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1. INTRODUCTION 

As part of its efforts to progress and innovate in the field of 

Smart Grid technologies, Enexis
1
 developed and currently 

operates a Battery Energy Storage System (BESS) called the 

Smart Storage Unit (SSU), part of the Smart Storage Project 

(SSP). The SSU is a 400 kVA, 232 kWh storage system, 

equipped with internet-connected control hardware in order 

to add “smartness” into the equation. The objective of the 

project is to enable field-testing and research on advanced 

electricity storage solutions in the LV distribution grid. It is 

installed in the LV grid to enable applications such as:  

 The increase of local self-consumption of 

photovoltaic (PV) power,  

 Improvement of reliability and flexibility,  

 Reduction of losses and maximizing the utilization 

of existing infrastructure.  

An elaborate system description of the SSP is given in [1]. 

This paper mainly focusses on the development of an 

addition to the controller system for minimizing grid losses 

and maximizing grid asset utilization. Its principles rely on 

using historic data for load prediction, in order to flatten the 

power demand at the transformer, through peak-reduction 

and valley-filling. 

2. THE SMART STORAGE UNIT 

The Smart Storage Unit (Fig. 1) consists of batteries, 

inverters and auxiliary hardware installed in a standard 

substation, which is depicted in the field in Fig 1. 

Schematically the SSU is indicated in Fig. 2 by the green 

box. 

The inverter system consists of four separate inverters, each 

connected to one of four battery strings. The inverters convert 

the 696 VDC battery voltage into 230 VAC on the grid side. 

Each inverter is connected to the battery strings’ battery 

management system (BMM) in order to monitor battery 

status and adjust current limits accordingly. In Fig. 3, two out 

of four inverters inside the SSU substation are depicted. 

The four battery strings each consist of 29 battery modules. 

Each having a nominal voltage of 24 VDC, adding up to a 

nominal voltage of around 696 VDC. The maximum discharge 

power per string is 100 kW, adding up to 400 kW in total. 

                                                 
1
 One of the largest DSOs in The Netherlands. 

The maximum charge power is limited to 25 kW per string, 

totalling to 100 kW of charging power. The batteries can 

operate normally in a temperature range between 20 and 50 

degrees Celsius. An air-conditioning (AC) system ensures the 

batteries always operate in this temperature range. The BMM 

that is installed within each battery string ensures safe and 

prolonged battery operation by limiting (dis)charging 

currents when operational limits are about to be reached. 

Current limitations can be reached due to; a high state-of-

charge (SoC), imbalance between individual battery modules 

within a string, high battery module temperatures, and very 

low or high SoC values. 

 
Fig. 1.  The Smart Storage unit installed in the field 

3. CONTROL AND DATA COLLECTION SYSTEM 

The SSP is equipped with a control and data collection 

(CDC) system, boxed in red in Fig. 2. It controls four 

separate inverters, each connected to one of the four battery 

strings. The CDC is built with off-the-shelve x86 hardware. It 

can run custom made applications in order to facilitate 

different control strategies. In Fig. 4 the interconnection 

between the novel charging path optimizer based on [2] 

proposed in this paper and the real-time controller is 

depicted. The real-time controller is currently fed by a static 

SoC table, with  several charge-discharge cycles per week. 

The charge path optimizer will dynamically provide SoC 

reference data, based on real-time measurements and 

historical data. The CDC provides the historical data needed 

for the charge path optimizer. 
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Fig. 2.  Left: schematic overview of the Smart Storage Project 

  
Fig. 3.  The inverters inside the substation 

4. CONTROL ALGORITHM 

The objective of the newly developed controller is to 

minimize transformer peak-loading using historical power 

consumption data as input for future loading prediction. This 

single source of information has been chosen in order to 

demonstrate the performance of the controller algorithm with 

limited circumstantial information available. Future research 

will include assessments of the increase in performance when 

more information sources (such as weather forecasts) are 

available. The case considered in this paper can act as a base 

case control strategy for those assessments. The controller 

determines the optimal (dis)charging power for a 24 hour 

receding horizon, based on this historical data, real-time 

measurement data and current state-of-charge (SoC). Fig. 4 

depicts the interconnection between the novel charging path 

optimizer and the real time controller. In Fig. 5 a graph of the 

energy envelope is depicted. This envelope determines the 

minimum and maximum values of the state of charge over 

time in the same way described by [2].   

The controller algorithm proposed in this paper uses a load 

forecast, based on historical data, to determine the optimal 

charging strategy. In most cases the load will have a peak and 

valley in the period of a day which enables daily peak 

shaving with the help of the SSU. Therefore the horizon of 

the optimization algorithm is limited to the period of a day. It 

is assumed that daily load profiles are somewhat similar and 

that during a day the SSU has not enough energy storage 

capacity to completely flatten the load demand profile of the 

connected households. This leads to the proposition that at 

the moment of interest and twenty-four hours later the State 

of Charge (SoC) of the SSU should be the same.  

