
Three-Dimensional Consensus
Path-Following for Second-Order

Multi-Agent Networks ?

Zongyu Zuo ∗ Bing Zhu ∗∗ Ming Xu ∗∗∗

∗ The Seventh Research Division, Science and Technology on Aircraft
Control Laboratory, Beijing University of Aeronautics and

Astronautics, Beijing 100191, China (e-mail: zzybobby@buaa.edu.cn)
∗∗Department of Electrical, Electronic and Computer Engineering,

University of Pretoria, Pretoria 0002, South Africa (e-mail:
Bing.Zhu@up.ac.za)

∗∗∗ The Seventh Research Division, Science and Technology on Aircraft
Control Laboratory, Beijing University of Aeronautics and

Astronautics, Beijing 100191, China (e-mail: mingxu xjl@163.com)

Abstract: In this paper, we address a new consensus problem of coordinately steering a group of
multi-agents under directed information flow along a three-dimensional reference path without
temporal constraint. The spatial reference path is newly defined by algebraic implicit expressions
and the path-following kinematic-error dynamics are then formulated for each agent using two
path-following errors and a speed tracking error. Distinct from the stabilizing feedback control
design of the path-following problem for a single agent, the proposed new feedback control
algorithm augmented with consensus disagreement terms could achieve both the reference
goal seeking and consensus during transition. To show effectiveness of the proposed concept,
simulation results are included in the end.
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1. INTRODUCTION

As a fundamental of distributed coordination, network
consensus problem (Olfati and Murray, 2004; Yang et
al., 2013; Zuo and Tie, 2014a,b), which means that the
states of all the agents converge to certain quantities of
interest, has been widely investigated in recent years. In
some applications including formation flying and coor-
dinated tracking, groups of agents are required to agree
upon the state of a dynamic leader with local interaction,
i.e., consensus tracking problem (Ren, 2010a). However,
consensus tracking basically boils down to chasing a time-
varying reference dynamics. This means that each agent
requires to attain a specific location at a specific pre-
assigned instant. To remove the temporal constraint, con-
sensus path-following is put forward by us to emphasize
the primary geometric task for the groups with flexible
dynamic assignment. This concept is developed within the
framework of path-following control.

Different from the trajectory tracking control, the path-
following motion control drives the vehicle to and follow
a path with a desired speed profile and without a spe-
cific temporal requirement. Aguiar and Hesphanha (2007)
decomposed the path-following problem into two subprob-
lems: a geometric path following and a speed assignment
along the path. In some specific areas, the path-following
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motion control is more appealing than the trajectory-
tracking control, such as path-following for nonminimum
phase systems (Aguiar et al., 2005). The key to the path
following problem in a great deal of papers (Soetanto et
al., 2003; Breivik and Fossen, 2005; Cunha et al., 2006;
Kaminer et al., 2010) is to explicitly control the rate of
progression of the virtual target running along the path,
and thus provides an extra design degree of freedom to
avoid singularities effectively. Within the framework due
to Breivik et al. (2005), they further extended the idea
to the two-dimensional formation control of multi-agents
(Breivik et al., 2006). Based on the work due to Kaminer
(2010), Xargay et al. (2012; 2013) investigated the three-
dimensional path-following problem of multiple UAVs with
stringent spatial and temporal constraints. However, the
drawback of the aforementioned path-following control
methodologies is that during transition the follower might
temporarily deviate from the reference path before it
catches up with the virtual target (Nielsen et al., 2010).

This paper builds upon the work due to Zhu and Huo
(2013), and the distinctive feature of our work from
previous published paper is to address the following key
aspects: (i) It presents a new implicit geometric description
of reference paths by intersecting two two-dimensional
manifolds, and a new singularity-free formulation of the
path-following kinematic-error dynamics for each agent
in networks using two path-following errors and a speed
tracking error. (ii) It puts forward a new concept denoted
by consensus path-following problem and a corresponding

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 10060



design framework of feedback coordination control laws.
In contrast to consensus tracking problem, it focuses on
driving all the agents in networks to a geometric path
without stringent temporal constraint and to run along it
with a flexible desired speed profile. (iii) A virtual leader
staying uniformly on the reference path is incorporated
into the directed communication topology between agents
and the reference information is only available to a portion
of agents in the group. The consensus path-following is
achieved for the multi-agents in networks if the extended
graph contains a spanning tree.

This paper is organized as follows: Section 2 introduces
the preliminaries on graph theory notions. Sections 3 and
4 present the path-following and consensus path-following
problems, respectively. In section 5, an illustrative simula-
tion example is discussed. Finally, the paper is ended by
concluding remarks in section 6.

