
Computational approaches to robust Model
Predictive Control: a comparative analysis ?

Luca Deori ∗ Simone Garatti ∗ Maria Prandini ∗

∗Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20113 Milano,

Italy. E-mail: {deori,sgaratti,prandini}@elet.polimi.it

Abstract: Robust Model Predictive Control (MPC) is a powerful technique to deal with con-
strained control of systems subject to bounded uncertainty. In the literature, many approaches
have been proposed to find computationally feasible solutions. In this paper, we focus on robust
MPC for linear systems affected by additive disturbances. Our aim is that of presenting a
thorough comparison between two types of computational approaches: those that provide a
solution that is robustly guaranteed, and randomized-based methods, which provide a solution
with probabilistic guarantees only. The main outcome of the analysis is that the first type of
approaches may show some conservatism in that they require the constraints to be loose in order
to be feasible, while, although robustness cannot be a-priori guaranteed, randomized methods
may lead to an effective solution - whose robustness can be experimentally verified - even for
tight constraints. This enhances the use of randomized-based methods as a valid alternative to
other approaches to robust MPC.

1. INTRODUCTION AND PROBLEM SETUP

Robust Model Predictive Control (MPC) is a powerful
technique to deal with constrained control of systems
subject to bounded uncertainty. In the literature, many
approaches have been proposed to find computationally
feasible solutions. In this paper, we focus on robust MPC
for linear systems affected by additive disturbances.
Our aim is that of presenting a comparison between two
types of computational approaches: those that provide
a solution that is robustly guaranteed, and randomized-
based methods, which provide a solution with probabilistic
guarantees only. We anticipate that the main outcome of
the analysis is that the first type of approaches may show
some conservatism in that they require the constraints to
be loose in order to be feasible, while, although robustness
cannot be a-priori guaranteed, randomized methods may
lead to an effective solution - whose robustness can be
experimentally verified - even for tight constraints. This
enhances the use of randomized-based methods as a valid
alternative to other approaches to robust MPC.
We consider the problem of setting up a robust MPC
scheme for an uncertain discrete time linear system, whose
state x ∈ Rn evolves according to the equation:

xt+1 = Axt +But + wt (1)

where u ∈ Rm is a control input while wt is an additive
stochastic disturbance whose probability distribution has
bounded support W. We assume that the state of the
system is available.
MPC amounts to optimizing a finite horizon cost with
respect to a chosen control policy, taking into account both
saturation constraints on the input and safety constraints
on the state. Then, according to the well-known receding
horizon strategy, just the first value of the so computed
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control action is actually implemented, and optimization
is repeated at each time instant.
As for the finite horizon control problem to be solved at
every time instant τ , we suppose to minimize the average
quadratic cost

J = E

[
M∑
i=1

xTt+iQxt+i +

M−1∑
i=0

uTt+iRut+i

]
, (2)

with the constraint that the state and the input stay at
every time instant in the prediction horizon M in the
convex sets X and U , respectively:

xτ+i ∈ X i = 1, . . . ,M (3a)

uτ+i ∈ U i = 0, . . . ,M − 1. (3b)

In robust MPC the constraints (3) are enforced for every
possible realization of the disturbance. The resulting opti-
mization problem, however, turns out to be semi-infinite,
i.e. a problem with a finite number of decision variables but
an infinite amount of constraints. Except for a few special
cases, e.g., when W, X , and U are polytopes, semi-infinite
problems are very tough to solve, since they may be even
NP-hard. Hence, one usually heads for an approximate
solution.
A possible approach is that adopted in Mayne et al. [2005],
Goulart et al. [2006], Rakovic et al. [2012], Evans et al.
[2012b], where the uncertain evolution of the system (1)
is properly over-bounded so that an optimization prob-
lem that it is amenable of resolution at a relatively low
computational burden can be formulated. In this case,
the obtained solution is guaranteed to robustly satisfy the
constraints. Yet, the introduced over-approximation may
introduce some conservatism, so that feasibility is achieved
only if the constraints to be satisfied are loose.
Alternatively, one can opt for an inner approximation –
achieved through randomization – of the uncertain evolu-
tion of the system, and adopt the scenario-based MPC,
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Prandini et al. [2012], Deori et al. [2013], Calafiore and
Fagiano [2013]. The paradigm is quite different from that
of previous methods. In particular, the solution of the
scenario-based MPC is not guaranteed to satisfy the con-
straints for all possible realizations of the disturbance, but
the probability of violating the constraints is guaranteed
to be smaller than an user-chosen threshold ε (chance-
constrained solution). The scenario-based MPC was orig-
inally introduced for solving problems where achieving
robustness is not feasible and a chance-constrained re-
formulation is needed because of the unboundedness of
the disturbance support. However, given that the smaller
the threshold chosen by the user, the closer the scenario
solution is to the robust one, the scenario approach can
be also used as a heuristic method to find approximate
(relaxed) solutions to robust MPC problems when the
support of the disturbance is bounded.
The advantage of a scenario-based solution is that it does
not introduce any sort of conservatism in the constrained
optimization problem resolution. It may hence lead to an
effective solution even when constraints are tight and other
approaches turn out to be unfeasible. This is shown in this
paper, whose objective is that of performing a comparative
analysis of the two types of approaches by means of pro-
totype examples. The analysis highlights advantages and
drawbacks of the various approaches, and all the results
are substantiated by quantitative evaluations. As already
anticipated, the performed analysis shows that scenario-
based MPC may be a valid alternative to other approaches,
enhancing its use to tackle robust MPC.

