been extensively studied in
the literature of robust nonlinear control of stochastic sys-
tems, e.g. Krstić and Deng [1998], Wu et al. [2007], Xie and
Tian [2009], Yu and Xie [2010], Yu et al. [2010] to name a
few. It is now widely known that replacing the derivative
of a Lyapunov function along system trajectories by an in-
finitesimal generator involving a Hessian term is the tech-
nical key to dealing with stochastic systems. The Hessian
term makes it difficult to construct Lyapunov functions in
establishing stability of interconnected systems. Liu et al.
[2008] tackled cascaded systems and proposed a stability
criterion when subsystems are input-to-state stable (ISS)
in probability (Tang and Basar [2001]). Although cascaded
systems had no feedback loop, the criterion was referred
to a small-gain condition. This terminology might not be
intuitive, but the result nicely described how the Hessian
term bothers us. Wu et al. [2013] assumed concavity of
system gains to get rid of the Hessian.

One of useful facts for deterministic systems is that a
cascade of ISS systems is always ISS (Sontag and Teel

[1995]). For example, the system ẋ(t) = −x(t)3 + u(t)
satisfying the dissipation inequality

V̇ (x) ≤ −
3

2
V (x)2 +

3

2
|u|4/3

with V (x) = x2 is ISS since the decay rate 3V (x)2/2
on the right-hand side is radially unbounded in V . It is
known that a deterministic ISS system can always admit a
radially unbounded decay rate (Sontag and Wang [1995]).
Following the seminal work for deterministic systems (Son-
tag and Teel [1995]), Liu et al. [2008] formulated cascades
of stochastic ISS systems with radially unbounded decay
rates. To develop a stochastic counterpart of the principle
of ISS cascade, is it reasonable to assume that the decay
rate is unbounded? This paper gives a characterization
elucidating the fact that the unboundedness of decay rates
is demanding for stochastic systems even if ISS is assumed.

Bounded decay rates were also considered in preceding
studies (Yu and Xie [2010], Yu et al. [2010] to name a
few). However, their idea to tackle bounded decay rates
or non ISS systems is as simple as seeing if summing up
(i.e., linear combination) Lyapunov functions of individual
subsystems establishes stability of interconnected systems.
For deterministic systems, it is known that the effective-
ness of linear combination is very limited, and it results
in stability criteria which are far more conservative than
those utilizing nonlinear combination (Ito [2006], Ito and
Jiang [2009], Praly et al. [2010]). Indeed, the fact that
cascade of ISS is always ISS cannot be explained by the
linear combination. Is it possible to effectively use nonlin-
ear combination for stochastic systems to obtain less con-
servative criteria as done for deterministic systems? This
paper provides an affirmative answer to this question, and
proposes an iISS framework for stochastic systems where
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decay rates are allowed to be merely positive definite. Due
to space limitation, all proofs are omitted.

Notation: The symbols P and E denote the probability
and the expected value, respectively. Let R = (−∞,∞)
and R+ = [0,∞). For a given vector x of the n-dimensional
real vector space Rn, the Euclidean norm is denoted by |x|.
For a matrix X, |X|F denotes the Frobenius norm defined

by |X|F =
√

Tr{XTX}, where the superscript T indicates
the transpose of a matrix, and Tr is the trace of a square
matrix. A continuous function ζ : R+ → R+ is said to be of
class P and one writes ζ ∈ P if ζ(s) > 0 for all s ∈ R+\{0},
and ζ(0) = 0. A continuous function ζ : R+ → R+ is said
to be of class K if it is of class P and strictly increasing. It is
of classK∞ if, in addition, lims→∞ ζ(s) = ∞. A continuous
function η : R+×R+ → R+ is said to be of class KL if, for
each fixed t, the function η(·, t) is of class K and, for each
fixed s, η(s, ·) is decreasing and limt→∞ η(s, t) = 0. For
any given ζ ∈ K, define the operator ζ⊖: [0,∞] → [0,∞]
as ζ⊖(s) = sup{v ∈ [0,∞) : s ≥ ζ(v)}. By definition, one
has ζ⊖(s) = ζ−1(s) for s < limτ→∞ ζ(τ), and ζ⊖(s) = ∞
elsewhere. Any non-decreasing continuous function ζ :
R+ → R+ is extended to the operator ζ: [0,∞] → [0,∞]
as ζ(s) = supv∈{w∈[0,∞) :w≤s} ζ(v).

2. PRELIMINARIES

2.1 Robustness with respect to Deterministic Disturbance

Consider the stochastic differential equation of Itô form

dx = f(x, r)dt+ h(x)dw, (1)

where x(t) ∈ R
N is the state and r(t) ∈ R

M is the
deterministic disturbance which is measurable, locally
essentially bounded function of t ∈ R+. The drift field
f : RN ×R

M → R
N and the diffusion field h : RN → R

N×S

are locally Lipschitz and satisfy h(0) = 0. Components
of w ∈ R

S are mutually independent standard Wiener
processes. The following definition is used (Tang and Basar
[2001]).