2. GRAPH THEORY PRELIMINARIES

Information interchange between agents can be described
by a directed graph G = {V, E} (Godsil and Royle, 2001)
where V = {π1, π2, . . . , πn} is a set of nodes that represent
the agents and E ⊆ V × V is a set of edges that depict
information flow between agents. An edge (πi, πj) in G
denotes that the information state of node πi is available
to node πj , and the node πi is said to be a neighbour
of node πj . The index set of all neighbours of node πj
is denoted by Nj = {i : (πi, πj) ∈ E}. In an undirected
graph, (πi, πj) ∈ E ⇔ (πj , πi) ∈ E . Let the adjacent matrix
A = [aij ] ∈ Rn×n with aij = 1 if (πj , πi) ∈ E , and aij = 0
otherwise. It is assumed that aii = 0. The Laplacian
matrix L = [lij ] ∈ Rn×n is defined as lii =

∑n
j=1,j 6=i aij

and lij = −aij , i 6= j.

For an edge (πi, πj) in a directed graph, πi is the
parent node and πj is the child node. A directed
path from node πj to πi in G is a sequence of edges
(πj , πi1), (πi2 , πi3), . . . , (πil , πi) in G with distinct nodes
πik , k = 1, 2, . . . , l. A directed tree (Ren and Beard, 2005)
is a directed graph, in which every node has exactly one
parent except for the node, called root, which has no
parent, and the root has a directed path to every other
node. A spanning tree of a directed graph is a directed
tree formed by graph edges which connect all the nodes in
G. We say that a graph has (or contains) a spanning tree
if a subset of the edges forms a spanning tree.

3. PATH-FOLLOWING CONTROL FOR A SINGLE
AGENT

In this section, we briefly review the implicit geometric
path following control methodology (Zhu and Huo, 2013)
for an agent system at the dynamic level as{

ṗ = v
v̇ = u

(1)

where p = [x, y, z]T ∈ R3 denotes the position vector,
v = [vx, vy, vz]T ∈ R3 the velocity vector, and u ∈ R3

the control input.

The reference path to be followed in this paper is described
by two algebraic equations, i.e., an implicit geometric
description, defined by

Pr = {[x, y, z] ∈ R3|f1(x, y, z) = 0, f2(x, y, z) = 0} (2)

where f1(x, y, z) and f2(x, y, z) are both C∞ functions
with respect to x, y and z. To guarantee the regularity
of the reference path in (2), we assume that the tangent
vector of pr ∈ Pr satisfies

∂f1
∂p
× ∂f2

∂p

∣∣∣∣
p=pr

6= 0 (3)

where × denotes the cross product of two vectors. For a
regular curve, ∂f1

∂p and ∂f2
∂p are unparallel, implying that

(3) holds.

Remark 1. The C∞ property of functions f1(x, y, z) and

f2(x, y, z) ensures that ∂f1
∂p ×

∂f2
∂p is C∞. Thus, the assump-

tion (3) holds in the near region of Pr.

Define the path-following errors as{
ε1 , f1(x(t), y(t), z(t))
ε2 , f2(x(t), y(t), z(t))

(4)

Given the desired speed profile v̄(t) which is not identically
equal to zero, we define the following speed tracking error
as

ε3 ,

(
∂f1
∂p
× ∂f2

∂p

)T

v −
∥∥∥∥∂f1∂p × ∂f2

∂p

∥∥∥∥ v̄ (5)

Remark 2. Instead of intuitively defining the speed error
as ε3 , ‖v‖ − v̄, the modified one in (5) removes local
singularities in the path following control design. Actually,
this error definition (5) assigns the desired velocity along
the tangent vector of the reference path.

The path-following kinematic-error dynamics can be ob-
tained by differentiating (4) and (5), yielding

[ε̈1, ε̈2, ε̇3]T =H(x, y, z, ẋ, ẏ, ż)

