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Abstract: Polymer electrolyte membrane (PEM) fuel cells are highly efficient energy converters and
provide electrical energy, cathode exhaust gas with low oxygen concentration and water. They are
investigated as replacement for auxiliary power units (APU) that are currently used for electrical power
generation on aircraft. For generation of oxygen depleted cathode exhaust air (ODA) oxygen
concentration must be 10-11%. A challenging task is controlling the fuel cell system for this product and
simultaneously keeping fuel cell stack degradation, voltage losses and stack damage as low as possible as
well as keeping the system within operational limitations such as bounds and gradients on control
parameters. This constrained control task for PEM fuel cell systems is attacked by a nonlinear model
predictive control (NMPC) strategy. Simulation and experimental results are shown.
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1. INTRODUCTION

Aircraft are becoming more and more electric as technology
relying on electrical power has developed at high pace
(McLaughlin, 2009). During ground operations electrical
power on aircraft is provided by an auxiliary power unit
(APU), which is a significant source of CO, as well as noise.
PEM fuel cells are very efficient energy converters and are
the most suitable for dynamic applications. They are
investigated for use on aircraft in a multifunctional manner
(Vredenborg et al., 2010). Besides electrical energy, they
provide oxygen depleted cathode exhaust air (ODA) for tank-
inerting purposes. Oxygen concentration in ODA-gas must
not exceed 12% to prevent inflammable fuel vapors
(Friedrich et al., 2009) and should stay between 10-11%
(Kallo, 2010). Thus far, PEM fuel cell systems have been
studied for electrical power supply of autonomous robots
(Niemeyer, 2009) or for automotive applications (Pukrushpan
et al., 2004), (Karnik et al., 2009). Operation of PEM fuel cell
systems for inerting has not yet been studied in detail and is
central topic of this paper. Proper fuel cell system operation
such as keeping the membrane well hydrated and to proper
supply fuel and air as oxygen carrier is a central aspect
(Pukrushpan et al., 2004), (Borup et al., 2007). The system
studied has an anode recirculation loop for efficient use of
hydrogen fuel and for humidification. Water separation in the
recirculation loop prevents anode flooding, which is more
likely to occur than cathode flooding as cathode gas flow
continuously removes cathode water (McKay et al., 2005).
Fuel and air supply as well as cooling temperature gradient
across the stack is managed by an internal fuel cell system
controller. The stack is connected to an ohmic load. Figure 1
shows a schematic of the multifunctional fuel cell system
with dehumidifying section consisting of a condenser and
water separators (Sep. 1, 2). Oxygen excess ratio termed
stoichiometry u,,,, stack current I, stack cooling system
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Fig. 1. Schematic of the fuel cell system comprising stack,
separators (Sep.l, 2), condenser, inlet-, outlet- and exit
manifold (im, om, em), condenser and stack cooling system
with intercooler and cooling valve; H2 is recirculated.

For controlling the fuel cell system for ODA-gas mass flow,
operational limitations such as bounds and gradient on stack
current and bounds on condenser cooling temperature have to
be satisfied. A suitable approach is model predictive control
due to its inherent capability of incorporating constraints.
Model predictive control (MPC) has been successfully
applied to fuel cell systems for electrical power supply
(Niemeyer, 2009). In a preliminary simulation study MPC
was applied to control for ODA-gas mass flow and stack
cooling temperature (Schultze et al., 2013a). To keep
computational burden low, stack cooling control is managed
by a separate cooling controller. This paper presents a real-
time capable nonlinear model predictive control strategy
based on a sequential quadratic programming (SQP)
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approach (Griine and Pannek, 2011) to control the fuel cell
system for ODA-gas generation. The system model is briefly
outlined in section 2. Fuel Cell System Model. The nonlinear
model predictive control (NMPC) strategy is presented in
section 3. NMPC Strategy. Simulation and experimental
results are shown in Section 4. Simulation and Experimental
Results.