Definition 1. System (1) is said to be input-to-state stable
(ISS) in probability if for each ǫ > 0, there exist a class
KL function β and a class K function γ such that

P

{

|x(t)| < β(|x(0)|, t) + γ

(

sup
τ∈[0,t]

|r(τ)|

)}

≥ 1− ǫ,

∀t ∈ R+, x(0) ∈ R
N \ {0}. (2)

In this paper, system (1) is said to be 0-GAS in probability
if (2) is satisfied for r = 0 (Krstić and Deng [1998]).

Definition 2. System (1) is said to be integral-input-to-
state stable (iISS) in probability if for each ǫ > 0, there
exist a class KL function β, a class K function µ and a
class K∞ function χ such that

P

{

χ (|x(t)|) < β(|x(0)|, t) +

∫ t

0

µ(|r(τ)|)dτ,

}

≥ 1− ǫ,

∀t ∈ R+, x(0) ∈ R
N \ {0}. (3)

The above is an exact analog of iISS for deterministic
systems (Sontag [1998]). The following is a variant.

Definition 3. System (1) is said to be quasi-integral-input-
to-state stable (quasi-iISS) in probability if there exists a

constant R > 0 satisfying the following: for each ǫ > 0,
there exist a class KL function β, class K functions β, µ,
γ, and a class K∞ function χ such that

P

{

χ (|x(t)|) < β(|x(0)|) +

∫ t

0

µ(|r(τ)|)dτ,

}

≥ 1− ǫ,

∀t ∈ R+, x(0) ∈ R
N \ {0} (4)

‖r‖ < R ⇒ (2). (5)

Property (4) does not guarantee 0-GAS in probability. It
is stressed that the functions β, β, γ, µ and χ in (2), (3)
and (4) may depend on ǫ. Usually, it is inevitable that the
smaller ǫ is, the larger β, β, γ and µ should become.

2.2 Robustness with respect to Stochastic Disturbance

Consider the following system involving Θ(t) ∈ R
S×S :

dx = f(x)dt+ h(x)Θ(t)dw. (6)

For each t ∈ R+, the matrix Θ is non-negative definite and
its (k, l)-component represents the intensity describing the
influence of the l-th component of w(t) on x(t) through the
k-th column of h(x). It is emphasized that for (6), we do
not assume h(0) = 0.

As in Krstić and Deng [1998], we define noise-to-state
stability (NSS) for system (6) by replacing |r(τ)| with
|Θ(τ)ΘT (τ)|F in (2) of Definition 1. In the same way,
integral noise-to-state stability (iNSS) and quasi-integral
noise-to-state stability (quasi-iNSS) are defined by replac-
ing |r(τ)| with |Θ(τ)ΘT (τ)|F in (3) of Definition 2, and
(4)-(5) of Definition 3, respectively.

2.3 Lyapunov-type Characterizations

The definitions in the previous section are stated with
functions β, β, γ and µ parametrized by the level of unsure-
ness ǫ although the notions by themselves are independent
of ǫ. It is the trick of arbitrary ǫ. In analyzing and designing
systems, the parameterized functions are not very conve-
nient. This paper makes use Lyapunov characterizations of
these notions to get rid of the dependency on ǫ. As usual,
the infinitesimal generator L associated with the systems
(1) and (6) is defined as

LV =
∂V

∂x
f +

1

2
Tr

{

QThT ∂2V

∂x2
hQ

}

, (7)

for any given C
2 function V : x∈R

N 7→V (x)∈R+, where

Q = I for (1),
Q = Θ(t) for (6).

(8)

Here, the symbol I is the identity matrix of size S×S. For
ISS, we have the following is parallel to the deterministic
case presented in Sontag and Wang [1995].

Proposition 4. Consider (1). If there exist a positive defi-
nite and radially unbounded C

2 function V : RN → R+,
and C

0 functions ρ ∈ K, η ∈ P such that the implication

|x| ≥ ρ(|r|) ⇒ LV ≤ −η(V (x)) (9)

holds for all x ∈ R
N and r ∈ R

M , then system (1) is ISS
in probability.

This proposition is essentially given in Tang and Basar
[2001] which assumes η ∈ K. The relaxation into η ∈ P can
be verified by combining Mao [2002] and Krstić and Deng
[1998]. Ito and Nishimura [2014] proved the following. .

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8617



Proposition 5. Consider (1). If there exist a positive defi-
nite and radially unbounded C

2 function V : RN → R+,
and C

0 functions α ∈ K, σ ∈ K such that

LV ≤ −α(V (x)) + σ(|r|) (10)

holds for all x ∈ R
N and r ∈ R

M , then system (1) is
quasi-iISS in probability.

