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Abstract: Design conditions for the existence of the H,, state feedback control for discrete-
time stochastic systems with state-multiplicative noise stabilizing the closed-loop in such a way
that the state variables satisfy equality constraints in the mean are presented in the paper.
Using an enhanced form of the bounded real lemma for discrete-time stochastic systems with
state-multiplicative noise, the LMI-based procedure is provided for computation of the gain
matrix of state control law and the influence of equality constraints is explained. The approach
is illustrated on example demonstrating the validity of the proposed method.
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1. INTRODUCTION

In the recent decades, many significant results have
spurred interest in the problem of determining the control
laws for the systems with constraints. In the typical case
(Benzaouia and Gurgat (1998)) where a system state re-
flects certain physical entities, this class of constraints rises
because of physical limits and these constraints usually
keep the system state in the region of technological condi-
tions. Subsequently, this problem can be formulated using
a technique dealing with the state constraints directly
to be coped efficiently using modified linear techniques
(Ko and Bitmead (2007)). Notably, a special form of the
problems was defined while the system state variables
satisfy constraints (Hahn (1992)) and are interpreted as
descriptor systems. Because a system with state equality
constraints generally does not satisfy the conditions under
which the results of descriptor systems can be applicable,
this approach is very limited. If the design task is inter-
preted as a singular problem, associated methods can be
developed to design the controller parameters (Filasova
and Krokavec (2010), Filasovd and Krokavec (2012b)).

In principle, it is possible and ever easy to apply direct
design methods, namely to design a controller that stabi-
lizes the systems while the system state variables satisfy
equality constraints. Following the idea of linear quadratic
(LQ) control, such a technique has been introduced in
Ko and Bitmead (2007) and was extensively used in
the reconfigurable control design (Filasovd and Krokavec
(2012a), Krokavec and Filasovd (2009)). Direct extension
to control design for stochastic discrete-time systems with
state-multiplicative noise and the state variables tied up in
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the mean by equality constraints (Krokavec and Filasova
(2011)) is very conservative, since the design conditions
given in terms of linear matrix inequalities (LMI) are ill
conditioned and have to be regularized.

Considering new results in system control (He et al.
(2005)) and in bounded real lemma forms for discrete-time
stochastic systems (El Bouhtouri et al. (1999), Gershon
and Shaked (2008), Gershon and Shaked (2013b)), new
design conditions for H, state-constrained control based
on an enhanced form of the bounded real lemma for linear
discrete-time stochastic systems with state-multiplicative
noise are derived in the paper. To present this, the paper
is divided in these sections. Following the introduction in
Sec. 1, the control task tying up the state variables in the
mean by equality constraints for discrete-time stochastic
systems with state-multiplicative noise is presented in Sec.
2. The preliminary results focused on two bounded real
lemma forms for such stochastic systems are presented in
Sec. 3, and Sec. 4 provides the controller design conditions
in the equivalent forms of LMIs. Subsequently, in Sec. 5
there are derived the design conditions for H,, control
with the mean state equality constraints for the considered
stochastic systems. Sec. 6 illustrates the constrained con-
trol design task by a numerical solution and Sec. 7 draws
some conclusions.

Throughout the paper, the notations are narrowly stan-
dard in such a way that 7, X T denotes the transpose of
the vector & and matrix X, respectively, X = X T~ o,
(> 0), means that X is a symmetric positive definite (semi-
definite) matrix, rank( ) remits the rank of a matrix, the
symbol I, indicates the n-th order identity matrix, Z, is
the set of all positive integers, IR denotes the set of real
numbers, IR™*" refers to the set of all n x r real matri-
ces and Ly(0,400) entails the space of square summable
discrete vector random sequence over (0, +00).
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2. PROBLEM FORMULATION

Throughout the paper, the task is concerned with state
feedback design to control the stochastic discrete-time
linear dynamic system given by the set of equations

qg(i+1)=(F+Uo(i))q(i) + Gu(i) + Vv(i) (1)
y(i) = Cq(i) (2)

where q(i) € R", u(i) € R" , y(i) € IR™ is the state,
input, and output vector, respectively, v(i) € IR™ is an
exogenous disturbance vector, and F' € R"*", G € IR"*",
CecR™" VeR"™™ U e IR"™™ are real matrices.

It is assumed that the multiplicative noise o(i), 0 <i < j
satisfies the condition

Eo{o(i)} =0, Eo{o(i)o(j)} = s 3)

where E,{-} denotes expectation with respect to o(i) and
di; is the Kronecker delta function. Disturbance vector is a
non-anticipative process, where {v (i)} € La( (0, 00); R™).

