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1. INTRODUCTION 

The problem of model order reduction for general non-linear 

systems was considered by Eitelberg and Boje (2007) using a 

so-called implicit quasi steady state (QSS) technique. This 

technique follows a slightly different approach to that of the 

well-established singular perturbation method and (for linear 

systems) has been shown to have better frequency domain 

accuracy than the singular perturbation method. For an 

overview of the singular perturbation method, please see 

Kokotović, Khalil and O’Reilly (1986); and Kokotović, 

O’Malley and Sannuti (1976).    

Kailasa Rao and Naidu (1984) developed the Kalman filter 

for discrete time systems using the singular perturbation 

method and  Shim and Sawan (1999) developed the Kalman 

filter for singularly perturbed discrete time systems 

represented using Middleton and Goodwin’s (1986) delta 

operator. We will follow this approach but note that other 

approaches are possible: Kando, (1997) examines the 

problem starting from the continuous time representation, and 

it is also possible to make use of the Tustin (bilinear) 

transform representation of the discrete time system which 

retains the jω axis stability bound of the continuous time 

system and has been shown to be very useful for discrete time 

control system design (Eitelberg, 1988; and Eitelberg and 

Boje, 1991).  

The dynamics of the state estimates are not the same as the 

dynamics of the physical system states because the former 

includes the feedback of the output estimate via the Kalman 

gain (which very roughly depends on the ratio of state to 

output noise covariances). Because of this, it is possible that 

slow states in the physical system become fast states in the 

estimator and vice versa, leading to problems where deriving 

the full order Kalman filter model and then implementing 

only the reduced order version of it makes sense. This theme 

is developed in the continuous time by Qaddour (1998) but 

will not be pursued in this paper. Our interest is in 

understanding how to approach the state estimation problem 

if the physical model is already reduced using the quasi-

steady state approach. 

The remainder of the paper is organised as follows: Section 2 

develops the quasi steady method for discrete time linear 

systems described using the delta transform. Section 3 

develops the Kalman filter equations for the resulting reduced 

order quasi steady state model. Section 4 presents an example 

of a simple second order system to illustrate the method. The 

example also makes a comparison between Kalman filter 

results based on the quasi steady state and singular 

perturbation approaches.  

2. QUASI STEADY STATE REPRESENTATION OF 

DISCRETE TIME LINEAR SYSTEMS 

Using conventional notation, we consider the linear system in 

the delta-domain,    
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In (1), the state vector is divided into two components, 

 T
2

T
1

T
, XXX  , representing slow and fast behavior 

respectively.  Ajk, Bj, Ck, and D are (partitions of) the state, 

input, output and throughput matrices respectively. Zero 

mean, white state noise, Nj and output noise, V are included. 

 is a variable representing the time scale separation and 

formally, →0 results in a singular perturbation. For the 

model order reduction to make sense, A22 must be stable and 

full rank (the latter condition is not onerous as A22 represents 

the dynamics of the fast subsystem).  Representing (1) in the 

time-domain with time index, superscript i, 
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The relationship between the system, A, and input, B, 

matrices in the continuous (superscript c) and delta 

(superscript δ) domains is,  
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, (3) 

where the approximations are good if the sampling time is 

small relative to the eigenvalues of the system matrix 

(T/|λ|max ≪ 1). Note in (3) that jω-axis eigenvalues of A
c
 do 

not map into the jω-axis in the discrete time as they would if 

a Tustin transform were used. (They map onto a circle in the 

left hand plane with radius 1/T, centered on -1/T.) 

2.1 Implicit Quasi Steady State Recursion 

As has been argued in Eitelberg and Boje (2007) (for the 

general continuous-time, nonlinear case), the singular 

perturbation solution,  22121
1

222 NUBXAAX 


 for 

the fast subsystem obtained via 0lim  in (1), may be 

adequate with respect to modelling of X2 but may not be 

adequate for the dynamic model of X1.  The exact solution 

for 
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X in (1) is, 
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After a first substitution, of (4) into (1), the exact 
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is, 
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The second substitution (eq.(4) into eq.(5)) yields 
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An important difference between the quasi-steady state 

approximation (6) and the corresponding result from the 

singular perturbation method is that (6) includes the first 

differential of the input (or derivative in the continuous time 

case). This improves the frequency domain accuracy of the 

approximation (ibid.). The above substitutions could be 

continued indefinitely in principle but this would defeat the 

objective of simplifying the model! After the kth substitution, 

the retained exact model can be written in the form, 
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The eventual outcome is the implicit solution obtained by 

eliminating X2 in the first row of (1), for example using the 

binomial expansion of, 

   22121

1

2212

111111

NUBXAAIA

NUBXAX











 (8) 

 

3. KALMAN FILTER DERIVATION BASED ON QUASI-

STEADY STATE APPROXIMATION  

If the second order and higher terms in  1
22


A  are small, 

the last term in (6) can be ignored and the result written in the 

(discrete) time domain to yield a reduced order model that 

can be used to set up a Kalman filter to estimate the slow 

state vector, 
i
1x ,  
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or, simplifying notation, 
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In order to deal with differentials of the input and state noise 

in (9) or (11), define a modified state variable, 
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Obtaining an unbiased, minimum variance estimate for the 

state, z
i
, in (13) is a straight-forward Kalman filtering 

problem (for example see Eitelberg (1991); Brown and 
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Hwang (1992); or Kailath, Sayed and Hassibi (2000)). The 

only “variation on the theme” is that there is state noise in the 

output equation and this means that the filter equations need 

to take the special structure of cross-covariance between state 

and measurement noise into account. The filter equations are: 
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From the estimate of z
i
, an unbiased (but possibly not the 

minimum variance) estimate of x
i
, is obtained: 
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This section has developed the QSS equations for a system in 

the delta-domain into a form that allows the application of the 

discrete time Kalman filter.  