2. FUEL CELL SYSTEM MODEL

The fuel cell system model comprises the fuel cell stack
cathode and anode and a controlled air-valve for cathode feed
air supply (mass flow controller, MFC). A thin polymer
membrane with high water diffusivity separates cathode from
anode. Due to the membrane’s high diffusivity, stack
humidification is maintained as long as stack temperature,
gas flow through cathode and load change gradient stay
within operational limits. Under these assumptions, a
perfectly hydrated membrane can be assumed. The MFC
delivers a cathode feed air mass flow as specified by actual
stoichiometry and stack current. However, it may deliver
slightly too much flow in order to allow for fast air delivery.
This behavior leads to a higher ODA-gas mass flow than
expected and results in an ODA-gas oxygen concentration
rise as more oxygen is fed to the cathode. Stack temperature
is managed by an internal controller operating stack cooling
pump, whereas reference temperature difference across the
stack ATerrer is @ function of system inputs. ODA-gas and
inlet air are modeled as ideal gases with inlet air considered
dry and consisting of 21% (vol.) oxygen (O,) and 79%
nitrogen (N;). When limiting stack current slope sufficiently,
oxygen starvation and cathode flooding can be prevented to
avoid serious dynamic voltage losses. With the previous
assumptions a reduced order model is derived. The model
captures two major dynamics: gas and thermal dynamics.
Model states are as follows and y the model output with X,
being the ODA-gas water loading.
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1.1 Fuel Cell System Gas Dynamics

Pressure in the volumes establishes fast as compared to the
remaining system dynamics and therefore is modeled as static
(Niemeyer, 2009). Pressure depends on the gas mass flow
through the fuel cell system. Cathode feed air mass flow is
provided by the MFC, whose dynamics are described by a
first order time system with time constant 7,.. Gas flow
dynamics through the inlet manifold, cathode and the
downstream volumes such as outlet manifold, condenser and
exit manifold are grouped together and are modeled as a first
order time system with time constant Trc. A disturbance mass
flow 2z, accounts for the feed air mass flow deviation.
Measurement of the oxygen concentration cp; is a relatively
slow process and is captured by a first order time system with
time constant Tp,. The gas states are as follows with W, the
mass flow provided by the MFC, W,,, the ODA-gas mass
flow leaving the fuel cell system and z,. the mass flow
disturbance of the MFC. Model equations for the gas

dynamics are stated by (2). Cathode feed air mass flow is the
sum of W, and z,,. and a mass flow Ly,ciicensMo2/(4F) of O
is consumed by the chem. reaction 4H + 0, + 4¢” — 2H,0.

aw, 1 n 0.79
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Oxygen concentration is determined by O, molar flow Ny,
and nitrogen molar flow Ny, leaving the stack (3). Both
flows are determined by O, mass fraction of air xy, and molar
masses My, for O, and My, for N,. Oxygen inlet flow is
reduced by the consumption during chemical reaction.
Cathode feed air mass flow is determined as sum of W, and
Zyse. Number of cells in stack is #.,. F is Faraday constant.

1

]'lac
NUZom = meUZ (Wm/L + Zm/c)_ ‘;.F{t ncells (3)
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N2

1.2 Fuel Cell System Thermal Dynamics

Thermal dynamics cover stack cooling system, condenser
cooling system and ODA-gas water loading, which depends
on temperature and pressure. The stack cooling system’s
inner cooling loop is filled with coolant of specific heat
capacity ¢;,, and is being pumped at cooling mass flow W,,.
The outer loop coolant is being pumped at mass flow W,,, and
has a specific heat capacity c,,,. W;, is driven by an internal
controller to satisfy cooling temperature gradient across the
stack. Outer loop coolant mass flow is set constant. Both
loops are coupled by an intercooler. The intercooler is
captured as a static model (Schultze et al., 2012) as the
cooling system’s thermal mass is higher than the intercooler’s
thermal mass. Cooling valve position u,q. o in the outer
loop sets the level of mixture of cooler and bypass coolant.
This is described by a static model. Thermal states are stack
temperature Ty, 177 and Ty, being the inner loop, T, ; and
Tor, being the outer loop cooling temperatures, cooler
temperature 7., o, and condenser cooling inlet temperature
Teoor . Water loading is given by X,4, in g/kg. The system
schematic in figure 1 depicts the temperature locations.
Further parameters for the thermal model are stack heat
capacity Cy,e, coolant masses my;;, my, in the inner loop,
moy1, Mor; and m, in the outer loop and the cooler as well as
time constant 7, of the controlled condenser cooling system,
ambient temperature 7, and cooler parameter k.. A portion
of 6% of W,, is taken for hydrogen recirculation pump
cooling (Schultze et al., 2012). The coolant temperature rise
through the compressor, however, is considered negligible
small as the hydrogen compressor generates a low heat flow
as compared to the fuel cell stack. Cooling mass flow through
the intercooler is modeled as 94% of W,,,. The thermal model
differential equations are stated below (4a-g).
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1.3 Intercooler Model