The problem of the interest is to design in the mean square
sense stable and in the state variables constrained a closed-
loop system by the state feedback controller of the form

u(i) = —Kq(i) (4)

where K € IR"™" is the feedback controller gain matrix,
the design constraint takes the equality form

E.{q(i+1)} e N;, ={q:Lg=0} forallic Z, (5)

and rank(L) = p < r (Krokavec and Filasovd (2011)).

3. BASIC PRELIMINARIES

Proposition 1. (Matrix pseudoinverse) If © is a matrix
variable and A, B, A are known non-square matrices of
the appropriate dimensions such the equality

AO®B = A (6)

can be set, then all solution to ® means
© = A'AB®! + ©° — A®'A@°BB®! (7)

where A®! and B®' is Moore-Penrose pseudoinverse of
A, B, respectively, and ©° is an arbitrary matrix of
appropriate dimension (see, e.g., Boyd et al. (1994)).

Proposition 2. If H € IR™*"™ is a real square matrix with
non-repeated eigenvalues, satisfying the constraint

eTfH=0 (8)

then one from its eigenvalues is zero, and (normalized) e’
is the left raw eigenvector of H associated with the zero
eigenvalue (see, e.g., Filasovd and Krokavec (2012b)).

In order to create more convenient space for new design
task conditions, two modifications of the stability solution
for stochastic systems (Gershon and Shaked (2008) and
El Ghaoui (1995), Hinrichsen and Pritchard (1998), Gao
and Wang (2004), respectively) are presented first. Since
these modifications constitute the first stage in the solution
of the considered problem, to the best of authors’ belief,
inclusion of the complete proofs was an easier way than to
interpret in detail how to adapt the original bounded real
lemma (BRL) formulation for the discrete-time stochastic
systems with multiplicative noise.

Lemma 1. (BRL for discrete-time stochastic systems with
multiplicative noise) The unforced system (1), (2) is sta-
ble in the mean square sense and with the quadratic
performance ~ if there exists a positive definite matrix
P € IR™™*™ and a positive scalar v € IR such that

P=P"'>0, ~>0 (9)
-P * * % %
0 —I,, =* x* *
PF PV —-P «x * <0 (10)
PU 0 0 —P «
C 0 o o0 -1,

Here, and hereafter, % denotes the symmetric item in a
symmetric matrix.

Proof. Let the Lyapunov function candidate take the
form

pq(i)) =

) Pa(i) + 3 (TG G) — () (1)

Jj=0

where v € IR is square of the H,, norm of the transfer
function matrix defined for the disturbance input v and
the system output y. Taking expectation with respect to
o(i) it yields
Eo{p(q(i+1))} —p(q(i )
= Eo{q'(i+1)Pq(i+1)} — q
+y’(Dy(i) —

Solving for the deterministically unforced system, then
E{q"(i+1)Pq(i+1)} = v (i))VIPVv(i)+

)=
(i) Pq(i)+
v’ (i)v(i)

(12)

+q"(i) (FTPF + E,{0*(i)}UTPU ) q(i)+ (13)
+q" () FTPV (i) + v"(i)VTPFq(i)
and, substituting (2) and (13) into (12), then also
Eo{p(q(i+1))} — p(q(i)) =
=q'(i)(—P + F"PF + U'PU + C"C)q(i)+ (14)

q' () F'"PVo(i) +
+o () VIPV(i) -

vI()\WVIPFq(i)+
o' (i)v(i)

Defining the composed vector

q°"(i) = [¢"(i) v" (1) ] (15)
the inequality
q°"())P°q°(i) < 0 (16)
it is satisfied only if
7 F'PV
o= U T <0 (17)
V'PF —I, +V'PV
P}, =-P+F'PF+U'PU +C'C (18)
Writing (17) as follows
-P+U'PU+C'C 0 ]
0 _’yIrv
—[PF P
+ [VTP] P Vi]i<o
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and using the Schur complement property, (19) can be
rewritten in the following form

-P+UPU+C'C 0 F'p
0 —I,., VIP| <0 (20)
PF PV -P

Applying twice the Schur complement property, (20) im-
plies (10). This concludes the proof. [ |

