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Abstract: We show in the paper that the, so–called, “new architecture” of L1–adaptive control
is, indeed, different from classical model reference adaptive control. Alas, it is not new, since it
exactly coincides with a full–state feedback, linear time–invariant proportional plus integral (PI)
controller with a decaying additive disturbance. Moreover, it is shown that if the PI controller
does not stabilize the plant the L1–adaptive controller will not stabilize it either.
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1. INTRODUCTION

The basic premise upon which adaptive control is based is
the existence of a parameterized controller that achieves
the control objective. It is, moreover, assumed that these
parameters are not known but that they can be estimated
on–line from measurements of the plant signals. Towards
this end, an identifier is added to generate the parameter
estimates. Then, applying in an ad–hoc manner a certainty
equivalence principle, these estimates are directly applied
in the aforementioned control law.

Let us illustrate the discussion above with the simplest
example of direct, adaptive, state–feedback stabilization
of single–input, linear time–invariant (LTI) system of the
form

ẋ = Ax+ bu (1)

where the state x ∈ Rn is assumed to be measurable, u ∈ R
is the control signal, A ∈ Rn×n is the system matrix and
b ∈ Rn the input vector. It is assumed that there exists a
vector θ ∈ Rn such that

A+ bθ⊤ =: Am

is a Hurwitz matrix, but this vector is unknown. In this
case, the ideal control law takes the form

u = θ⊤x, (2)

that, as mentioned above, is made adaptive adding an

identifier that generates the estimated parameters θ̂ ∈ Rn.
In this way, we obtain the adaptive control law

u = θ̂⊤x. (3)

Defining the parameter error

θ̃ := θ̂ − θ, (4)

the control law may be written as

u = θ⊤x+ θ̃⊤x.

If the parameter estimates converge to the desired value θ
the control signal converges to the ideal control law (2) and

asymptotic stabilization is achieved—provided x remains
bounded. 1

A key observation is that the ideal control signal (2)
cannot be implemented without knowledge of the unknown
parameters. If this were not the case adaptation would be
unnecessary and we simply would plug in the controller
that results when θ̃ = 0!

In a (long) series of recent papers—see, e.g., Hovakimyan
et al. (2011) and the extensive list of references therein—it
has been proposed to replace (3) by

u̇ = −k(u− θ̂⊤x), (5)

where k > 0 is a design parameter. Combining (5) with
a standard, state prediction–based estimator is called in
Hovakimyan et al. (2011) L1–adaptive control, which in
the sequel we refer to as L1–AC.

The purpose of this paper is to prove the following facts
regarding L1–AC.

• For any parameter estimation law, the control signal
(5) exactly coincides with the output of the LTI, full–
state feedback, perturbed, PI controller

v̇ =−K⊤
I x+ µkθ̃⊤x

u= v −K⊤
P x, (6)

whose gains KP ,KI ∈ Rn are independent of the
parameters θ and µ = 1.

• If the parameters of controller (5) are updated with
a standard state predictor–based estimator the term
θ̃⊤x always converges to zero. Hence, the L1–AC
converges to a controller that can be obtained without
knowledge of the unknown parameters.

• If the PI controller obtained setting µ = 0 in (6) does
not stabilize the plant (1) then the L1–AC does not
stabilize it either.

1 Actually, to achieve stabilization it is enough that θ̂ converges to
the set {f ∈ Rn | A + bf⊤ is Hurwitz }. This is the fundamental
self–tuning property of direct adaptive control.
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2. MAIN RESULT

We analyze in this paper the L1–AC proposed in Hov-
akimyan et al. (2011) to address the basic problem of
stabilization of single–input, LTI systems discussed in the
previous section. In L1–AC, besides the (overly restrictive)
assumption of measurable state, it is assumed that the
input vector b is known. Without loss of generality, the
system can be represented in canonical form

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−a1 −a2 −a3 . . . −an


where ai ∈ R, i ∈ n̄ := {1, . . . , n} are unknown coeffi-
cients, and b = en, the n–th vector of the Euclidean basis.
The system can also be expressed in the form

ẋ = Amx− b(θ⊤x− u) (7)

where Am ∈ Rn×n, a Hurwitz matrix representing the
desired behavior for the closed–loop system, has the form

Am =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−am1 −am2 −am3 . . . −amn


where ami ∈ R+, i ∈ n̄ are designer chosen coefficients and
θ ∈ Rn is a vector of unknown parameters, given by

θ = col(a1 − am1 , a2 − am2 , . . . , an − amn ), (8)

where col(·) denotes column vector. In L1–AC the control
law is computed via (5). The parameters are updated using
the classical state predictor–based estimator

˙̂x=Amx̂− b(θ̂⊤x− u)

˙̂
θ= γx(x̂− x)⊤Pb (9)

where γ > 0 is the adaptation gain and P > 0 is a
Lyapunov matrix for Am, that is,

PAm +A⊤
mP < 0.

Proposition 1. Consider the plant (7).

P1 Independently of the parameter estimation, the signal
u generated by the L1–AC control law (5) exactly
coincides with the output of the perturbed, full-state
feedback, LTI, PI controller (6) with µ = 1 and

KI = k col(am1 , am2 , am3 , . . . , amn )

KP = k en. (10)

P2 There exists kc > 0 such that the implementable 2

PI controller (6), (10) with µ = 0, ensures global
asymptotic stability (GAS) of the closed–loop system
for all k > kc, all unknown parameter vectors θ and
all Hurwitz matrices Am.

P3 If the L1–AC controller (5), (9) ensures boundedness
of trajectories then the perturbation term verifies

lim
t→∞

|θ̃⊤(t)x(t)| = 0. (11)

Consequently, the (bounded state) L1–AC always con-
verges to the PI controller.