A counter-flow heat exchanger interconnects inner and outer
cooling loop. For modeling heat exchangers the effectiveness
NTU method (Shah and Sekulic, 2003) has shown very good
results. NTU is the number of transfer units, which is an
important parameter in heat exchanger design. Outlet
temperatures are calculated explicitly on the inlet
temperatures and the cooling mass flows. Heat flow is gained
by inlet temperature differences, minimum heat capacity flow
C,in=min(C,C.) and effectiveness eyry. Temperatures into
inner loop Ty, (5) and into outer loop Torz:, (6) are gained
by heat capacity flow of inner C,=W;,c;,, and outer loop
C.=0.94W s Coxr. Intercooler inlet temperatures are 7;, and
Tov;. Effectiveness eyry for a counter-flow heat exchanger
(Shah and Sekulic, 2003) is given by (7), (8) with U4 being
the parameter describing the heat transfer.

1 5

T/le = T1L2 - Ci(e{\'TU Cmm (Tle _TDLI )) ( )
h

1 6
TOLZin = T()Ll + Cf (e.\’TU Cmin (TILZ _T()Ll )) ( )
C" =C,,/maxC,,C,), NTU =UA/C,,, (7
NTU/(1+ NTU) C =1 )

evry =1_1Zexp (_ NTU(I —C )) otherwise

1-C" exp(- NTU(1-C"))
1.4 Fuel Cell System Pressure

System pressure is necessary for determining stack heat flow,
voltage and ODA-gas water loading. As mentioned
previously, pressure establishes fast in comparison to the
major system dynamics (Niemeyer, 2009), (Pukrushpan et al.,
2004) and therefore is obtained by a static model. It is
assumed that pressure changes with ODA-gas mass flow.
System pressure is obtained by nonlinear flow equations due
to water loading and a turbulent flow regime (Schultze and
Horn, 2012). Inlet manifold pressure p;, is not required in the
following. Pressure vector p=[pcs, Pom Peins Peous pg,,,]T could
be computed at once, which however would require an
iterative algorithm. An alternative is calculating the pressure
vector starting from the last element by inverting the mass
flow equations with p,,,;, being ambient pressure. ODA-gas in

the exit manifold has a very low water loading due to the
dehumidifying section. The nonlinear flow is gained by
Woaa = Kem~/Dem — Pamp- EXit manifold pressure is obtained
by equation (9) with k., being the flow constant. ODA-flow
at the condenser exit is considered to carry a low vapor mass
flow due to the low temperature. Therefore, pressure p.,,
(10) at the condenser outlet is gained equivalently to p.,,.

pem = (VVoda /kem )2 + pamb (9)
pcout = (VVoda/cxepZ )2 + pem ( 10)

At the condenser inlet the ODA-gas flow is assumed to be
fully saturated at nearly stack temperature and thus has a high
water loading. The temperature at condenser inlet, which is
assumed to be outlet manifold temperature 7,,, is gathered by
Tom = Tsaek- AT,,, with AT, accounting for ODA-gas
cooling. The change of water loading across the upstream
separator (sep. 1) is negligible small leading to the
assumption that water loading X,, in the outlet manifold
equals the one at the condenser inlet. The nonlinear flow is
gained as (11) with flow constant c,,,; and c. for the separator
and the condenser, respectively.