The rest of the paper is organized as follows. A review of
two existing methods to robust MPC providing robustly
guaranteed solutions is given in Section 2, while Section 3
presents an approach settled in the scenario-based MPC
category. The performances of these three approaches
are then evaluated on simulation examples in Section 4,
while Section 5 provides a final discussion, including some
conclusions.

2. APPROACHES TO ROBUST MPC

2.1 Robust MPC based on invariant sets

This first approach was originally proposed in Mayne et al.
[2005] and it relies on invariant sets to bound the uncertain
dynamics of (1).
The control law is selected as

uτ+i = K(xτ+i − x̄τ+i) + ci, (4)

where K is an a-priori fixed gain (e.g. the optimal LQ gain
of the infinite horizon problem without constraints), while
the open loop term ci is the actual decision variable and
x̄τ+i is the state variable of the following auxiliary nominal
system

x̄τ+i+1 = Ax̄τ+i +Bci,
whose initialization x̄τ is a decision variable too. Given
(4), the true system dynamics becomes

xτ+i+1 = (A+BK)xτ+i −BKx̄τ+i +Bci + wτ+i,

so that the difference between the actual and the nominal
dynamics η = x− x̄ satisfies the equation

ητ+i+1 = (A+BK)ητ+i + wτ+i. (5)

Now, let Z be a disturbance invariant set for the system
(5), that is, if ηt ∈ Z then ηt+1 must belong to Z too,

for every realization of the disturbance wt ∈ W. Based on
the properties of invariant sets, it is trivial to verify that
if xτ ∈ x̄τ + Z (note that b + A = {b + a, a ∈ A}), then
xτ+i ∈ x̄τ+i +Z, i = 1, . . . ,M , and uτ+i ∈ ci +KZ (note
that KA = {Ka, a ∈ A}), i = 0, . . . ,M − 1. In other
words, Z can be used to bound the uncertain dynamics
of (1). The robust satisfaction of constraints (3) can be
guaranteed by selecting x̄τ so that xτ ∈ x̄τ +Z, and ci so
that x̄τ+i + Z ⊆ X and ci + KZ ⊆ U . This leads to the
following optimization problem:

min
ci,x̄τ

E

[
M∑
i=1

xTτ+iQxτ+i +

M−1∑
i=0

uTτ+iRuτ+i

]
subject to:{

ci +KZ ⊆ U i = 0 . . .M − 1
x̄τ+i + Z ⊆ X i = 1 . . .M
xτ ∈ x̄τ + Z.

(6)

If the invariant set Z is a polytope, then the constraints
in (6) can be enforced for the vertices of Z only, and
problem (6) can be solved at relatively low computational
cost through standard convex optimization techniques like
those used in CVX, Grant and Boyd [2011], and YALMIP,
Löfberg [2004].
In order to achieved the widest feasibility for problem (6),
the invariant set Z should be as small as possible. The
minimal invariant set, however, may not be a polytope,
see Mayne et al. [2005], and moreover it is quite difficult
to compute. Usually a polytopic outer approximation of
the minimal invariant set is used, see e.g. Rakovic et al.
[2005].