Lemma 2. (enhanced BRL for discrete-time stochastic
systems with multiplicative noise) The deterministically
unforced system (1), (2) is stable in the mean square
sense and with the quadratic performance ~y if there exist
positive definite matrices P,Q € IR™ ™ and a positive
scalar v € IR such that

P=P'>0, Q=Q">0, 7>0 (21)
—-P =« * * *
0 —I,, * * *
QF QV P-2Q = * <0 (22)
QU 0 0 —05Q =
c 0 0 o -I,
Proof. Since the unforced system (1) implies
Fq(i)+Uo(i)q(i) + Vv(i) — q(i+1) =0 (23)

then, with an arbitrary symmetric positive definite matrix
Q € R™ ™, it yields

(¢"(i+1) + q" (1)U (1)) Q (iq‘(,g(t)rioél(z‘ﬁ))Jr) =0 (24)
Eo{q"(i+1)}Q(Fq(i) + Vv(i) — Eo{q(i+1)})+

" () UTQU4() = 0 (25)

respectively. Adding (25) and its transposition to (12)
gives

Eo{p(q(i+1))} —p(q(i)) =
= E{q"(i+1)}PE,{q(i+1)}+
+E{q"(i+1)}Q(Fq(i) + Vo(i) — Eo{q(i+1)})+

+(Fali) + Voli) - BAa(i+1)}) 'QE {ali+ D)+
+2¢"()}UTQUq(i) — (i) (i)+
+q"())C"Cq(i) — q" (i) Pq(i) < 0
Defining the composed vector
a*"(i) = [q"(i) v"(i) Eo{q"(i+1)}] (27)
then (26) can be written as
q""(1)P*q*(i) < 0 (28)
where
-P+C'C+2U0'QU 0 F'qQ
Pt = 0 —I,., VIQ | <0(29)
QF QV P-2Q

To find the LMI form, (29) can be rewritten using Schur
complement property as (22). This concludes the proof. ®

The inequality (22) is an enhanced representation of BRL
for the given class of stochastic systems. It is linear
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with respect to the system variables but does not involve
any product of the Lyapunov matrix P and the system
matrices F', V. This offers its possibility to be applied in
a singular task analysis.

4. STATE FEEDBACK CONTROL

This section addresses the problem of finding the state-
feedback control law (4) that stabilizes the system (1),
(2) and achieves the optimal level of unknown input
disturbance attenuation.

Theorem 1. The control (4) to the system (1), (2) exists
if there exists a symmetric positive definite matrix X €
IR™ ™ a matrix Y € IR™*™ and a positive scalar v € IR
such that

X=X">0 ~v>0 (30)

-X * * * *

0 —I,, * * ok
FX-GY V -X =« * <0 (31)

UX 0 0 —-X =

CcCX 0 0 o -1,
When the above conditions hold,

K=Yx! (32)

Proof. Replacing F in (10) by the closed-loop system
matrix

F.=F-GK (33)
and defining the transform matrix
Ty=diag[P ' I,, P' P! I,] (34)

then, pre-multiplying and post-multiplying the left-hand
and the right-hand side of (10) by (34), it yields

P! * * * *
0 —I,,  * * *
(F-GK)P™ Vv P! « * | <0 (35)
UP™' 0 0 -P' «
CPil 0 0 0 _Im
Thus, with the notations
X=P' Y=KpP' (36)
(35) implies (31). This concludes the proof. |

Considering the enhanced BRL form (21), (22), the next
design condition can be obtained.

Theorem 2. The control (4) to the system (1), (2) exists
if there exist symmetric positive definite matrices X, T €
IR™ ™ a matrix Y € IR™*™ and a positive scalar v € IR
such that

X=XT">0, T=T">0 ~>0 (37)
-T * * * *
0 —I,, * * *
FX-GY V T-2X « x | <0 (38)
UX 0 0 —05X =
cX 0 0 0o -I,

When the above conditions hold, the control law gain
matrix is given as

K=YX"! (39)
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Proof. Since it was supposed that Q is a positive definite
matrix, defining so the transform matrix

Tp=diag[Q ' I, Q' Q' I,]

then, substituting (33) in (22) and subsequently pre-
multiplying the left-hand side and the right-hand side of
(22) by (40) results in

-Q'PQ! * * *

(40)

%k
0 —I,, =* * *
FQ'-GKQ™' Vv P, * * | < 0(41)
uQ™! 0 0 —05Q° ! =«
cQ! 0 0 o I,
Py =Q'PQ' —2Q7" (42)
Thus, with the notations
T=Q 'PQ™', X=Q' Y=KQ' (4
(41) implies (38). This concludes the proof. |

5. CONSTRAINED STATE CONTROL

In practice (Cakmakci and Ulsoy (2009), Debiane et al.
(2004)), the deterministic ratio control can be used to
maintain the relationship between two state variables ¢y,
gk, defined compactly as

I}q(i+1)=0 (44)
where ap, € IR is a positive ratio value and
lT:[Ol"'lh"'_ahk"'On] (45)

The task formulation above means that the problem of the
interest is generally defined as an equality constrain con-
ditioned closed-loop system design of the state feedback
control law (4), where L in (5) reflects a prescribed fixed
ratios of two or more state variables.