Proposition 6. Consider (1). Suppose that there exists
D ≥ 0 such that

(

∂V

∂x
(x)

)

h(x) = 0, ∀V (x) ≥ D (11)

holds. If there exist a positive definite and radially un-
bounded C

2 function V : RN → R+, and C
0 functions

α ∈ P, σ ∈ K such that (10) holds for all x ∈ R
N and

r ∈ R
M , then system (1) is iISS in probability.

Proposition 6 recovers the deterministic characterization
developed in Angeli et al. [2000] by h = 0 when the
stochastic noise is absent.

Remark 7. In Yu and Xie [2010], Yu et al. [2010], a positive
definite and radially unbounded function V satisfying (10)
with a pair of α ∈ P and σ ∈ K is called a stochastic iISS
Lyapunov function. Nevertheless, it is not proved there
that the existence of a stochastic iISS Lyapunov function
implies any trajectory-based property (See [Yu and Xie,
2010, Remark 4]).

For NSS, the characterization in Krstić and Deng [1998]
can be modified slightly using Mao [2002] as follow:

Proposition 8. Consider (6). If there exist a positive defi-
nite and radially unbounded C

2 function V : RN → R+,
and C

0 functions ρ ∈ K, η ∈ P such that the implication

|x| ≥ ρ(|ΘΘT |F ) ⇒ LV ≤ −η(V (x)) (12)

holds for all x ∈ R
N , then system (6) is NSS.

The next two are given in Ito and Nishimura [2014].

Proposition 9. Consider (6). If there exist a positive defi-
nite and radially unbounded C

2 function V : RN → R+,
C

0 functions α ∈ K and σ ∈ K such that

LV ≤ −α(V (x)) + σ(|ΘΘT |F ) (13)

holds ∀x ∈ R
N , Θ ∈ R

S×S , then system (6) is quasi-iNSS.

Proposition 10. Consider (6). Suppose that there exists
D ≥ 0 such that (11) holds. If there exist a positive definite
and radially unbounded C

2 function V : RN → R+, and
C

0 functions α ∈ P, σ ∈ K such that (13) holds for all
x ∈ R

N and Θ ∈ R
S×S , then system (6) is iNSS.

For dealing with interconnection of systems, we will not
use (11) directly in order not to exclude stochastic noises.

3. FRAGILITY OF DECAY RATES: A MOTIVATING
RESULT

It is a widely known fundamental that in Lyapunov-type
analysis, the difference between the stochastic case and
the deterministic case boils down to the diffusion term
(1/2)Tr

{

QThT∂2V /∂x2hQ
}

in the infinitesimal generator
LV in (7). The diffusion term which is present only in the
stochastic case implies that the dissipation characteriza-
tion of stochastic systems is fragile compared to that of

deterministic systems. This section shows a novel charac-
terization giving an insight into this unavoidable fact, and
demonstrates a unique need for tackling systems having
bounded decay rates in the stochastic case.

Definition 11. Given α ∈ P, σ ∈ K ∪ {0}, a C
1 function

T : R+ → R+, and positive integers N , M and S, define
S(N,M,S, α, σ, T ) as the set of all pairs (Σ, V ) such that
the system Σ is described by

dx = f(x, r)dt+ h(x)dw, x∈R
N , r∈R

M (14)

with the S-dimensional standard Wiener process w, where
f : R

N ×R
M → R

N and h : R
N → R

N×S are locally
Lipschitz and satisfy f(0, 0) = h(0) = 0. Moreover, the
function V : RN → R+ is of class C2, positive definite and
radially unbounded and satisfies

LV ≤ −α(V (x)) + σ(|r|), ∀x ∈ R
N , r ∈ R

M (15)

T (V (x)) ≥ Tr

{

hT(x)

(

∂V

∂x
(x)

)T(
∂V

∂x
(x)

)

h(x)

}

, ∀x ∈ R
N .

(16)

The following condition elucidates the effect of nonlinear
coordinate transformation of V on the dominance of the
decay rate α over disturbance rate σ in (15).

Theorem 12. Suppose that positive integers N , M , S and
C

1 functions α ∈ K \ K∞, σ ∈ K ∪ {0}, T : R+ → R+ are
given and satisfy

T (s) > 0, ∀s ∈ [b,∞). (17)

for a real number b > 0. Then there exists a C
2 function

F ∈ K∞ such that for all (Σ, V ) ∈ S(N,M,S, α, σ, T ), the

function V̂ (x) = F (V (x)) satisfies

LV̂ ≤ −α̂(V̂ (x)) + σ̂(|r|), ∀x ∈ R
N , r ∈ R

M (18)

with some α̂ ∈ K∞ and σ̂ ∈ K ∪ {0} if and only if there
exists a continuous function ω : R+ → R+ such that

Id+ ω ∈ K∞ (19)

ω ◦ α(s) > 0, ∀s ∈ (0,∞) (20)

lim
s→∞

α(s) ≥ lim
s→∞

(Id+ ω) ◦ σ(s). (21)

lim
τ→∞

log{ω ◦ (Id+ ω)−1 ◦ α(τ)}+
∫ ∞

b

2ω ◦ (Id+ ω)−1 ◦ α(τ)

T (τ)
dτ = ∞ (22)

are satisfied. Furthermore,

σ = 0 ⇒ σ̂ = 0 (23)

can be achieved in (18) whenever (19)-(22) are satisfied.

