
Distributed parameter modeling of flexible
ball screws using Ritz series discretization

B. Henke ∗ O. Sawodny ∗ R. Neumann ∗∗

∗ Institute for System Dynamics, University of Stuttgart,
Pfaffenwaldring 9, 70569 Stuttgart, Germany

∗∗ Festo AG & Co. KG, Ruiter Straße 82, 73734 Esslingen, Germany

Abstract: Ball screw drives are used in automation applications and machine tools to translate
rotational motion of an electric motor into translational motion of a slide. Their frequency
responses show characteristic torsional and translational resonances. The resonance frequencies
vary with the slide position, which is due to the distributed stiffness and inertia of the flexible
ball screw. The proposed model treats the ball screw as a flexible element, using Ritz series
expansions to obtain a finite approximation of the continuous deformations. The model shows
excellent validation results and reproduces the variation of the resonance frequencies with high
accuracy.
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1. INTRODUCTION

Linear motion in automation systems is mostly generated
by mechanically translating the rotational motion of an
electric motor into a linear, translational motion of a slide.
Ball screw drives are one frequently used mechanism for
this translation of rotational to linear motion.

Fig. 1 shows a schematic drawing of a ball screw drive.
The motor is connected via an elastic coupling to the ball
screw, which is supported by two rotational bearings. The
rotational motion of the motor translates into a linear,
translational motion of the nut, moving along the ball
screw shaft. The slide mounted on the nut carries the load
or workpiece and is usually supported by a linear guideway
(not depicted in the image).

motor
nut, slide 
and load

ball screwcoupling bearing

Fig. 1. Schematic drawing of a ball screw drive

Ball screw drives are available in various sizes, ranging
from a few centimeters of ball screw length up to several
meters. They are used for moving workpieces in industrial
automation and handling, as feed drives in machine tools
or as lead screws in milling machines. The focus of this
paper is on ball screw drives for industrial automation,
most commonly in the range of 30 cm to 2 m ball screw
length.

Experiments with industrial scale ball screw drives show
translational and torsional resonances of the ball screw
shaft. The observed resonance frequencies are dependent

on the load mass that is mounted on the slide and also on
the current position of the slide along the ball screw shaft.
The resonance frequencies move to lower frequencies as
the slide moves from the motor to the far end of the ball
screw. The position dependence can be explained by the
distributed stiffness and inertia of the ball screw shaft and
motivates the derivation of a distributed parameter model.

Lateral bending oscillations may be relevant for very long
and slender ball screws, but are found to be non-dominant
for the considered ball screw drives. This is in accordance
with the literature on ball screw drives that focuses on the
modeling of translational and rotational motion.

Models of ball screw drives differ especially in their treat-
ment of the ball screw itself. They separate into models
treating the ball screw shaft as one or multiple rigid
bodies and distributed parameter models treating the ball
screw shaft as a flexible element. The latter use various
approaches to discretize the distributed parameter models.
The following paragraphs give a short overview of current
modeling approaches.

Pislaru et al. [2004] separate the ball screw shaft into four
rigid segments, three for rotation and one for translation,
that are connected by springs and dampers. Validation of
the model against a measured frequency response shows
good quantitative fit of the first two resonances. However,
no variation of the load mass or slide position is considered.
Frey et al. [2012] present a model that uses two rigid
segments each for the rotational and translational motion
of the ball screw drive. They account for the position
dependence of the resonance frequencies by introducing
a position-dependent axial stiffness of the ball screw.
Unfortunately, the model for the coupling of rotation and
translation and the resulting system equations are not
presented in the paper. The model shows good validation
results for frequency responses with two different load
masses and slide positions.
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Varanasi and Nayfeh [2004] use a wave equation and
assume quasi-stationary behavior to derive a discretized
model with two degrees of freedom. Due to the low order
of the discretization, the model can represent only one
resonance in the frequency response. No variation of the
load mass or slide position is considered. Whalley et al.
[2005] use a distributed parameter model in the frequency
domain, coupled to rigid bodies modeling the slide and the
motor and nonlinearities such as backlash and friction. The
resulting model is validated against step responses.