+G(x, y, z)u
(6)

where H = [h1, h2, h3]T ∈ R3 and G = [gT1 , g
T
2 , g

T
3 ]T ∈

R3×3 with the corresponding elements defined by

h1 =
∂2f1
∂x2

v2x +
∂2f1
∂y2

v2y +
∂2f1
∂z2

v2z

+ 2
∂2f1
∂x∂y

vxvy + 2
∂2f1
∂y∂z

vyvz + 2
∂2f1
∂z∂x

vzvx,

h2 =
∂2f2
∂x2

v2x +
∂2f2
∂y2

v2y +
∂2f2
∂z2

v2z

+ 2
∂2f2
∂x∂y

vxvy + 2
∂2f2
∂y∂z

vyvz + 2
∂2f2
∂z∂x

vzvx,

h3 =

[
d

dt

(
∂f1
∂p
× ∂f2

∂p

)T
]
v −

[
d

dt

∥∥∥∥∂f1∂p × ∂f2
∂p

∥∥∥∥] v̄
−
∥∥∥∥∂f1∂p × ∂f2

∂p

∥∥∥∥ ˙̄v,

g1 =
∂f1
∂p

, g2 =
∂f2
∂p

, g3 =

(
∂f1
∂p
× ∂f2

∂p

)T

It can be verified that det(G) =
∥∥∥∂f1

∂p ×
∂f2
∂p

∥∥∥2 > 0 holds

locally around the reference path.

At this point, the path-following generalized error vec-
tor can be formally defined as εpf , [ε1, ε2, ε3]T . The
statement of path-following for a single agent can now be
described.
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Definition 3. (Path-Following Problem). For a given ref-
erence path pr ∈ Pr defined in (2) and a reference speed
profile v̄(t), design feedback control law u for the agent
system in (1) such that the path-following generalized
error εpf converges to the origin as long as the initial
position is sufficiently close to the reference path.

Lemma 4. Given a reference path pr ∈ Pr and a desired
speed profile v̄(t), feedback control law

u = G−1(−H + µ) (7)

solves the path-following problem locally, where µ =
[−k11ε̇1−k12ε1,−k21ε̇2−k22ε2,−k31ε3]T with positive kij .

Proof. Substituting (7) into (6) yields the closed-loop
path-following kinematic-error system:

[ε̈1, ε̈2, ε̇3]T = µ (8)

It is straightforward to verify that εpf is locally expo-
nentially stable, since the closed-loop dynamics in (8) are
Hurwitz.

Remark 5. The local property in Lemma 4 stems from the
regularity requirement for the reference path, as discussed
in Remark 1.

4. CONSENSUS PATH-FOLLOWING FOR
MULTI-AGENTS

The previous section provided a solution to the path-
following problem for a single agent. In this section,
we move on to the consensus path-following problem
for multi-agents in networks with directed interaction
topology.

Consider a group of n continuous-time agents, indexed by
i ∈ In = {1, 2, · · · , n}, with dynamics in the form of{

ṗi(t) = vi(t)
v̇i(t) = ui(t)

(9)

where pi = [xi, yi, zi]
T ∈ R3 and vi = [vxi , vyi , vzi ]

T ∈ R3

denote the position vector and velocity vector of the i-th
agent, respectively, and ui ∈ R3 the control input of the
i-th agent.

Employing the path-following formulation presented in
section 3, we transfer the dynamics of n agents into the
path-following kinematic-error dynamic forms

[ε̈1i , ε̈2i , ε̇3i ]
T =Hi(xi, yi, zi, ẋi, ẏi, żi)

+Gi(xi, yi, zi)ui
(10)

where ε1i = f1(xi, yi, zi) and ε2i = f2(xi, yi, zi) represent

the path-following errors of the i-th agent, ε3i = (∂f1
∂pi
×

∂f2
∂pi

)T v−‖∂f1∂pi
× ∂f2

∂pi
‖v̄ the speed tracking error of the i-th

agent, Hi and Gi are defined in a similar way as in (6) with
respect to the states of the i-th agent. Information state
to be interchanged between agents for coordination is the
path-following generalized error vectors defined similarly
as εpf,i , [ε1i , ε2i , ε3i ]

T . Toward this end, we can now
define the consensus path-following problem for a group
of multi-agents.

Definition 6. (Consensus Path-Following Problem). Given
a team of n second-order agents under directed interaction
topology, and the reference path pr ∈ Pr and reference
speed profile v̄(t), design feedback control laws ui such
that, for i ∈ In, the path-following generalized error vector
εpf,i converge to the origin.

Let εpf,0 = [ε10 , ε20 , ε30 ]T ∈ R3 denote the information
state of a virtual leader π0 for the multi-agent system in
(9). It is worth noticing, however, that εpf,0 is available not
to all agents but to only a portion of agents. Here, we define
a nonnegative diagonal matrix Ω = diag{ω1, ω2, . . . , ωn}
to indicate the accessibility of εpf,0 by the agents, where
ωi = 1 if εpf,0 is accessible by the i-th agent, and ωi = 0
otherwise. Without loss of generality, we assume that
εpf,0 ≡ 0 represents the reference path. The directed graph
incorporating π0 into G is denoted by Ge. We moreover
make the following assumption on Ge:
Assumption 7. Ge has a spanning tree with π0 being its
root vertex.