(1 + X, )VVodu =CsepiNPom = Pein

(11)
U+ X 0 Wi =€ Piin = P
X, = (T, ) (pon = 22 (T,)) R /R, (12)

Comparing equations (11) with each other leads to (13)
determining outlet manifold pressure p,,. Inserting equation
(13) into (12) leads to (14) that is an equation of one
unknown p.;,, which is solved by the iterative regula-falsi
method “Illinois Algorithm” (Ford, 1995).

p()m = pcin + (cc/csepl )2 (pcin - pcout) (13)
0=y Pain = Peows =1+ X, W, (14)

Flow equation for the fully saturated gas flow with high
water loading leaving the cathode is given by equation (16).
Cathode pressure p,, is determined iteratively as done for p,.

0 = kca(pcu _pom)_ (1 +Xca)VVnda
X, = (TP = P (T)) Rosaf R,

Liquid water resides in the cathode, hence fully saturated gas
is assumed there. Dry gas cathode pressure is obtained by
subtracting vapor saturation pressure from p.. Cathode O,
partial pressure (17) is gained by applying O, molar fraction
Cea,02=Nozou/(Nozout Nnzow) With flows of equation (3).

(16)

sat

Pea.02 = Cea02 (P(‘u — b (Tslaclt )) (17)

1.5 Fuel Cell Voltage and Fuel Cell Stack Heat Flow

Stack voltage depends on stack current, temperature, oxygen
partial pressure and on membrane humidity (O'Hayre et al.,
2009), (Amphlett et al., 1995). The membrane is assumed
perfectly hydrated due to its thinness. This motivates
reducing the humidity dependent membrane resistance
(O'Hayre et al., 2009) to a constant ohmic resistance R,,.
Reversible cell voltage U, depends on hydrogen partial
pressure. Motivated by the anode pressure control (Niemeyer,
2009), a constant hydrogen partial pressure py, is assumed.

9434



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Stack voltage Uy, is the sum of all cell voltages U,,;, which
is modeled as U..;= U,ep—Muer—Tonm as follows (18).
Parameters j,...{; and R,;, have been identified by a least
square error minimization using experimental data.

U,,=1229-0.85-107(T,

stack

~298.15)+4.3- 10*‘21‘,({111 Puz l1n@)
Po 2 P

M = 61+ Col et + €5 ln(P (8] 5,08 1076)+ [ ln(lmm )
Dot = Ropnd stack ( 1 8)

The stack heat flow is the sum of heat flow generated by the
chemical reaction and caused by the fluid flows in the stack.
It is assumed that liquid water is produced by the reaction and
partially evaporates in the stack. Hence, higher heating value
(HHV) of hydrogen is assumed. Water leaves the stack as
liquid and vapor. H, chemical energy flow reduced by stack
electrical power leads to the chemical reaction heat flow (19).

Ql‘eactlon = ( Ny HHV (2F ) Uk )[ stack = (”m/s LA8V —U et )1 stack (19)

O =7, + 2, ) T,,) (20)
( odaCoda Lsiack T W, (h +¢, ek )+ Wie Tk )

ch = Q)‘eactiun+ Qﬂow (2 1 )

Heat flow transported by the fluids (20) is a static model with
Cairs Coda» Cv, €; being the specific heat capacities of air, ODA,
vapor and water as well as h, being the enthalpy of
evaporation. Inlet manifold temperature T}, is set constant.
Heat is transported by inlet air, ODA-gas flow, vapor and
liquid water. A water mass flow of Wy0=M;0/(2F)Nceits Lstack
is generated by the reaction. Water evaporates until it reaches
vapor saturation pressure or until all water available has
evaporated, which is accounted for by modeling vapor mass
flow as W, =min(Wipo, XeaWoas) With X, as in equation (16)
and liquid mass flow gained by W,=Wy,0-W,. Heat flows
(19) and (20) result in the fuel cell stack heat flow (21).

1.6 Inner Loop Coolant Mass Flow, ODA-Gas water loading

An internal PI controller adjusts the inner loop cooling pump
leading to a temperature difference ATy = Tyaer - 1117 across
the stack matching the reference ATk e Win measurement
signal is not available online. Evolution of ¥;,, is captured by
a static model (22) derived from a stationary energy balance
across the stack. W, is limited to minimum W;, ., and
maximum I/Vint,max by I/Vint: min(max( I/Vint,refa VVint,min)a I/Vint,mwc)~

Woairer ch / (CunATszac/gre/ ) (22)