Holroyd et al. [2003] and Zaeh et al. [2004] present finite
element models of the ball screw with good validation
results in the frequency domain. Again no variation of the
load mass or slide position is considered.

When modeling ball screw drives, validation against fre-
quency responses for different operating conditions is very
important. The model has to provide exact results for a
wide range of possible load masses and slide positions.
Given the high number of parameters used in these mod-
els, there is be a considerable risk of over-fitting the pa-
rameters to one specific operating condition if only one
validation experiment is performed.

A promising model approach was presented recently by
Vicente et al. [2012]. They characterize the dynamics of
the continuous flexible ball screw shaft in terms of kinetic
and potential energy. A Ritz series expansion is then used
to obtain a finite discrete approximation. The derivation of
the system equations is explained in more detail in Vicente
et al. [2009].

This paper extends the ideas of Vicente et al. [2012] using
a problem specific discretization, allowing for a lower order
of the discretized model and yielding superior validation
results. The validation also covers various load masses and
slide positions along the ball screw.

The rest of this paper is organized as follows: In Sec. 2
a model for the ball screw drive is derived. The system
dynamics are characterized in terms of kinetic and poten-
tial energy, modeling the ball screw as a flexible shaft with
distributed parameters while the motor and the slide are
modeled as rigid bodies connected to the ball screw by
concentrated elasticities. A Ritz series expansion is then
applied to obtain a finite approximation of the distributed
parameter energy expressions. The equations of motion
are derived by means of Lagrange equations. In Sec. 3
the model is extended by dissipative terms accounting for
structural damping of the ball screw shaft. The model is
validated in Sec. 4 against frequency responses for different
load masses and slide positions. Finally, Sec. 5 gives a short
conclusion of the results.

2. MODEL OF THE FLEXIBLE BALL SCREW
DRIVE

The ball screw drive considered here is sketched in Fig. 1.
The motor is connected to the ball screw by an elastic
coupling. The ball screw itself is supported by two bear-
ings, of which the one close to the motor is a thrust
bearing allowing only for rotational motion of the ball
screw shaft, whereas the one at the free end allows for axial
and rotational motion. This avoids stress in the ball screw
caused by temperature deformation. The thrust bearing is

modeled as a linear elastic connection with high stiffness.
The nut connects the slide to the screw and translates the
rotational motion of the screw into a translational motion
of the slide. The screw-nut interface is considered to be
a linear elastic connection. Finally, a rigid load mass is
mounted onto the slide.

The model accounts for rotational and translational mo-
tion of the ball screw drive. The rotational motion consists
of the rotation of the motor as well as the rotation and
torsion of the ball screw shaft. The translational motion
includes the axial translation and deformation of the ball
screw shaft and the translation of slide and load. The
rotational and translational motion are assumed to be
mutually independent and only coupled by the screw-nut
interface.

This model approach considers the ball screw shaft as
a flexible element with distributed elasticity and inertia.
The motor, slide and load are modeled as rigid bodies,
connected to the flexible ball screw by concentrated linear
elastic interfaces. Fig. 2 shows the mechanical model
with the rotational and translational degrees of freedom
characterized by the axial translation u(x, t) and the
rotation θ(x, t) of the ball screw shaft, the motor rotation
θm(t) and the translation of the slide us(t). Positions along
the flexible screw are defined by the variable x, with x = 0
being the position of the motor-side end of the ball screw,
x = L the free end of the (undeformed) ball screw and
x = xs the position of the slide. Spring and damper
pairs depict the concentrated linear elastic connections of
coupling and bearing at x = 0 and the screw-nut interface
at x = xs.

u(0,t) u(x ,t)s u(L,t)

u (t)s

?(0,t) ? xs( ,t) ?(L,t)

? (t)m

Fig. 2. Mechanical model of the ball screw drive with
rotational and translational degrees of freedom.