Using the control law (4), the equilibrium control equation
takes the form

q(i+1)=(F+Uo(i) — GK)q(i) + Vv(i) (46)

and, considering the design constraint (5), it can be set
Eo{Lq(i+1)} = .

=LVv(i)+ L(F-GK)q(i) = LVv(i)

where it is supposed that the matrix L is introduced in

such a way that

L(F-GK)=0 = LF=LGK (48)

as well as that the closed-loop system matrix (33) is stable.

Therefore, N, is the constrain subspace, the states will be
constrained in this subspace, and the system state stays
within the constrain subspace (see, e.g., Ko and Bitmead
(2007), Krokavec and Filasova (2009)).

Since (7) implies all solutions of K as

K = (LG)®'LF +(I,, — (LG)®'LG)K® (49)
where K° is an arbitrary matrix of the appropriate di-
mension and (LG)®! is the pseudoinverse of LG, then (4)
results in the control law

u(i) = —Mq(i) + Nu° (i) (50)

where
u’(i) = —K°q(i)
M = (LG)*'LF, N-=1, - (LG)°'LG

(51)
(52)

The task is to design the feedback control gain matrix K°
in such a way that the closed-loop is stable and (29) is
satisfied for (33).

Since (8) implies that such a design problem is a singular
task, the design conditions are derived using Theorem 2.

Theorem 3. (design condition for an in state constrained
control) Given the system (1), (2), the equality constraint
(5) and the matrices (52), then the constrained control of
the form (50), (51) exists if there exist symmetric positive
definite matrices X, T € IR"*™, a matrix Y € IR"*" and
a positive scalar v € IR such that

X=XT>0, T=TT">0 >0 (53)

=T * * * *

0 —I,, * * *
F°X-G°Y V T-2X % * <0 (54)

UX 0 0 —0.5X *

CcX 0 0 o -I,
where

F°=F-GM, G°=GN (55)

When the above conditions hold, the control law gain
matrices are given as

K°=YX !, K=M+NK° (56)
Proof. Substituting (50) into (1) gives
q(i+1) = (57)
=(F-GM+Uo(i))q(i) + GNu°(i) + V(i)
and using (55) then (57) can be rewritten as
q(i+1) = (F°+Ua(i))q(i) + G°u®(i) + Vo(i) (58)

Since the structure of (58) is the same as of (1), following
the similar approach as used in the proof of Theorem 2, the
equivalent inequality for (58) can be obtained by inserting
F + F°, G + G° into (31). This concludes the proof. m

Remark 1. Since

F=F°-G°K°=F—-GM -GNK"° = 59
=F-GM -GK+M)=F—-GK =F, (59)
the eigenvalues spectra of the closed-loop system matrices
F?, F. are equal. As (8), (48) implies the closed-loop
system matrix F,. is singular, a singular problem has to
be solved.

Because plants generally do not work in autonomous
mode, the constrained forced mode is also analyzed in the
following.

Definition 1. The forced regime for the system (1), (2) is
given by the control policy

u(i) = —Kq(i) + Wwl(i) (60)

where r = m, w(i) € IR™ is a desired output signal vector,
and W € IR"™*"™ is the signal gain matrix.
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Fig. 1. Response of the noise- and disturbance-free system
(qa = LWwy)

If the pair (F, G) of (1), (2) is controllable, the pair (F, C)
is observable and

rank{gg] =n+m

then the matrix W designed by using the static decoupling
principle (see, e.g., Wang (2003)) takes the form
W = (C(I,—(F-GK))"'G) (62)

Theorem 4. Using the control policy (60) designed with re-
spect to the equality constrain (48), the controlled system
state variables satisfy at all time instants the condition

a,(1) = LE{q(i+1)} = LGWw(i) + LVv(i)  (63)

(61)

-1

Proof. Since a forced motion of (1), (2) can be written as
q(i+1) = (64)
(F+Uo(i) — GK)q(i) + GW ,w(i) + V(i)
applying (47), so (64) implies (63). This concludes the
proof. [ ]

It is important to note that this theorem is a direct
generalization of the technique presented in Filasovéd and
Krokavec (2012b).