 
Fig. 4.  Block diagram depicting the charging path optimizer within the 

control system 

An optimal charge profile can be determined for this period. 

Therefore, an approach suggested by [2] is used, which 

assumes an envelope of possible states of energy between the 

two moments in time (t=[0,thorizon]). The envelope is limited 

by the capacity of the battery (Emax), and a minimum energy 

state of the battery (Emin). This lower boundary increases the 

lifetime of the battery system. Furthermore, the envelope is 

formed by the maximum charge and discharge rates of the 

system, which are depicted in Fig. 5 by the rising and 

declining lines pieces representing respectively charging and 

discharging of the system at maximum rated powers. These 

power restrictions also apply inside the envelope, resulting in 

a limited range of energy states which can be reached in a 

certain period. In Fig. 5 this is visualised by points A, B & C. 

From point A only energy states between point B and C can 

be realised in the period tres.  

 
Fig. 5.  Concept of the controller for the SSU 

Within the envelope and regarding the power restrictions a 

backward induction algorithm is applied to determine the 

optimal (dis)charging path of the SSU for the time horizon. 

This enables non smooth cost functions to be applied for 

other strategies [2]. Therefore, the state (E) and action (ΔE) 

space as well as time are quantized with respectively 

resolutions Eres and tres (as depicted in Fig. 5). A positive and 

negative penalty of an action is associated with respectively 

charging and discharging actions. The series of actions with 

resulting in lowest penalty is regarded as the optimal 

(dis)charging path. Implementation with a backward 

induction algorithm enables additional modeling of detailed 

characteristics of the SSU. Also the reward function can be 
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adapted to charge optimally regarding peak shaving, market 

price, matching renewable energy sources, etc. 

5. SIMULATION MODEL 

A simulation model is developed in MATLAB to simulate 

the SSU unit and the controller (Fig. 6). The SSU model 

describes he characteristics of the SSU and the controller 

model contains the concept described in section 4. 

Fig. 6.  Diagram of the SSU model 

Fig. 6 shows a diagram of the SSU model with several 

function blocks (functions of ΔE). There are three modes 

within the model; charging, discharging and idle. The mode 

is dependent on the value of Echarge, the energy per time step 

from the grid into the SSU. In the idle mode, the SSU will 

only need energy (Ebase) for a basic features such as AC, ICT, 

and control hardware. This energy comes from the SSU itself, 

since it also should work in island mode. In the charging 

mode, the charging rate of the SSU is limited by the Li-ion 

battery connected by the inverters, which also have losses. 

The remaining energy is partly used for the aforementioned 

base load and charging the battery. This charging has a 

certain efficiency, ηcharge, which finally results in an effective 

charge energy, ΔEb. In case of discharging, the discharge rate 

is limited by the rated power of the inverters. The effective 

discharge energy of the battery, is based on the efficiency of 

the inverters and the base load. 
The controller model first collects the forecast and the energy 

state of the SSU, and creates the envelope and optimizes the 

charging actions for the horizon of 24 hours regarding its 

penalty function. In this paper the objective is peak shaving 

and the corresponding penalty function that has to be 

minimised with Paction(t) is therefore; 

∑           )           ))
 

    

   
 

Eq. 1: Penalty function 

Secondly, the amount of energy to charge in the first time 

step is given to the SSU model. This will charge or discharge 

its battery and, finally, returns the new energy state to the 

controller. These steps, which represent 15 minutes, are 

repeated for the simulation period of a week. 

 

Fig.  7. Scheme of the simulation model 

Since the SSU is fitted with Li-Ion cells, the maximum 

charge and discharge rates are related to the SoC of the 

system. This was modelled into the SSU model as well as 

into the penalty function of the controller model. Also the 

charge and discharge losses of the system were modelled in 

both sub-models.  

The forecast of the demand which is needed for the controller 

model is based on actual measurements of the neighbourhood 

connected to the SSU. In Fig. 8 a screenshot is depicted of 

the resulting optimisation. The upper inset shows the 

envelope with the optimal charging state for the total time 

horizon, and the lower inset gives the associated power 

demand of the connected costumers, the transformer loading, 

and the power given by the SSU. It is clear to see that the 

concept of the optimal charging state will result in lower 

transformer loading as depicted in the lower inset, with the 

same power demand of the connected costumers. 

6. CASE STUDIES 

In order to assess the effectiveness of the charging path 

optimizer, several case studies have been performed through 

simulation. Three different scenarios are selected for 

simulation: 

 Scenario 1: In this scenario the standardized profiles 

from the Ecofys [3] database are used. Day profiles 

vary over time, but due to the aggregation of a large 

number of consumers the profiles are smoother than 

generally seen at a MV/LV transformer. Only small 

deviations on load demand exist between days. 