Remark 8. Actually, the virtual leader π0 can be viewed
as a particle running along the reference path all the time,
and thus we have εpf,0 ≡ 0.

To streamline the technical proof of the main result, a
lemma is presented before moving on.

Lemma 9. All the eigenvalues of matrix L+ Ω have posi-
tive real parts if and only if the assumption 7 holds.

Proof. Note that the Laplacian matrix of Ge can be
described in the form of

L (Ge) =

[
0 0

−Ω1n L+ Ω

]
. (11)

where 1n = [1, 1, . . . , 1]T ∈ Rn.

Necessity: If all th eigenvalues of L+ Ω have real positive
parts, it is obvious from (11) that L (Ge) has exactly one
zero eigenvalue, and its other eigenvalues have positive real
parts. This guarantees that the directed graph Ge associ-
ated with the Laplacian matrix of (11) has a spanning tree
(Ren and Beard, 2005). Since π0 can not get information
from all agents in G, the root vertex of the spanning tree
in Ge can only be π0.

Sufficiency: If assumption 7 holds, then L (Ge) has a simple
zero eigenvalue and the other eigenvalues have positive
real parts (Ren and Beard, 2005). This together with (11)
guarantees that the eigenvalues of L+ Ω all have positive
real parts.This completes the proof.

Theorem 10. For a given group of multi-agents (9) in
networks under directed information flow with assumption
7, the feedback control laws

ui = G−1i (−Hi + µi), i ∈ In (12)

solve the consensus path-following problem locally, where
µi denote the consensus disagreement terms with their
elements defined by

µ1i =−
∑
j∈Ni

aij
[(
ε1i − ε1j

)
+ γ1

(
ε̇1i − ε̇1j

)]
−ωi[ε1i + γ1ε̇1i ] (13)

µ2i =−
∑
j∈Ni

aij
[(
ε2i − ε2j

)
+ γ2

(
ε̇2i − ε̇2j

)]
−ωi[ε2i + γ2ε̇2i ] (14)

µ3i =−
∑
j∈Ni

aij
(
ε3i − ε3j

)
− ωiε3i (15)

where γ1 and γ2 are positive damping constants.
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Proof. Since the virtual leader π0 stays on and moves
along the reference path all the time, the information state
of π0 for consensus satisfies εpf,0 ≡ 0 and ε̇10 = ε̇20 ≡ 0.
Thus, the consensus laws (13)–(15) can be rewritten as

µ1i =−
∑
j∈Ni

aij
[(
ε1i − ε1j

)
+ γ1

(
ε̇1i − ε̇1j

)]
−ωi [(ε1i − ε10) + γ1 (ε̇1i − ε̇10)]

µ2i =−
∑
j∈Ni

aij
[(
ε2i − ε2j

)
+ γ2

(
ε̇2i − ε̇2j

)]
−ωi [(ε2i − ε20) + γ2 (ε̇2i − ε̇20)]

µ3i =−
∑
j∈Ni

aij
(
ε3i − ε3j

)
− ωi (ε3i − ε30)

The assumption 7 ensures that at least one ωi = 1
for i ∈ In, which implies that all the eigenvalues of
(L + Ω) have positive real parts by Lemma 9. Stack the
consensus information states of n agents as three vectors
ε1 = [ε11 , ε12 , . . . , ε1n ]T , ε2 = [ε21 , ε22 , . . . , ε2n ]T and ε3 =
[ε31 , ε32 , . . . , ε3n ]T . Substituting (12) into (10) obtains the
path-following closed-loop dynamic equations

ε̈1 =−(L+ Ω)ε̇1 − γ1(L+ Ω)ε1 (16)

ε̈2 =−(L+ Ω)ε̇2 − γ2(L+ Ω)ε2 (17)

ε̇3 =−(L+ Ω)ε3 (18)

It can be straightforwardly verified that ε3(t) = exp(−(L+
Ω)t)ε3(0), which implies that the speed tracking error ε3(t)
converges to the origin exponentially. As for the path-
following errors, we rewrite (16) and (17) into the state
space forms:[

ε̇k
ε̈k

]
=

[
0 In

−(L+ Ω) −γk(L+ Ω)