2.1 Formulation of energy expressions

Variational methods in analytical mechanics, especially
the application of Lagrange equations, allow to derive the
equations of motion from expressions of the potential and
kinetic energy of the overall system.

The potential energy of the flexible ball screw shaft,
subject to torsion and axial deformation, can be written
as (Reddy [2002])

Vs =

∫ L

0

GI

2

[
∂ θ(x, t)

∂x

]2
dx+

∫ L

0

EA

2

[
∂ u(x, t)

∂x

]2
dx

(1)

with the shear modulus G, the area moment of inertia I,
Young’s modulus E and the (constant) cross section area
A of the ball screw shaft.
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The kinetic energy regarding the distributed torsion and
deformation of the ball screw shaft is

Ts =

∫ L

0

ρI

2

[
∂ θ(x, t)

∂t

]2
dx+

∫ L

0

ρA

2

[
∂ u(x, t)

∂t

]2
dx

(2)

with the mass density ρ of the ball screw shaft.

Including the concentrated elasticities in the energy ex-
pression results in the overall potential energy

V =
1

2
kb [u(0, t)]

2
+

1

2
kc [θm(t)− θ(0, t)]2

+
1

2
kn [us(t)− u(xs, t)− γθ(xs, t)]2 (3)

+

∫ L

0

GI

2

[
∂ θ(x, t)

∂x

]2
dx+

∫ L

0

EA

2

[
∂ u(x, t)

∂x

]2
dx

with the stiffness of the bearing kb, the coupling kc and
the screw-nut interface kn. The second line of this equation
characterizes the elastic coupling between the translation
of the slide and the rotation and translation of the ball
screw shaft. The transmission ratio of the ball screw
mechanism γ is the ratio of translational motion of the
nut to shaft rotation.

Similarly, including the concentrated masses yields the
overall kinetic energy

T =
1

2
(ms +ml)

[
∂ us(t)

∂t

]2
+

1

2

(
Jm +

Jc
2

)[
∂ θm(t)

∂t

]2
+

1

2

Jc
2

[
∂ θ(0, t)

∂t

]2
(4)

+

∫ L

0

ρI

2

[
∂ θ(x, t)

∂t

]2
dx+

∫ L

0

ρA

2

[
∂ u(x, t)

∂t

]2
dx

with the masses ms of the slide and ml of the load and the
moments of inertia Jm of the motor and Jc of the coupling.
The latter is split in equal parts to both sides of the elastic
coupling.

2.2 Ritz-series expansion

In order to obtain a finite approximation of the continuous
deformation of the ball screw shaft, the method of Ritz-
series expansion (Reddy [2002]) is applied. This method,
proposed by the swiss mathematician Walter Ritz, seeks
to approximate the continuous deformation u(x, t) by a
finite series expansion of the form

u(x, t) =

Nu∑
i=1

ψu,i(x)qu,i(t) = ψTu (x)qu(t) (5)

with the basis functions ψu(x) ∈ RNu and the coordinates
qu(t) ∈ RNu . The basis functions ψu(x) are a linear
independent and complete set of continuous functions,
that need to satisfy the essential boundary conditions of
the system. An increasing number Nu of basis functions
will improve the accuracy of the approximation.

Similarly, the continuous rotation and torsion of the ball
screw shaft is approximated by the finite series expansion

θ(x, t) =

Nθ∑
i=1

ψθ,i(x)qθ,i(t) = ψTθ (x)qθ(t) (6)

with the basis functions ψθ(x) ∈ RNθ and the coordinates
qθ(t) ∈ RNθ .