It is stressed that there exists a continuous function ω :
R+ → R+ satisfying (19)-(21) if and only if

lim
s→∞

α(s) ≥ lim
s→∞

σ(s). (24)

The function ω is introduced explicitly in Theorem 12 for
(22) involving ω. Condition (22) can be made independent
of ω if the inequality of (24) is strict.

Corollary 13. Suppose that positive integers N , M , S and
C

1 functions α ∈ K \ K∞, σ ∈ K ∪ {0}, T : R+ → R+

are given and satisfy (17) for a real number b > 0.
Assume that lims→∞ α(s) 6= lims→∞ σ(s). Then there
exists a C

2 function F ∈ K∞ such that for all (Σ, V ) ∈

S(N,M,S, α, σ, T ), the function V̂ (x) = F (V (x)) satisfies
(18) with some α̂ ∈ K∞ and σ̂ ∈ K ∪ {0} satisfying (23) if
and only if the two conditions
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lim
s→∞

α(s) > lim
s→∞

σ(s) (25)
∫ ∞

b

α(τ)

T (τ)
dτ = ∞ (26)

hold.

The following includes the deterministic case h = 0 as a
special case.

Theorem 14. Suppose that positive integers N , M , S and
C

1 functions α ∈ K \ K∞, σ ∈ K ∪ {0}, T : R+ → R+

are given and satisfy T (s) = 0, ∀s ∈ [c,∞) for a real
number c ≥ 0. Then there exists a C

2 function F ∈ K∞

such that for all (Σ, V ) ∈ S(N,M,S, α, σ, T ), the function

V̂ (x) = F (V (x)) satisfies (18) with some α̂ ∈ K∞ and
σ̂ ∈ K ∪ {0} satisfying (23) if and only if (24) holds.

This theorem exactly recovers the deterministic counter-
part indicated by Sontag and Wang [1995], Angeli et al.
[2000], Ito [2006] when T = 0. The growth order conditions
(22) and (26) in Theorem 12 and Corollary 13 reveal a
distinctive influence of stochastic noise on the coordinate
transformation F of the Lyapunov function V , which never
exhibits in the deterministic case. The stochastic effect
varies with the choice of coordinate on which V is built.
Recall that by virtue of Proposition 4, the system Σ is ISS
if (24) holds. Nevertheless, the growth order conditions
(22) and (26) prevent us from taking it for granted that
an ISS system admit an unbounded decay rate (α ∈ K∞).
Notice that if (22) and (26) were not required, a cascade of
ISS systems could be always ISS as it is in the deterministic
result replying on α ∈ K∞ (Sontag and Teel [1995]).
Thereby, Theorem 12 and Corollary 13 elucidates that

• Stochastic noise makes the dominance of the decay
rate α over the disturbance rate σ fragile, and the
dominance is not preserved by the nonlinear coordi-
nate change of V .

• Assuming α ∈ K∞ for stochastic systems is restrictive
since the dominance of the decay rate (24) does not
secure the existence of α̂ ∈ K∞ achieving (18).

The study in Liu et al. [2008] provided an important step
toward Lyapunov-based analysis taking the degradation
of α ∈ K∞ into account in constructing a Lyapunov
functions for cascaded systems. However, it assumes that
each subsystem admits α ∈ K∞. This paper not only
develops another tool, but also places a special emphasis
on allowing α ∈ K\K∞ and α ∈ P\K to address the unique
issue for stochastic systems as well as non-ISS systems.

Remark 15. In Theorem 12, (resp., Corollary 13), the
continuous differentiability of α, σ and T is assumed
for guaranteeing the local Lipschitzness of f and h in
establishing the necessity of (19)-(22) (resp., (25)-(26)).