2.2 Tube-based robust MPC

This second approach was developed in Evans et al. [2012b]
for the case of multiplicative uncertainty. The case of
additive uncertainty discussed here is obtained by means
of straightforward modifications.
Let z = E[x] and e = x− E[x], and select the control law
as

uτ+i = Kzτ+i + Leτ+i + ci, (7)

where K and L are a-priori fixed gains and the open loop
term ci is the actual decision variable. The dynamics of
x = z + e, then, is split into the dynamics of z (nominal
dynamics) and of e (uncertainty dynamics):

zτ+i+1 = (A+BK)zτ+i +Bci, zτ = xτ (8)

eτ+i+1 = (A+BL)eτ+i + wτ+i, eτ = 0. (9)

The idea is to find at each time step in the prediction
horizon of lengthM a polytope Pτ+i enclosing any possible
evolution of e at time τ + i as due to the disturbance w.
Then, the evolution of x is guaranteed to be contained in
zτ+i+Pτ+i, while uτ+i is contained in Kzτ+i+ci+LPτ+i

and the satisfaction of (3) is guaranteed by requiring that
these polytopes are subsets of X and U , respectively. The
final optimization problem is

min
ci

E

[
M∑
i=1

xTτ+iQxτ+i +

M−1∑
i=0

uTτ+iRuτ+i

]
subject to:{

Kzτ+i + ciLPτ+i ⊆ U i = 0, . . . ,M − 1
zτ+i + Pτ+i ⊆ X i = 1, . . . ,M

. (10)

Again, constraints in (10) can be enforced for the vertices
of Pτ+i only, and problem (10) can be solved through
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standard convex optimization techniques.
As for the computation of the bounding polytopes Pτ+i,
they are selected in the form {eτ+i : V eτ+i ≤ αi}, where
inequality is understood componentwise. The matrix V
has to be a-priori fixed so that the polytope facets have
always the same orientation for every t+ i. The bounding
of the evolution of e is achieved by suitably distancing
the facets at each time instant as specified by vector
αi. Technically speaking, the polytopes are recursively
computed. Starting from Pτ = {0}, Pτ+i+1 is obtained
from Pτ+i by imposing that the set of points eτ+i whose
evolution eτ+i+1 according to (9) is contained in Pτ+i+1

must include the points in Pτ+i, that is

{eτ+i : V eτ+i ≤ αi} ⊆ (11)

{eτ+i : V (A+BL)eτ+i + V wτ+i ≤ αi+1,∀wτ+i ∈ W}.
(11) can be enforced exploiting a corollary of Farkas’s
lemma, originally proven in Bitsoris [1988], about the
inclusion of polytopes: let S1 = {x : A1x ≤ b1} and
S2 = {x : A2x ≤ b2}; it holds that S1 ⊆ S2 if and only
if there exists a matrix H with non-negative entries such
that HA1 = A2 and Hb1 ≤ b2.
For instance, if W is a polytope, in view of this lemma,
(11) is equivalent to{

HV = V (A+BL) hkl ≥ 0 ∀k, l (12a)

Hαi ≤ αi+1 − V v ∀v vertex of W (12b)

from which the polytopes Pτ+i are eventually determined
by first selecting the H satisfying (12a) that gives the min-
imum value for the trace of HHT , and then by selecting
the αi with minimal components that satisfies (12b). Note
that the inequality in (12b) is posed for the vertices of W
only thanks to convexity.

3. SCENARIO-BASED MPC

In the considered scenario-based solution, the control law
is expressed as

uτ+i = Kxτ+i + ci, (13)

where K is an a-priori fixed gain and the open loop term
ci is the actual decision variable.
In order to determine the open loop term ci, a number N
of disturbance realizations of length M

w(k)
τ , w

(k)
τ+1, . . . , w

(k)
τ+M−1, k = 1, 2, . . . , N,

are generated according to the underlying probability dis-
tribution of w. Then, a finite optimization problem, where
the state and input constraints are posed in correspon-
dence of the extracted realizations of the disturbance only,
is considered.
To be precise, let u

(k)
τ , u

(k)
τ+1, . . . , u

(k)
τ+M−1 be the control

actions evaluated in correspondence of the k-th extracted

realization of the disturbance, and x
(k)
τ+1, x

(k)
τ+2, . . . , x

(k)
τ+M

the corresponding state trajectory (clearly, u
(k)
τ+i and x

(k)
τ+i

still depend on the choice of cl, l = 1, . . . , i). The scenario
program to be solved at each step is

min
ci

E

[
M∑
i=1

xTτ+iQxτ+i +

M−1∑
i=0

uTτ+iRuτ+i

]
subject to:{

u
(k)
τ+i ∈ U i = 0, . . . ,M − 1

x
(k)
τ+i ∈ X i = 1, . . . ,M

, k = 1, . . . , N. (14)

Because of the finiteness of the considered realizations
of the disturbance, problem (14) has a finite number of
constraints only and is convex. Problem (14) can be solved
by resorting to standard convex optimization techniques.
Despite the apparent naivety of the scenario approach, the
obtained solution comes with some interesting guarantees
about constraint feasibility, Calafiore and Campi [2005,
2006], Campi and Garatti [2008], Campi et al. [2009],
Alamo et al. [2009], which make it a sensible method
to find an approximate solution to a robust problem, as
discussed in the introduction. In the present convex set-up,
the best available result is given by the following theorem.