2 By “implementable” we mean here that the controller is indepen-
dent of the unknown plant parameters.

P4 If the PI (6) with µ = 0 does not ensure stability of
the closed–loop system then the L1–AC (5), (9) does
not ensure this property either.

Proof. To establish P1 we use the definition of the pa-
rameter error to write the the control signal (5) as

u̇ = −k(u+ θ⊤x) + kθ̃⊤x. (12)

Now, pre–multiplying (7) by e⊤n , and rearranging terms,
we get

u− θ⊤x = e⊤n (ẋ−Amx),

that, upon replacement in (12), yields

u̇ = −ke⊤n (ẋ−Amx) + kθ̃⊤x.

The proof is completed defining the signal

v = u+ kxn.

To establish P2 we simply analyze the resulting closed–
loop LTI system [

ẋ
u̇

]
= Q

[
x
u

]
,

where

Q =

[
A b
kθ⊤ −k

]
.

Now, the characteristic polynomial of Q is computed as
follows

det(sIn −Q) = det

[
sIn −A −b
−kθ⊤ s+ k

]
=det(sIn −A)

[
(s+ k)− kθ⊤(sIn −A)−1b

]
=det(sIn −A)

[
(s+ k)− k

N(s)

det(sIn −A)

]
,

where
N(s) = sn + θns

n−1 + · · ·+ θ1.

From the definition of θ in (8) we have that

det(sIn −A) +N(s) = det(sIn −Am).

Hence, grouping terms we obtain

det(sIn −Q) = sdet(sIn −A) + k det(sIn −Am). (13)

The proof is completed applying a root–locus arguments
to the expression above and recalling that Am is a Hurwitz
matrix.

To prove P3 we first write the dynamics of the system in
closed–loop with the L1–AC (9), (12),

˙̃x=Amx̃− bθ̃⊤x
˙̃
θ= γxx̃⊤Pb[

ẋ
u̇

]
=Q0

[
x
u

]
+

[
0

kθ̃⊤x

]
, (14)

where x̃ = x̂ − x is the prediction error. Consider the
function

V (x̃, θ̃) =
1

2
x̃⊤Px̃+

1

2γ
|θ̃|2,

whose derivative along the trajectories of (14) is

V̇ = −1

2
x̃⊤Qx̃.

Since it has been assumed that all trajectories are bounded
we can invoke LaSalle’s invariance principle to conclude
that all trajectories converge to the largest invariant set
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contained in {x̃ = 0}. The proof is completed analyzing
the first equation of (14).

The proof of P4 is established proving the converse im-
plication, i.e., that the trajectories of the L1–AC are
bounded implies stability of the PI. In point P3 we proved
that if the trajectories of (14) are bounded (11) holds
true. Now, the system in the third equation of (14) is an

LTI system whose input, i.e., θ̃⊤x converges to zero and
whose output col(x, u) is bounded, for all initial conditions
col(x(0), u(0)), consequently the matrix Q is stable. 3

3. CONCLUDING REMARKS

The present paper extends the results of Ortega and Pan-
teley (2014a), where we treat only scalar systems. It is sim-
ilar in spirit to the proof of Heusden and Dumont (2012)
that output feedback L1–AC is, actually, nonadaptive. P1
in Proposition 1 underscores that the stabilization mech-
anism of L1–AC has nothing to do with the parameter
adaptation, but it’s an elementary linear systems principle.

The qualifier “implementable” in P2 is essential to ap-
preciate the significance of the statement. Of course, all
adaptive controllers can be implemented as an LTI system
perturbed by the parameter error but the resulting LTI
system depends on unknown plant parameters. Due to
the inclusion of the input filter, this is not the case in
L1–AC. Moreover, since it is shown in P3 that the term
θ̃⊤x always converges to zero, the closed–loop system
asymptotically coincides with a system that could have
been obtained without adaptation rendering irrelevant—
and even harmful—the use of adaptation. Indeed, it is hard
to expect that adaptation, whose effect appears only in the
additive term θ̃⊤x, can improve the performance of the PI.

Proposition 1 has be generalized in Ortega and Panteley
(2014b) in several directions. We have assumed for simplic-
ity the case of regulation to zero and taken the input filter
used in L1–AC as D(s) = k

s+k . As shown in that paper the
proposition extends verbatim to the case of nonconstant
reference and general (stable, strictly proper) LTI filters
D(s). Also, we have assumed that the pair (Am, b) is in
canonical form to simplify the proof of P2 in Proposition 1.
A similar result is obtained in Ortega and Panteley (2014b)
for general (Am, b), in which case we pre–multiply (7) by
the Moore–Penrose pseudo-inverse of b, that is,

b† = (b⊤b)−1b⊤,

instead of e⊤n .

The paper complements the recent report Ioannou et al.
(2013) where the claims of robustness and performance
improvement of L1–AC are scrutinized via theoretical
analysis and a series of numerical examples. The interested
reader is also referred to Boskovic and Mehra (2013); Ioan-
nou et al. (2013) where the issues of numerical instability
due to high–gain adaptation and bang–bang behavior of
the control due to parameter projection L1–AC, are dis-
cussed. The inability of L1–AC to track non–constant ref-
erences is widely acknowledged, see Ortega and Panteley
(2014a) for a particular example. A freezing property of

3 From (13) it follows that Q may not have an eigenvalue at zero,
but it may have eigenvalues in the jω axis. The authors thank Denis
Efimov for this insightful remark.

high–gain estimators, that puts a question mark on the
interest of using it, is proven in Barabanov et al. (2005),
see also Ortega and Panteley (2014a).
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