Inserting the Ritz series expansions (5) and (6) to the
expressions for the potential and kinetic energy (3) and
(4) results in the following finite approximation

V =
1

2
kbq

T
uψu(0)ψu(0)Tqu +

1

2
kc

[
θm −ψTθ (0)qθ

]2
+

1

2
kn

[
us −ψTu (xs)qu − γψθ(xs)qθ

]2
(7)

+
GI

2
qTθ

∫ L

0

[
∂ ψθ(x)

∂x

] [
∂ ψθ(x)

∂x

]T
dx qθ

+
EA

2
qTu

∫ L

0

[
∂ ψu(x)

∂x

] [
∂ ψu(x)

∂x

]T
dx qu

and

T =
1

2
(ms +ml) u̇

2
s +

1

2

(
Jm +

Jc
2

)
θ̇2m

+
1

2

Jc
2
q̇Tθ ψθ(0)ψTθ (0)q̇θ (8)

+
ρI

2
q̇Tθ

∫ L

0

ψθ(x)ψθ(x)T dx q̇θ

+
ρA

2
q̇Tu

∫ L

0

ψu(x)ψu(x)T dx q̇u

using the common dot-notation for the time derivative of
the coordinates.

Various choices are possible for the basis functions ψu and
ψθ. Common choices are sinusoidal functions of increasing
frequency or polynomial functions of increasing order. An
efficient, problem specific choice of the basis functions
allows for lower approximation orders Nu and Nθ. For the
flexible ball screw shaft, a good approximation of the first
two modes can be achieved with a low order approximation
of Nu = Nθ = 2. The basis functions

ψu,1(x) = 1 for x ∈ [0, L], (9a)

ψu,2(x) =

{
x
xs

for x ∈ [0, xs]

1 for x ∈ (xs, L]
(9b)

and

ψθ,1(x) = 1 for x ∈ [0, L], (10a)

ψθ,2(x) =

{
x
xs

for x ∈ [0, xs]

1 for x ∈ (xs, L]
(10b)

account for the known structure of the ball screw drive and
treat only the first part of the ball screw shaft as flexible,
neglecting deformations of the load-free end of the ball
screw.

2.3 Equations of motion

Evaluating the integral terms in (7) and (8) for this
choice of the basis functions ψu and ψθ and collecting
the coordinates in a vector

q =
[
θm us q

T
θ q

T
u

]T ∈ RNu+Nθ+2 (11)

results in the matrix expression for the kinetic and poten-
tial energy

T =
1

2
q̇TMq̇, (12)

V =
1

2
qTKq. (13)
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The mass matrix M has block-diagonal structure and can
be written as

M =

Jm + Jc
2 0 0 0 0 0

0 ms +ml 0 0 0 0

0 0 ρIL+ Jc
2 ρI l̃( 1

2 ) 0 0

0 0 ρI l̃( 1
2 ) ρI l̃( 2

3 ) 0 0

0 0 0 0 ρAL ρA l̃( 1
2 )

0 0 0 0 ρA l̃( 1
2 ) ρA l̃( 2

3 )


using the abbreviation l̃(α) = L−αxs. The stiffness matrix

K =
kc 0 −kc 0 0 0
0 kn −γ kn −γ kn −kn −kn
−kc −γ kn γ2 kn + kc γ2 kn γ kn γ kn

0 −γ kn γ2 kn
GI
xs

+ γ2 kn γ kn γ kn
0 −kn γ kn γ kn kn + kb kn
0 −kn γ kn γ kn kn

AE
xs

+ kn


is highly coupled due to the elastic screw-nut interface
modeled with stiffness kn.

To obtain the equations of motion for the ball screw drive,
the Lagrange equations

d

dt

(
∂ L

∂q̇

)
− ∂ L

∂q
= f (14)

are evaluated for the Lagrange function L = T − V with
the kinetic energy T and the potential energy V according
to (12) and (13). This yields the equations of motion

Mq̈ +Kq = f (15)

with

f = [τm 0 0 0 0 0]
T

(16)

representing the motor torque.

3. DISSIPATION MODEL

The model derived so far is a non-dissipative model,
neglecting the structural damping of the ball screw and
the damping of the discrete elasticities of coupling, bearing
and nut. These damping effects are now included in the
model using a dissipation function R(q̇), as introduced
by Rayleigh [1877]. The dissipation function characterizes
the energy dissipated by viscous damping, i.e. of damping
forces proportional to the relative velocities in the system.
It extends the common representation of the Lagrange
equations (14) to

d

dt

(
∂ L

∂q̇

)
− ∂ L

∂q
= −∂ R

∂q̇
+ f . (17)

The dissipation function for the structural damping of the
ball screw shaft can be written as

Rs =

∫ L

0

ηGI

2

[
∂ θ̇(x, t)

∂x

]2
dx+

∫ L

0

ηEA

2

[
∂ u̇(x, t)

∂x

]2
dx

(18)

assuming the damping coefficient to be proportional to the
stiffness by a factor η.