Theorem 1. Let r be the total number of optimization
variables in problem (14). For any ε ∈ (0, 1) and β ∈ (0, 1),
if

N ≥
r + 1 + ln(1/β) +

√
2(r + 1) ln(1/β)

ε
,

then, the probability that there exists a disturbance real-
ization such that the solution to (14) does not satisfy the
constraint {

uτ+i ∈ U i = 0, . . . ,M − 1

xτ+i ∈ X i = 1, . . . ,M

is no bigger than ε with high confidence 1− β. 2

The proof can be found in Campi and Garatti [2008],
where, however, an implicit expression for the bound on N
is given. The explicit expression used here is due to Alamo
et al. [2010].
In words, Theorem 1 says that the solution provided by
the scenario approach is robust except for an ε portion of
the disturbance realizations (ε-robustness), as long as N
is suitably chosen. Note that ε-robustness is guaranteed
with high confidence 1 − β only. However, if one adopts
small values of β like β = 10−6 or β = 10−9, then, the
ε-robustness is achieved beyond any reasonable doubt.

4. COMPARATIVE ANALYSIS

The goal of this section is to make a comparative analysis
of the approaches described in Sections 2 and 3, focusing
in particular on their capability of providing an effective
solution to the MPC problem as the state and input
constraints become tighter and tighter. To this purpose,
the approaches are applied in a receding horizon fashion
to a second order toy system, first, and, then, to a fourth
order spring-mass system.

4.1 Second order system

We consider a second order system described by:

xt+1 =

[
0.5 −0.5
0.5 0.5

]
xt +

[
1
0

]
ut + wt, (15)

where w is a white noise uniformly distributed in [−0.2 0.2]2.
The reference finite horizon problem takes the following
form:

minE

[
M∑
i=1

xTτ+iQxτ+i +

M−1∑
i=0

uTτ+iRuτ+i

]
subject to:{

‖uτ+i‖∞ ≤ ū i = 0, . . . ,M − 1
‖Cxτ+i‖∞ ≤ ȳ i = 1, . . . ,M

, (16)
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where we set

M = 10, Q = I2, R = 0.1, C = I2.

As for the design parameters entering the solution of (16)
according to the approaches of Sections 2 and 3:

• the feedback gains K in (4), K, L in (7), and K in
(13) are set equal to the optimal LQ gain KLQ;
• the shaping matrix V of the tube-based approach is

V =

[
1 0 −1 0 1 1 −1 −1
0 1 0 −1 1 −1 1 −1

]T
• the violation and confidence parameters of the scenario-

based approach are ε = 0.05 and β = 10−6.

We set the initial state equal to 0 and evaluate the
threshold values ȳT and ūT for ȳ and ū in (16) leading to
unfeasibility of the optimization problems (6), (10), and
(14). Our aim is to find how much the constraints can be
tightened before incurring in unfeasibility so as to assess
the possible conservativeness of the three approaches.
Results are shown in Table 1. Note that, when the initial

Table 1. Estimate of the threshold values ȳT
and ūT for ȳ and ū before incurring in unfea-

sibililty.

ȳT ūT

Tube-based approach 0.74 0.46

Approach based on invariant sets 0.53 0.35

Scenario-based approach 0.44 0.30

state is zero, the optimization problem (6) in the approach
of Section 2.1 is feasible if and only if the invariant set
Z and its projection KZ on the input space through
the feedback gain K are respectively contained in the
constraint set X and U . Hence, the thresholds ȳT and ūT
can be obtained based on Z and KZ. Likewise, when the
initial state is zero, problem (10) in the approach of Section
2.2 is feasible if only if the tube sections Pτ+i and LPτ+i