4. ROBUSTNESS WITH RESPECT TO
DETERMINISTIC DISTURBANCE

4.1 Cascaded System with An Equilibrium at Origin

This section supposes that the system (1) consists of

dx1 = f1(x, r1)dt+ h1(x)dw1 (27)

dx2 = f2(x2, r2)dt+ h2(x2)dw2, (28)

where xi(t) ∈ R
Ni , ri(t) ∈ R

Mi , wi(t) ∈ R
Si for i = 1, 2,

x(t) = [x1(t)
T , x2(t)

T ]T ∈ R
N with N = N1 + N2,

r(t) = [rT1 (t), r
T
2 (t)]

T ∈ R
M with M = M1 + M2, and

w(t) = [w1(t)
T , w2(t)

T ]T ∈ R
S with S = S1 + S2. As

assumed for (1), the functions f1 : R
N ×R

M1 → R
N1 ,

f2 : RN2×RM2 → R
N2 , h1 : RN → R

N1×S1 and h2 : RN2 →
R

N2×S2 are locally Lipschitz and satisfy hi(0) = 0 for i =
1, 2. Again, components of wi are mutually independent
standard Wiener processes. The two subsystems (27) and
(28) forms a cascade, where (27) and (28) are referred to
as a driven system and a driving system, respectively. This
section assumes that the subsystems (27) and (28) of (1)
satisfy the following.

Assumption 16. For each i = 1, 2, there exist a positive
definite and radially unbounded C

2 function Vi : R
Ni →

R+ and C
1 functions αi ∈ P, σ1 ∈ K and C

0 functions
κi ∈ K ∪ {0}, T1, T2 : R+ → R+ such that

LV1 ≤ −α1(V1(x1)) + σ1(V2(x2)) + κ1(|r1|)) (29)

LV2 ≤ −α2(V2(x2)) + κ2(|r2|)) (30)

Tr

{

hT1(x)

(

∂V1

∂x1
(x1)

)T(
∂V1

∂x1
(x1)

)

h1(x)

}

≤ T1(V1(x1))

(31)

Tr

{

hT2(x2)

(

∂V2

∂x2
(x2)

)T(
∂V2

∂x2
(x2)

)

h2(x2)

}

≤ T2(V2(x2))

(32)

hold for all xi ∈ R
Ni , x3−i ∈ R

N3−i and ri ∈ R
Mi .

This assumption implies that the driven system, i.e., x1-
subsystem is quasi-iISS with respect to the input x2

when α1 ∈ K. When either α1 ∈ K∞ or lims→∞ α1(s) ≥
lims→∞ σ1(s) holds, the x1-subsystem is ISS with respect
to the input x2. The x1-subsystem is ISS with respect to
the input (x2, r1) if α1 ∈K∞. Assumption 16 defines the
x2-subsystem in the same way. This subsection aims at
deriving conditions under which the cascaded system (27)-
(28) is quasi-iISS, iISS or ISS in probability. To this end,
we seek a Lyapunov function V : RN → R+ in the form of

V (x) = F1(V1) + F2(V2)

=

∫ V1(x1)

0

λ1(s)ds+

∫ V2(x2)

0

λ2(s)ds (33)

for continuous functions λi : R+→R+, i= 1, 2, satisfying
λi(s)>0 for all s∈(0,∞). In contrast to the deterministic
case (Sontag and Teel [1995], Ito [2006], Ito and Jiang
[2009]), in the presence of stochastic noise, it is inevitable
that the nonlinear transformations Fi cause degradation
of decay rates of subsystems. This section shows how to
deal with this fundamental difficulty arising from intercon-
nections without assuming α1, α1 ∈ K∞.

4.2 Radially Non-Vanishing Decay Rates

In this section, we deal with subsystems admitting αi ∈ K,
i = 1, 2, i.e., the decay rates are not radially vanishing.
When T1(0) = 0 holds, there exists b ≥ 0 such that

T1(s) = 0, ∀s ∈ [0, b]. (34)

For given b ≥ 0, let σ2 : R+ → R+ be defined as

σ2(s) =







0 , 0 ≤ s < b

e

∫ s

1

α1(τ)

T 1(τ)
dτ

, b ≤ s < ∞

(35)

T 1(s) = max
τ∈[b,s]

T1(τ), b ≤ s < ∞. (36)
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We can prove the following.

Theorem 17. Consider (1) consisting of (27) and (28).
Suppose that α1 ∈ K and T1(0) = 0. If there exists α̃2 ∈ K
such that

α̃2(s) ≤ α2(s)−
1

2

σ′
1(s)

σ1(s)
T2(s), ∀s ∈ R+ (37)

lim sup
s→0

σ2 ◦ α
⊖
1 ◦ 3σ1(s)

α̃2(s)
< ∞ (38)

are satisfied, then system (27)-(28) is 0-GAS in probability.
Furthermore, if

lim
s→∞

α̃2(s) = ∞ or lim
s→∞

σ1(s)κ2(1) < ∞ (39)

is satisfied in addition, then the following hold true:

(i) If there exist Di ≥ 0, i = 1, 2, such that
(

∂V1

∂x1
(x1)

)

h1(x) = 0, ∀|x1| ≥ D1 (40)

(

∂V2

∂x2
(x2)

)

h2(x2) = 0, ∀|x2| ≥ D2 (41)

D2 < lim
s→∞

σ⊖
1 ◦ α1(s) (42)

are satisfied, system (27)-(28) is iISS in probability.
(ii) System (27)-(28) is quasi-iISS in probability.
(iii) If α̃1, α̃2 ∈ K∞, system (27)-(28) is ISS in probability.