Including the damping of the concentrated elasticities
results in the overall dissipation function

R =
1

2
db [u̇(0, t)]

2
+

1

2
dc

[
θ̇m(t)− θ̇(0, t)

]2
+

1

2
dn

[
u̇s(t)− u̇(xs, t)− γθ̇(xs, t)

]2
(19)

+

∫ L

0

ηGI

2

[
∂ θ̇(x, t)

∂x

]2
dx

+

∫ L

0

ηEA

2

[
∂ u̇(x, t)

∂x

]2
dx

with the damping coefficients of the bearing db, the
coupling dc and the screw-nut interface dn.

Applying the Ritz series expansion (5) and (6) yields the
following finite approximation

R =
1

2
dbq̇

T
uψu(0)ψu(0)T q̇u +

1

2
dc

[
θ̇m −ψTθ (0)q̇θ

]2
+

1

2
dn

[
u̇s −ψTu (xs)q̇u − γψθ(xs)q̇θ

]2
(20)

+
ηGI

2
q̇Tθ

∫ L

0

[
∂ ψθ(x)

∂x

] [
∂ ψθ(x)

∂x

]T
dx q̇θ

+
ηEA

2
q̇Tu

∫ L

0

[
∂ ψu(x)

∂x

] [
∂ ψu(x)

∂x

]T
dx q̇u.

This can be evaluated for the basis functions (9) and (10),
resulting in the matrix representation

R =
1

2
q̇TDq̇ (21)

with q as defined in (11) and the damping matrix

D =
dc 0 −dc 0 0 0
0 dn −γ dn −γ dn −dn −dn
−dc −γ dn γ2 dn + dc γ2 dn γ dn γ dn

0 −γ dn γ2 dn
ηGI
xs

+ γ2 dn γ dn γ dn
0 −dn γ dn γ dn dn + db dn
0 −dn γ dn γ dn dn

ηAE
xs

+ dn


Evaluating the Lagrange equations (17) for the dissipation
function (21) and the kinetic and potential energy accord-
ing to (12) and (13) yields the equations of motion

Mq̈ +Dq̇ +Kq = f (22)

with the input vector f as specified in (16).

4. EXPERIMENTAL VALIDATION

The experimental validation is based on frequency re-
sponse data. The data was recorded on a commercially
available industrial ball screw drive with a 1500 W motor
and a ball screw of 900 mm length and 22 mm diameter.

All frequency response plots in this chapter show frequency
responses from the motor current, which is proportional
to the generated torque τm, to the motor angular velocity
θm. The velocity signal is obtained from high resolution
encoder measurements by numerically differentiating and
low pass filtering the position signal. Alterations of the
frequency response due to amplifier delay and low pass
filtering are compensated for in the frequency domain.
Therefore, model and measurements show only the me-
chanical frequency response of the ball screw drive.
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While most of the model parameters are known geometric
or material parameters, some need to be identified. These
are especially the stiffness parameters kc, kb, kn and
damping coefficients dc, db, dn and η. Fig. 3 shows the
magnitude and phase of the frequency response with an
additional load of ml = 60 kg and the slide positioned
in the middle of the ball screw, i.e. at xs = 0.45 m. The
model with fitted parameters is in great accordance with
the measured data. Especially the two dominant resonance
frequencies at 68 Hz and 366 Hz are matched exactly in
shape and frequency. The deviation at very low frequencies
is due to unmodeled friction effects.