are contained in the input and state constraint sets for
every i. Since Pτ+i and LPτ+i are increasing with i, ȳT
and ūT are obtained based on the tube sections Pt+M and
LPt+M−1.
Computing ȳT and ūT for the scenario-based approach is
instead more tricky, since it is a randomized method. The
values reported in Table 1 are heuristically determined by
progressively reducing ȳ and ū and checking for each pair
(ȳ, ū) whether problem (14) is feasible in 100 trials.
As it appears, the scenario-based approach outperforms
the other approaches in terms of tightness allowed for
the constraints. This can be justified by comparing the
different approximations of the uncertain evolution of the
state used by the three approaches. To this purpose, we
take a bunch of 10000 disturbance realizations of length M
and simulate the state evolution from the initial condition
x0 = 0 when the control input is given by uτ+i =
KLQxτ+i. Indeed, this is the solution to problems (6), (10),
and (14) when constraints are feasible and x0 = 0. We
obtain for every time instant along the prediction horizon
[0,M ] a cloud of possible states reached by the system
and we superimpose them to the invariant set Z and to
the polytopes Pτ+i defining the tube section at that time
instant.
As one can see in Fig. 1 the clouds of reachable states are

Fig. 1. Realizations of the state of system (15) when the
LQ control law is applied (green cloud), invariant set
Z (red) and sections of the tube (light blue).

smaller than their approximations as given by Z and Pt+i.
In particular note that the invariant set Z has to contain
the cloud at every time instant and it cannot adapt to the
shape of the cloud. Furthermore, even if we superimpose
all the clouds, some regions of the invariant set appear
empty and hence are quite unlikely to be reached. Using
tubes gives the possibility to shape the reachable set
approximation so as to best fit the cloud, but it turns
out that the tube approximation is well adapted to the
cloud just for the first 4 time steps and then becomes even
larger than the invariant set. The scenario-based approach,
instead, is not affected by this over approximation effect.
As a matter of fact, according to problem (14) the optimal
control law is determined by considering N disturbance
realizations and the corresponding state and input values
for defining the constraints. The resulting approximation
of the uncertain state evolution is then tighter then that
used by the other two approaches. Indeed, the clouds
plotted in Fig. 1 represent the reachable states for the
scenario solution.
Note that the feasibility of problems (6), (10) and (14)
depends on the choice of the feedback gains K in (4), K,
L in (7), and K in (13). It may be that choices other
than KLQ lead to smaller thresholds than those reported
in Table 1. However, in (6) and (10) K and (K,L) have to
be fixed in advance, otherwise computational difficulties
arise, and it is usually difficult to guess what is the right
choice. In the scenario method, instead, the feedback gain
K can be easily optimized along with the open loop term
ci, so that K can be automatically tuned towards the
optimum, Prandini et al. [2012], Deori et al. [2013]. To
be precise, to preserve convexity, one has to adopt the
following parametrization

uτ+i = γi +

i−1∑
j=0

θi,jwτ+j , (17)

where wτ+j can be reconstructed from the state equation
as xτ+j+1−Axτ+j−Buτ+j and θi,j ∈ Rm×n and γi ∈ Rm
are the design parameters. It can be proven that for any
control law uτ+i = Kixτ+i + ci, there exists a suitable
choice of θi,j and γi such that the control action uτ+i is the
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same in the two cases, and viceversa, Goulart et al. [2006].
Hence, (17) is equivalent to optimizing both the open loop
term and the feedback gain, and by using it a further
improvement in terms of tightness of the bounds can be
achieved. For instance, when a reduced parametrization
is adopted where the control input depends only on the
previous 3 values of the disturbance, then, the threshold
values ȳT = 0.39 and ūT = 0.28 are obtained.
As for the receding horizon implementation of the three
approaches, when constraints are loose and they are all
feasible, the obtained performance are quite similar. More
specifically, after some transient, they all converge to the
LQ solution, also when using the control law parametriza-
tion (17) for the scenario-based approach. When con-
straints are tight and only the scenario-based approach
with parametrization (17) provides a feasible solution,
then such a solution does not necessarily converge to the
LQ one. This appears to be the case if we set ū = 0.28
and ȳ = 0.39, as shown in Fig. 2, where a realization of
the control input and the corresponding values as given by
the LQ control law are plotted.

0 5 10 15 20 25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

t

u

Fig. 2. Input for system (15) controlled with the scenario-
based approach applied in a receding horizon fashion
(solid blue) and input given by the LQ control law
(dashed red).