] [
εk
ε̇k

]
(19)

where In denotes the n × n identity matrix and k = 1, 2.
Let µi(i ∈ In) be the eigenvalues of (L+Ω) and all µi > 0
follows from Lemma 9. From (19) we have

det

(
λI2n −

[
0 In

−(L+ Ω) −γk(L+ Ω)

])
= det(λ2In + (1 + γkλ)(L+ Ω))

=

n∏
i=1

(λ2 + (1 + γkλ)µi)

It is straightforward to see that the system eigenvalues of
(19) are given by

λi± =
−γkµi ±

√
γ2kµ

2
i − 4µi

2
(20)

Thus, all system eigenvalues λi± in (20) have negative real
parts and the exponential convergence of εk and ε̇k follows
immediately for k = 1, 2.

With the above preparation, limt→∞ εpf,i = 0 follows
immediately. Thus, the feedback control laws (12) solve
the consensus path-following problem.

Remark 11. In this control design, we can view the ref-
erence path pr ∈ Pr is generated by a virtual leader π0.
The introduction of a virtual leader π0 in the directed
interaction topology under assumption 7 implies that only
a portion of agents can access the reference path informa-
tion.

Remark 12. From the pinning control point of view (Chen
et al., 2009), the feedback control laws in (13)–(15) imply
that the i-th agent is actually a pinned node for ∀i ∈ {i ∈
In|ωi 6= 0}.
Remark 13. Distinct from the stabilizing law (7) for a
single agent, the dsagreement term µi in the feedback con-
trol law (12) introduces mutual synchronization between
neighboring agents. Gains aij and ωi, i, j ∈ In, determine
the relative weight for consensus (εpf,i → εpf,j) during
transition and goal seeking (εpf,i → 0) (Ren, 2010b). In
contrast, consensus during transition is not guaranteed if
the stabilization laws are used for each agent in a group.

5. SIMULATION

Consider a group of n = 4 agents in a network with fixed
directed information flow as shown in Fig. 1 from which
we have Ω = diag{1, 0, 0, 1} and

L+ Ω =

 1 0 0 0
−1 1 0 0
0 0 1 −1
0 0 0 1


The design parameters γ1 = γ2 = 2 are set for each
feedback control law. Let the initial conditions of the
agents be p1(0) = [0, 2,−2]T , p2(0) = [−2,−1, 2]T , p3(0) =
[−3, 3,−3]T , p4(0) = [3,−3, 3]T and v1(0) = v2(0) =
v3(0) = v4(0) = 0. The desired speed profile and reference
path are chosen respectively as v̄ = 2m/s and{

f1(x, y, z) = x2 + y2 + z2 − 25 = 0
f2(x, y, z) = x+ y + z = 0

which is a circular curve formed by the intersection of
a ball and a plane, as shown in Fig. 2. After direct
computations, we have

h1i = 2(v2xi
+ v2yi

+ v2zi)

h2i = 0

h3i = 2(vyi − vzi)vxi + 2(vzi − vxi)vyi + 2(vxi − vyi)vzi

−2v̄
(yi − zi)(vyi

− vzi) + (zi − xi)(vzi − vxi
)√

(yi − zi)2 + (zi − xi)2 + (xi − yi)2

−2v̄
(xi − yi)(vxi

− vyi
)√

(yi − zi)2 + (zi − xi)2 + (xi − yi)2

Gi =

[
2xi 2yi 2zi
1 1 1

2(yi − zi) 2(zi − xi) 2(xi − yi)

]

ε̇1i = 2xivxi
+ 2yivyi

+ 2zivzi

ε̇2i = vxi + vyi + vzi

Fig. 3 demonstrates that all four agents in the group
converge to the reference path coordinately and thus
achieve the path-following consensus. The agents’ position
states and control inputs are shown in Figs. 4 and 5,
respectively. Since the communication topology in Fig. 1
has a spanning tree, the simulation results validate the
correctness of the Theorem 10.
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Fig. 1. Directed Communication Topology

Fig. 2. Three-Dimensional Reference Path
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Fig. 3. Three-Dimensional Consensus Path-Following

6. CONCLUSION

In this paper, the implicit algebraic path-following control
methodology is expanded to address the consensus prob-
lem of multi-agent system. A new concept of consensus
path-following is proposed and a corresponding design
framework of feedback consensus control laws is developed.
The future work includes the extensions of the proposed
framework to the coordinated path-following and forma-
tion controls of multi-agent systems or UAVs with various
uncertainties.
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Fig. 4. Positions of the Four Agents
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Fig. 5. Feedback Control Inputs
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