 Scenario 2: In the second scenario actual 

measurement data from the ‘De Keen’ 

neighbourhood have been used. A holiday is present 

in the middle of the week, showcasing its behaviour 

in case of unexpected load demand variations. 

 Scenario 3: In the third scenario, two subsequent 

weeks, one sunny and one cloudy are simulated. 

This will show the algorithm’s performance in case 

of strongly varying PV output in the neighbourhood. 

In these three scenarios, a weeks’ worth of historical data is 

used as the input for the charge path optimizer. From a 

practical perspective this simplifies operation of the 

controller, as this data is locally available through logging. 

Through these simulations it is assessed whether this 

practical approach can be effective in operation of the SSU. 

 

Fig.  8.  A screenshot of the controller model variables during simulation 
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Scenario 1 

As can be seen from Fig. 9, the profile is highly repetitive 

and therefore the controller is able to charge the SSU in the 

power demand valleys, using that same energy reducing 

peaks during highest demand. Peaks are reduced by 14.3% on 

average throughout the week. 

 

Fig. 9.  Simulation results scenario 1 

Scenario 2 

 
Fig. 10.  Simulation results scenario 2 

In scenario 2, reduced demand during day 2 (as can be seen 

from Fig. 10) and varying demand profiles during the rest of 

the week, showcase the controller’s ability to adapt to 

varying circumstances. As load demand has spikier peaks 

than the Ecofys profiles, peak-shaving performance increases 

to 17.9%. Using this real-life data, we can conclude the 

algorithm’s effectiveness in the field. 

 
Fig. 11.  Simulation results scenario 3 

Scenario 3 

In Fig. 11, the simulation results for scenario 3 are shown. In 

this case, load measurements of the summer months are used. 

In this case the preceding week had a lot of PV output, which 

has significantly dropped during the week depicted in Fig. 

10. Nonetheless, the controller was able to reduce peak-

loading with 13.7%, proving its effectiveness when handling 

historical data that significantly differs from week to week. 

Discussion 

From the scenarios described before, we can see that a single 

information source, historical load-demand data in this case, 

is suitable for determining (dis)charge paths in a BESS in the 

LV distribution grid. Only using a single data source, greatly 

reduces complexity of the controller, while providing 

sufficient performance. In all simulated scenarios, peak load 

at the transformer went down significantly. 

In the first scenario, averaged, aggregated and therefore 

smooth, load profiles are used to test the controllers’ 

capability to use historical data for the purpose of flattening 

the load profile seen at the transformer. Although the 

simulation turns out effective, its relevance to real life 

conditions is limited, since the used profiles are smoothed 

and daily variance is little. 

The second scenario encompasses a simulation whereby field 

measured data taken from the SSU project is used. In this 

case, one deviating day is included in the simulation 

timeframe. This shows the controllers’ capability to cope 

with unexpected changes in a more or less repeating pattern. 

As the resulting peak transformer load reduction does not 

vary significantly compared to scenario 1, it is shown that a 

deviation caused by for example a holiday, will not be of 

influence to the controllers’ stability in flattening the 

transformer load profile. 

In scenario 3, a different approach is taken; two subsequent 

weeks are simulated, first a sunny week with a lot of PV 

power generation, followed by a cloudy week with only little 

PV power generation. The historical data will result in a 

prediction expecting a lot of PV generation, resulting in low 

day-time power demand, or even net reverse power flow. 

Meanwhile, power demand will be a lot higher during 

daytime hours than predicted. Nonetheless, the controller is 

capable of reducing the transformer peak load under the 

uncertainty of weather circumstances. This shows that 

detailed weather information is not critical for sufficient 

controller performance. 

7. CONCLUSIONS 

This paper describes a charging path optimizing controller, 

based on [2], adapted for use with a BESS. As a study case 

the Smart Storage Project was selected, using power flow 

measurement data from the project the charging path 

optimizer was tested for robustness and effectiveness. As can 

been seen from section 6, the charging path optimizer is 

capable of reducing peak-loading of the transformer up to 

17.9% in real-life field setting. When load demand 

significantly varies from week to week, the peak-load 

reduction drops down to 13.7%, which is. More robust 

control (against varying load profiles) can be achieved by 

improving the prediction accuracy. However, adding more 

accuracy will become increasingly more complicated as more 

external information sources will be needed. Nonetheless, the 

algorithm was proven to be effective, and robust even with 

rather simple prediction techniques, only utilizing historical 

data. 
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FUTURE WORK 

As a part of future work, we will proceed to make this 

controller system ready for field testing with the SSU. 

Furthermore, the addition of more information sources will 

be considered in order to achieve better load-prediction 

quality. 
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