4.2 Spring-mass system

We next present the simulation results obtained applying
the three approaches to a simple mechanical system com-
posed of two masses and two springs, as shown in Fig. 3.
The 4-dimensional state of the system is given by mass

Fig. 3. Scheme of the mechanical system.

displacements with respect to an equilibrium point and
their derivatives, whereas the control input is given by two
forces acting on the masses. The system is discretized with
standard techniques assuming constant input between con-
secutive time steps. All stiffness and masses are set equal
to 1. The disturbance added to the discrete time state is
uniformly distributed in [−1 1]4. The finite horizon control
problem takes the form (16) with the following parameter
setting:

Q =

[
I2 0
0 0

]
R = I2 M = 5

C =

[
1 0 0 0
−1 1 0 0

]
.

In particular, C appearing in the state constraints is
chosen so that ȳ in (16) represents some bound posed
on the deformation of both springs. The shape of the
tube sections used in the approach of Section 2.2 is a 4-
dimensional hyper-rectangle: V = [I4 − I4]T .
As in the previous example, we first determine how much
we can tighten the constraints before reaching unfeasibility
for the three approaches. Also in this case the scenario ap-
proach is still feasible for much tighter constraints than the
other two approaches (see Table 2), the gap being larger
when the feedback gain is optimally tuned by using the
parametrization in (17). The tube-based approach turns

Table 2. Estimate of the threshold values ȳT
and ūT for ȳ and ū before incurring in unfea-

sibililty.

ȳT ūT

Tube-based approach 23 20

Approach based on invariant sets 5.2 4.2

Scenario-based approach with K = KLQ 3.5 2.5

Scenario-based approach with optimally tuned K 2.8 1.7

out to be much more conservative than the approach based
on invariant sets, and this result is further confirmed by the
plots in Fig. 4 where the approximations of the uncertain
system dynamics of the two approaches are compared.
Similarly to the previous example, if we take loose con-
straints and apply the three approaches in a receding
horizon fashion, they all converge to the LQ gain. Still,
for tight constraints (ȳ = 2.8 and ū = 1.7) the scenario-
based approach optimizes the state feedback gain through
an appropriate choice of the θ and γ parameters in (17) so
as to remain feasible (see Fig. 5). These results confirm
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−20

−10

0

10

20
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y
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−15 −10 −5 0 5 10 15
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(1)

u
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u
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Fig. 4. Projections of the largest section of the tube (top
row) and of the invariant set Z (bottom row) on the
output space (left plot) and on the input space (right
plot).
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Fig. 5. Control input obtained with the scenario-based
approach applied in a receding horizon fashion (blue)
and input given by the LQ control law (dashed red).

the ones in the previous example and spot out even a larger
gap between the limit of feasibility of the three approaches.
This is most likely due to the increased dimensionality
of the system: the outer approximations of the uncertain
system dynamics given by the invariant set or by the tubes
are adversely affected by the dimension of the system and
become more conservative, while the inner approximation
used by the scenario-based approach is not influenced by
the system dimensionality and its probabilistic guarantees
remain valid.

5. FINAL DISCUSSION

The results of the comparative analysis in Section 4 high-
light some key features of the approaches in Sections 2
and 3. Specifically, the approaches in Section 2 may not be
applicable to problems with tight constraints. Unfeasibility
may in fact arise due to their use of i) an outer approxi-
mation of the uncertain system dynamics, and ii) a-priori
fixed feedback gains in the control law parametrization. On
the contrary, the scenario-based approach is able to tackle
problems with tighter constraints because of the adopted
inner approximation and, possibly, of the tuning of the
state feedback gain. Both numerical examples reveal in fact
that, though setting the feedback gain to the LQ gain is an
optimal choice for what concerns the cost minimization, it
may be not ‘optimal’ for the constraints satisfaction.
In turn, however, while the approaches in Section 2 are
robust in that constraints are guaranteed to be satisfied for
every and each disturbance realization, for the scenario-
based approach only probabilistic guarantees are given.
This drawback of the scenario approach can be only partly
alleviated by setting the size ε of the set of disturbance re-
alizations that violate the constraints as small as possible,
compatibly with the available computational resources.
As for the receding horizon implementation of the ap-
proaches in Section 2, recursive feasibility and stability
results have been developed in the literature (see e.g.
Mayne et al. [2005, 2000] and Cannon et al. [2009], Evans
et al. [2012a]). Results on these two issue have still to be
worked out for the scenario-based approach. In particular,
recursive feasibility is an open issue when state constraints
are present, whereas it is easily shown if only input con-
straints are given (just set to zero the θ parameters in
(17)). As for stability of the scenario-based infinite hori-
zon implementation, BIBO stability is easily shown when
the system is stable and the control input is subject to

saturation constraints, but otherwise is still an open topic
of research.
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