In some applications one may account for the deleted 

2
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XAA 
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in (6) by considering this as an additional 

“noise” signal in both the state difference equation and the 

output equation. Of course it is not a random signal and is 

correlated with the signal X2 but in many applications, the 

whitening effect of finding the second order difference may 

make such an approximation useful. 

Using higher order approximations as in (7) will improve the 

approximation accuracy with respect to  for both singular 

perturbation and QSS methods. In the case of the QSS  

method, the renaming of the state vector in (12) to avoid 

numerical differentiation of the input signal will only work 

(and give the corresponding frequency domain accuracy 

improvement over the singular perturbation method) up to 

first order. Thereafter, the benefit can only be realised if the 

numerical differentials of the input are calculated (or if the 

input is known to be sufficiently smooth that the higher 

differentials are small when scaled according to (7)). 

 

4. EXAMPLE 

The following example compares Kalman filter solutions of a 

second order system to those of first order reduced order 

representations based on the singular perturbation method 

and the QSS method. It is derived from the example in 

Kokotovic, et al (1986, Ch. 2, Example 7.1), and discussed in 

Eitelberg and Boje, (2007). Consider the system, 
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with white noises, n, and other parameters, 
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Eq. (21) has the state difference equation,  
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The singular perturbation model is,  
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with the original state vector and covariance at time, i, 

recovered via, 
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The modified QSS model from (13) is,  
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with the original state vector and covariance at time, i, 

recovered using (20) and (21) respectively to give, 
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The system (21) is simulated over 100 samples with
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u . Figs. 1 and 2 show compare the Kalman filter 

outputs of the full-order, singular perturbation, and QSS 

models. Initial conditions are  T0
01ˆ x and initial state 

covariance is 














10

010
P .  

 

Fig. 1. Kalman filter for QSS (solid, red), singular 

perturbation (dashed, green), full model (dash dot, blue) and 

simulation (dotted, black). 

 

 

Fig. 2. QSS )ˆˆ( 11

i
qss

i

full
xx   (solid, black) and singular 

perturbation )ˆˆ( 11

i
sp

i

full
xx   (broken, red) compared with 

respect to full-order state estimates. 

 

Note that the Fig. 1 does not show the actual state vector as 

this is in principle not recoverable. Instead, the figure 

compares the reduced order estimates to the best linear 

unbiased estimate generated by the Kalman filter solution of 

the full-order model. From Fig. 1 it is observed that the 

estimates of x1 using either model are almost 

indistinguishable and that the reduced order estimates for x2 

do not track the state as well as the second order method. In 

Fig. 2, the differences between the full order model estimate 

of x1 (N.B. again, the full order Kalman filter solution and not 

the actual state) and the estimates of x1 using the two reduced 

order methods are compared. This finer detail highlights the 

small but clearly improved performance of the QSS method 

over the singular perturbation method in this example.  

The state covariance matrices at the end of the simulation are 

as follows.  
















099.0042.0

042.0153.0

fullP ,  (27a) 
















30.00

0143.0

spP ,  (27b) 




















30.003.0

03.0169.0

qssP  (27c) 

 

One would expect that the covariance (diagonal elements of 

P)  of the full order model should be lower than that of the 

reduced order model which is the case for the quasi steady 

state method. The singular perturbation result is too 

optimistic.  

5. DISCUSSION AND CONCLUSIONS 

This paper has developed a reduced order, discrete time 

Kalman filter based on the continuous time QSS  model order 

reduction technique of Eitelberg and Boje (2007). Because 

the QSS method has better frequency domain asymptotic 

accuracy than the singular perturbation approach, in typical 

(low-pass system) Kalman filtering problems, it should out-

perform the singular perturbation method. To some extent, 

this is achieved by sleight-of-hand as there is a renaming of 

the state vector in (12) (to bring input derivatives that are 

found in the continuous time case into the discrete time 

framework). On the other hand, the underlying state vector 

can be recovered easily and the method works well. We have 

used the delta-transform representation of the discrete-time 

system for ease of application of the underlying continuous-

time ideas but the w-domain representation would result in 

equivalent analysis and results.  This initial work suggests the 

following avenues for further work:  

1) Application to higher order linear system problems 

and practical examples. 

2) Approximating for the state error caused by 

unmodelled dynamics (the obvious effect of the 

model order reduction) via increased state noise 

covariance in the reduced order system. 
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3) Application of the QSS based model order reduction 

to  reduced order extended Kalman filter and sigma-

point type of Kalman filter designs 

4) Application to time scale separation problems. 
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