101 102 103
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20 68Hz 366Hz
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−20

0

20

m
a
g
n
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u
d
e
[d
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experiment

model
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0

50

100

101 102 103
−100

−50

0
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100

frequency [Hz]

p
h
a
se

[d
eg

]

Fig. 3. Frequency response of the ball screw drive with an
additional load of 60 kg and the slide in the middle of
the ball screw.

Modal analysis (Janschek [2012]) of the system equations
(15) reveals that the first mode at 68 Hz is predominantly
translational vibration whereas the second mode is pre-
dominantly torsional vibration of the ball screw drive. This
is in accordance with results for similar setups obtained
by FEM simulation (Zaeh et al. [2004]) or modal analysis
(Vicente et al. [2012]).

In the following, the high accuracy of the model is val-
idated for different load masses and slide positions. Fre-
quency response data was recorded with four different
loads of 30 kg, 60 kg, 90 kg and 120 kg and three different
slide positions: close to the motor (xs = 0.05 m), in the
middle of the ball screw (xs = 0.45 m) and far from the
motor (xs = 0.85 m).

Fig. 4 shows the magnitude of frequency responses for
varying loads of ml = 90 kg and ml = 120 kg with
the slide in the middle position xs = 0.45 m. Compared
to Fig. 3, the first (i.e. translational) resonance moves
to lower frequencies as the mass increases. This is well
reflected by the model that still shows a great fit of the
measurements. Note that only the parameter ml for the
load mass is adjusted, while all other model parameters
remain unchanged.

In Fig. 5, frequency responses are evaluated for two dif-
ferent positions of the slide, close and far from the motor,
with a load of ml = 30 kg. Both resonance frequencies are
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[d
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experiment
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Fig. 4. Frequency response with different loads: 90 kg (top)
and 120 kg (bottom) and the slide in the middle of the
ball screw.

influenced by the change of the slide position and move to
lower frequencies as the slide moves further away from the
motor. This dependence on the slide position is caused
by the distributed elasticity and inertia of the flexible
ball screw shaft and confirms the distributed parameter
approach of the model.
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experiment
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Fig. 5. Frequency response with an additional load of
30 kg for different positions of the slide: close to the
motor(top) and far from the motor (bottom).

The dependence of the resonance frequencies on varying
load mass and slide positions is summarized in Fig. 6.
The frequency of the first and second resonance, as pre-
dicted by the model, are plotted against the slide po-
sition. This reveals an apparently linear dependence of
the first resonance frequency on the slide position and a
strong influence of the load mass. The measured frequency
responses shown in Fig. 3 to Fig. 5 are marked with
blue squares. With the marks being very close to the
frequencies predicted by the model, this again proves the
high accuracy of the model for a wide range of loads and
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slide positions. The maximum measured deviation of the
predicted frequencies is 2.5 % for a load of ml = 120 kg
and the slide at xs = 0.45 m (Fig. 4). For the second
resonance, the load mass has no influence at all and the
dependence on the slide position is evidently nonlinear.
Here the maximum deviation is 4.2 %, found for a load of
ml = 30 kg and the slide at xs = 0.05 m (Fig. 5).

0.05 0.45 0.85
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100

0.05 0.45 0.85
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100

slide position [m]

fr
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u
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0.05 0.45 0.85
300

350

400

450

0.05 0.45 0.85
300
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400

450

slide position [m]

30 kg, 60 kg, 90 kg, 120 kg

Fig. 6. First and second resonance frequencies for different
load masses and slide positions as predicted by the
model. The measured frequency responses shown in
Fig. 3 to Fig. 5 are marked by blue squares.

5. CONCLUSION

The proposed model for ball screw drives treats the ball
screw shaft as a flexible element with distributed parame-
ters and uses Ritz series expansions to obtain a finite ap-
proximation of the continuous deformations. Discretizing
the model using problem-specific basis functions yields a
good approximation of the first two modes with a total of
six degrees of freedom for the overall system of ball screw,
motor and slide.

Validation against measured frequency responses yields
excellent results for various different operating conditions.
The dependence of the resonance frequencies on varying
load masses and slide positions is reproduced by the model
with high accuracy.
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