Note that (38) holds automatically if (34) is satisfied with
b > 0. It is worth mentioning that the pair (40) and (41) is
less restrictive than (11) required for all |x| ≥ D. A non-
trivial modification allows us to employ (40) and (41).

A cascade of two deterministic systems admitting α1, α2 ∈
K is always 0-GAS (Ito [2010]). The following illustrates
how such deterministic results are covered as special cases.

Corollary 18. Suppose that (34) holds for a real number
b > 0, and T2 = 0. If α1, α2 ∈ K holds, system (27)-(28) is
0-GAS in probability. Furthermore, if

lim
s→∞

α2(s) = ∞ or lim
s→∞

σ1(s)κ2(1) < ∞ (43)

is satisfied in addition, then the following hold true:

(i) If there exists D1 ≥ 0 such that (40) is satisfied,
system (27)-(28) is iISS in probability.

(ii) System (27)-(28) is quasi-iISS in probability.
(iii) If α1 and α2 are of class K∞, system (27)-(28) is ISS

in probability.

Remark 19. Liu et al. [2008] assumes κ1 = 0 in addition
to α1, α2 ∈ K∞. Theorem 17 and Corollary 18 not only
give an alternative to the criterion proposed in Liu et al.
[2008], but also allow us to deal with subsystems which are
not equipped with α1, α2 ∈ K∞. The next section further
relaxes the assumption on α1, α2.

4.3 Radially Vanishing Decay Rates

This subsection removes α1, α2 ∈ K assumed in Theorem
17 and Corollary 18, and allows lims→∞ αi(s) = 0.

Theorem 20. Consider (1) consisting of (27) and (28).
Suppose that

∫ 1

0

σ1(τ)

α2(τ)
dτ < ∞ (44)

∫ ∞

1

σ1(τ)

α2(τ)
dτ = ∞ (45)

κ2 = 0 or

{

α2 ∈ K
and

σ1 /∈ K∞

}

or α2 ∈ K∞ (46)

are satisfied. If there exists K ∈ [0, 2) such that

Kα2(s) ≥ T2(s)

(

σ′
1(s)

σ1(s)
−

α′
2(s)

α2(s)

)

, ∀s ∈ R+ (47)

holds, then system (27)-(28) is 0-GAS in probability and
the following hold true:

(i) If there exist Di≥0, i=1, 2, such that (40), (41) and

D2

{

< lim
s→∞

σ⊖
1 ◦ α1(s), if α1 ∈ K

= 0, otherwise
(48)

are satisfied, system (27)-(28) is iISS in probability.
(ii) If α1, α2∈K, system (27)-(28) is quasi-iISS in proba-

bility.
(iii) If α1, α2 ∈ K∞, system (27)-(28) is ISS in probability.

Property (47) holds whenever T2 = 0. In such a case,
assumption (45) can be dropped since σ1 can always be
replaced by another class K function being larger than the
original σ1 and satisfying (45) and (46). It is interesting
that in the case of T2 = 0, the set of conditions required
by Theorem 20 is identical to that of a deterministic result
in Ito [2010] even when T1 6= 0.

The next corollary is a is a special case of Theorem 20. It
requires a restrictive, but simple constraint.

Corollary 21. Consider (1) consisting of (27) and (28). If
there exists ℓ2 > 0 such that

σ1(s) ≤ ℓ2α2(s), ∀s ∈ R+ (49)

holds, then the statements (i), (ii) and (iii) in Theorem
20 hold true.

Without invoking Theorem 20, an alternative proof can be
given to the above corollary easily. Indeed, the matching
between σ1 and α2 in the form of (49) allows us to use
linear F1 and F2, i.e., constant λ1 and λ2.

Remark 22. Corollary 21 can be considered as a rear-
ranged statement of approaches to α1, α2 6∈ K∞ such as
Yu and Xie [2010], Yu et al. [2010] using constant λ1, λ2.

5. ROBUSTNESS WITH RESPECT TO STOCHASTIC
DISTURBANCE

5.1 Cascaded System Allowing for Noise at Origin

In this section, let system (6) consist of

dx1 = f1(x)dt+ h1(x)Θ1(t)dw1 (50)

dx2 = f2(x2)dt+ h2(x2)Θ2(t)dw2, (51)

where the functions f1 : RN → R
N1 , f2 : RN2 → R

N2 ,
h1 : RN → R

N1×S1 and h2 : RN2 → R
N2×S2 are locally

Lipschitz. Just as h(0) = 0 was not assumed for (6), here
hi(0) = 0 for i = 1, 2 are not assumed either. Vectors
and their dimension are xi(t) ∈ R

Ni , wi(t) ∈ R
Si for

i = 1, 2, x(t) = [x1(t)
T , x2(t)

T ]T ∈ R
N with N = N1 +
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N2, and w(t) = [w1(t)
T , w2(t)

T ]T ∈ R
S with S = S1 +

S2. Again, components of wi are mutually independent
standard Wiener processes. As in (6), the (k, l)-component
of the non-negative definite matrix Θi(t) ∈ R

Si×Si which is
bounded and piecewise continuous in t ∈ R+ denotes the
intensity describing the influence of the l-th component of
wi(t) on xi(t) through the k-th column of hi. This section
assumes the following.