6. ILLUSTRATIVE EXAMPLE

To demonstrate the control properties, the system de-
scribed by state-space equations (1), (2) was considered
where the sampling period was t; = 0.1s and

0.9993 0.0987 0.0042
F =|-0.0212 0.9612 0.0775|, C = {
—0.3875 —0.7187 0.5737

0 0 0.0004 0.0051  0.0050
U = 0o 0 O , G =10.1029 0.0987

0 0101
010 0

0.03880 0 0.0387 —0.0388
VvIi=[137], o?2=02=10"3

P

Because the design conditions are tied to the requirement
(3), in the following the state, input and output variables
as well as disturbance are normalized by the norm factor
n, = 103.

The space variables constrain was specified as
2q1(t) + g3(t) _
q2(t)

i 10

3 a
t[s]. Ts=0.1s

Fig. 2. Response of the system with multiplicative noise

and disturbance (g4 =LE,{q(+1)} = LWw+LVwv(i))
which implies
L=[2-11]
and subsequently it is

—4.5975 4.1756 —1.4212
—10.8552 9.8590 —3.3557

0.8479 —0.3591
—0.3591 0.1521

|
|

Solving (53), (54) with respect to the LMI variables X, T,
Y and v using Self-Dual-Minimization (SeDuMi) package
for MATLAB (Peaucelle et al. (2002)), the feedback gain
matrix design problem in the state-constrained stochastic
system control was tackled with the results

0.7022 —0.5322 —1.2200
X = [—0.5322 9.9907 3.7945] , v =17.4838
—1.2200 3.7945 14.3577

0.7319 —0.4465 —1.0576
T = l—0.4465 9.4713 1.0427]
—1.0576 1.0427 11.2210

y — 23.0884 —3.4118 3.0856
T =9.7773 0 1.4452 —1.3059

Using (56), the feedback gain matrices are

39.1693 0.4438  3.4258
—16.5870 —0.1879 —1.4507

34.5710 4.6194 2.0045}

K= |

K= {27.4442 9.6710 —4.8066

The control law for the above defined insures in the mean
square sense the closed-loop dynamics determined by the
system matrix eigenvalues spectrum

p(F—GK) = {0.0000 0.8525 —0.0513 }

Note that one eigenvalue of F. is zero (rank(L) = 1))
as Preliminary 2 implies that the state-constrained design
task is a singular problem.

The simulation presents the closed-loop system state vari-
ables properties in the forced mode. The desired steady-
state values of signal, the signal gain matrix and the initial
system state vector were set as

0.0
C[-0.2] . [ 70.2546 395.8506 B
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It can be easily verified that (63) is satisfied in such way
a that

4, = LWw, = 0.5936

(see the common variable ¢4(¢) in the Fig. 1 and Fig. 2).
To improve the visualization, the values of variables are
displayed in SH mode.

Note that, as a rule, the power of a desired signal must be
greater than the mean power of the disturbance and noise
to satisfy the prescribed equality constraints.

7. CONCLUDING REMARKS

The paper presents the control design principle for
discrete-time linear stochastic multi-variable dynamic sys-
tems with state-multiplicative noise where the state vari-
ables are tied up in the mean by equality constraints. The
stability of the control scheme in the mean square sense
and with the quadratic performance bounded by H,, norm
of the disturbance transfer function matrix is established
using the enhanced representation of the bounded real
lemma for discrete-time stochastic systems with state-
multiplicative noise to circumvent singular design task,
where the resulting LMIs do not involve any product of the
Lyapunov matrix and the system matrices. This provides
a suitable way for determination of state control by solving
this singular LMI problems. It is determined, however
that the just found control law solves the problem in the
constrained forced regime.

The proposed method poses the problem as a stabilization
problem with a state feedback controller whose gain matrix
takes no special structure. Comparing with the previous
results, the number of assumptions is reduced while a
singular solution is guaranteed and no iteration steps are
needed. The presented applications can be considered as
a task concerned the class of H,, stabilization control
problems where the conditions were newly formulated.
This formulation allows to find a solution to the control
law without restrictive assumptions and additional speci-
fications of the design parameters.
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