Assumption 23. For each i = 1, 2, there exist a positive
definite and radially unbounded C

2 function Vi : R
Ni →

R+ and C
1 functions αi ∈ P, σ1 ∈ K and C

0 functions
κi ∈ K ∪ {0}, H1, H2 : R+ → R+ such that

LV1 ≤ −α1(V1(x1)) + σ1(V2(x2)) + κ1(|Θ1Θ
T
1 |F ) (52)

LV2 ≤ −α2(V2(x2)) + κ2(|Θ2Θ
T
2 |F ) (53)

∣

∣

∣

∣

hT1(x)

(

∂V1

∂x1
(x1)

)T(
∂V1

∂x1
(x1)

)

h1(x)

∣

∣

∣

∣

F

≤ H1(V1(x1)) (54)

∣

∣

∣

∣

hT2(x2)

(

∂V2

∂x2
(x2)

)T(
∂V2

∂x2
(x2)

)

h2(x2)

∣

∣

∣

∣

F

≤ H2(V2(x2))

(55)

hold for all xi ∈ R
Ni , x3−i ∈ R

N3−i and all non-
negative definite matrices Θi ∈ R

Si×Si , where κi is the
zero function, i.e., κi = 0 if hi = 0.

As in Section 4, this section uses a Lyapunov function V
in the form of (33) to develop criteria for quasi-iNSS, iNSS
and NSS of the cascaded system (50)-(51).

5.2 Radially Non-Vanishing Decay Rates

Recall that the notions of NSS, quasi-iNSS and iNSS esti-
mate the deviation of the process x(t) from the origin due
to the stochastic noise wi, while the notions of ISS, quasi-
iISS and iISS aim at getting rid of the influence of wi at
x = 0. As a result, the following theorem establishing NSS,
quasi-iNSS and iNSS imposes less restrictive conditions on
subsystems than Theorem 17.

Theorem 24. Consider (6) consisting of (50) and (51).
Suppose that α1, α2 ∈ K and

lim
s→∞

α2(s) = ∞ or lim
s→∞

σ1(s) < ∞ or h2 = 0 (56)

are satisfied. Then the following hold true.

(i) If there exist Di ≥ 0, i = 1, 2, such that (40)-(42) are
satisfied, system (50)-(51) is iNSS.

(ii) If

lim sup
s→∞

α′
i(s)

αi(s)
Hi(s) < ∞, i = 1, 2 (57)

lim sup
s→∞

σ′
1(s)

σ1(s)
H2(s) < ∞ (58)

are satisfied, system (50)-(51) is quasi-iNSS.
(iii) If α1, α2 ∈ K∞, (57) and (58) are satisfied, system

(50)-(51) is NSS.

5.3 Radially Vanishing Decay Rates

Theorem 25. Consider (6) consisting of (50) and (51).
Suppose that (44), (45) and

h2 = 0 or

{

α2 ∈ K
and

σ1 /∈ K∞

}

or α2 ∈ K∞ (59)

are satisfied. Then the following hold true.

(i) If there exist Di ≥ 0, i = 1, 2, such that (40), (41)
and (48) are satisfied, system (50)-(51) is iNSS.

(ii) If α1, α2 ∈ K, (58) and

lim sup
s→∞

α′
2(s)

α2(s)
H2(s) < ∞ (60)

are satisfied, then system (50)-(51) is quasi-iNSS.
(iii) If α1, α2 ∈ K∞ and (58) and (60) are satisfied, system

(50)-(51) is NSS.

Corollary 26. Consider (6) consisting of (50) and (51).
If there exists ℓ2 > 0 such that (49) holds, then the
statements (i), (ii) and (iii) in Theorem 25 hold true
without assuming (58) and (60).

6. EXAMPLES

Consider the following functions in Assumption 16.

α1(s)=
s

1 + s
, σ1(s)=s, κ1=s, T1(s)=

s2

3(1 + s)
(61)

α2(s)=
s2

1 + s2
, κ2=0, T2(s)=

s3

1 + s2
. (62)

A cascaded system admitting the above functions with
Vi(xi) = x2

i /2 and Ni = Mi = Si = 1, i = 1, 2, is

dx1 = −
x1(1 + x2 − r1)

2 + x2
1

dt+
x1

√

6(2 + x2
1)
dw1

dx2 = −
x3
2

4 + x4
2

dt+
x2
2

√

8 + 2x4
2

dw2.

The method in Liu et al. [2008] cannot be applied since
neither α1 ∈ K∞ nor lims→∞ α1(s) ≥ lims→∞ σ1(s) is
satisfied. This cascade satisfies all requirements (34)-(39)
in Theorem 17 with b = 0, σ2(s) = s3, T 1 = T1 and
α̃2 = α2/2, α1 ∈ K. Indeed, the function V in (33) with

λ1(s) =
s3

50(1 + s3)
, λ2(s) = s

achieves

LV ≤ −
V 4
1

300(1 + V 3
1 )(1 + V1)

− P (V2)V2 +
|r1|

50

for P ∈ K. Thus, Theorem 17 guarantees 0-GAS and
quasi-iISS for all cascaded systems satisfying Assumption
16 with (61) and (62). Note that (44) is not fulfilled.

Next, consider the following functions

α1(s)=
s

1 + s2
, σ1(s)=s, κ1=0, T1(s)=s4 (63)

α2(s)=
s

1 + s2
, κ2=0, T2(s)=

1

2
(64)

for Assumption 16. A cascaded system admitting the
above functions with Vi(xi) = x2

i /2 and Ni = Mi = Si =
1, i = 1, 2, is

dx1 = −
2x1 − x3

1(x2 + r1)

4 + x4
1

dt+
x3
1

4
dw1

dx2 = −
2x2

4 + x4
2

dt+
2x2

2

(1 + 2x2
2)

3/2
dw2.

Due to α1, α2 ∈ P \ K, neither Theorem 17 nor Liu et al.
[2008] is applicable. Nevertheless, it can be verified that
(44)-(47) in Theorem 20 are satisfied by (63)-(64) with
K = 1. Thus, 0-GAS of all cascaded systems satisfying
Assumption 16 with (63) and (64) is guaranteed by Theo-
rem 20.
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7. CONCLUDING REMARKS

In this paper, the problem of verifying stability and ro-
bustness of cascaded nonlinear stochastic systems has been
addressed. Issues arising from stochastic noises have been
spotlighted. Each subsystem is assumed to be described by
a dissipation inequality using the infinitesimal generator
associated with a Lyapunov function of the subsystem as
usual. This paper has shown an important catch in formu-
lating cascaded systems. For deterministic ISS systems, it
is widely known that without loss of generality one can
assume that the decay rate of each subsystem is radially
unbounded. This paper has proved that assuming ISS
systems having unbounded decay rates is restrictive. Mo-
tivated by this unique feature of stochastic systems, this
paper has developed criteria for stability and robustness of
cascaded systems allowing for bounded decay rates. The
development leads to an iISS framework for composing
Lyapunov functions. Compared with the existing literature
on interconnection of iISS-type stochastic systems, the
development of this paper is unique in the utilization of
nonlinear transformation in constructing Lyapunov func-
tions. It has not only led to less conservative stability
criteria, but also allowed us to present the criteria in the
way that they explicitly recover deterministic criteria when
stochastic noises are absent. Another feature of this paper
is that all robustness properties achieved in terms of dissi-
pation inequalities are linked to characterized in terms of
trajectories as in the deterministic case, while trajectory-
based characterizations have been available only for ISS
systems in the literature. In addition to ISS and iISS, this
paper has addressed robustness in the sense of NSS and
its generalizations.

In Ferreira et al. [2012], a criterion for NSS of inter-
connected systems is presented based on stochastic pas-
sivity (Florchinger [1999]). As in the deterministic case,
the passivity approach is based on linear combination
of Lyapunov functions of subsystems. On the one hand,
this paper has employed nonlinear transformation of Lya-
punov functions so that subsystems are not required to
be passive. On the other, this paper has dealt with only
cascade connection. For feedback interconnection, results
were reported by the authors in Ito and Nishimura [2014].
On the surface, the feedback formulation can include the
cascaded system as a special case by considering a small
ficticious function at a connecting channel. However, it
is known for deterministic systems that exploiting the
cascade structure can lead less conservative criteria. In
particular, decay rates in dissipation inequalities can be
allowed to be radially vanishing although it cannot be
allowed in the feedback formulation (Ito [2010]). In the
stochastic case, looking directly at cascade structure is
more important. Reducing magnitude of one connecting
channel in small-gain arguments for feedback is not read-
ily implementable. The change of coordinates of subsys-
tems for establishing stability of the overall system causes
degradation of dissipation properties of subsystems in the
presence of stochastic noises. Reducing magnitude of a
connection may result in the increase of loop gain. In fact,
getting rid of this undesirable cycle explains unique terms
arising from stochastic noises in stability criteria this paper
have developed.
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