Both water separators in the dehumidifying section exhibit
very high separation rates, which are modeled as 100%
efficient. As only vapor and ODA-gas leave the downstream
separator, water loading X,,, in g/kg is determined as follows
(23). Due to very high cooling capacity, ODA-gas is cooled
to almost cooling inlet temperature 7., .. Therefore, exit
manifold temperature 7,, at which ODA-gas leaves the
condenser is modeled as 7., =T, - enrve(TomTeoor ) With
effectiveness eyry.=I. Besides temperature, condensation
depends on pressure, which is modeled as the arithmetic
mean of condenser inlet and outlet pressure p,;, and p,;.

sat
X, = P () Rt 41000

H(Pein + Peo )= P (T.) R,

(23)

3. NMPC STRATEGY

In model predictive control (MPC) a finite horizon open-loop
optimal control problem is solved online for every sampling
time step and yields an optimal control sequence from which
the first sequence is applied. Current system state, which is
obtained by measurement or estimation, serves as initial state.
MPC’s major advantage is handling constraints on states and
inputs (Mayne et al., 2000). MPC is based on linear con-
straints and a linear model describing the system dynamics.
Nonlinear model predictive control (NMPC) refers to MPC
schemes being applied to nonlinear constraints and nonlinear
models describing system dynamics (Allgower et al., 2004).
NMPC problems generally cannot be solved analytically,
calling for numerical algorithms. Optimal control problems
can be solved by dynamic programming, direct and indirect
methods. In dynamic programming the computational cost
grows with the problem’s dimension (Kirk, 2004). Its
application is limited to problems with low order such as the
energy-optimal control of a car (Back, 2005). Indirect
methods are based on the first order optimality conditions of
calculus of variations and involve solving a two-point
boundary value problem, which may require significant effort
or is impossible for complex systems (Aburajabaltamimi,
2011). NMPC problems are widely solved by direct methods
that convert the optimal control problem into a nonlinear
programming problem, which is solved iteratively by a
sequential quadratic programming (SQP) method. Inequality
constraints can easily be included. In this method a quadratic
program is solved for the linearized optimization problem
and linearized constraints. A comprehensive overview over
NMPC is given in (Griine and Pannek, 2011). This paper
presents an NMPC strategy solved by an SQP method.

= 1 e W (02, (.73, (1)

L

r
X mpe (t ) = [Wm/i‘ Woie €02 Zupe Touar Twu/f«]
L — (t ) = hlmlp(' (l‘ nmpe ) =X,u

The system model £, for the NMPC algorithm leaves out
the stack cooling system dynamics (4b)-(4f) as these are
controlled for by a separate cooling controller. Stack cooling
inlet temperature 7j;; is now considered a constant input to
the model. The model equations reduce to the set (24).
Control input  wympe(t)=[uso u: uS,,,,-C]T with constant
stoichiometry u,,, stack current u;, and condenser cooling
reference temperature u, is applied. Values u; yand u, are the
first control values of the NMPC algorithm solution vector.

i m)lp(

24

In real-time environments control inputs are applied at
constant time intervals. Result u,,,.(t) of NMPC algorithm
started at time instance ¢ is applied at the next time instance
t+T, as shown in figure 2. Hence there is a delay of one
sampling period between the initial condition x,,,,.(?) gained
by measurement or state estimation and application of the
NMPC result. An estimate of the correct time initial
condition X£,,,,.(t+7) is gained by a prediction taking X;,,.(?)
and the present time control input u,m,.(t-Ty). Prediction
involves time-integrating the system equations using a 4™
order Runge-Kutta scheme with constant step size (25).

1+, (25)

)= O+ [ £ (e (bt (=TT, (e
t

,man (
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Fig. 2. NMPC strategy for real-time application with
prediction for an estimate of the NMPC initial condition

2.1 NMPC problem formulation

An algorithm for tracking ODA-gas mass flow and leading to
minimum ODA-gas water loading is presented below. To
prevent cathode flooding or oxygen starvation the stack
current gradient is bounded (26) to limit load change gradient
and to minimize dynamic stack voltage losses. Limitations on
gradient of stack current dlj.m. are assumed symmetric.
Stack current is bounded to Zyuer min and Lyuermax to keep the
fuel cell system within its operational limits. Condenser
cooling inlet temperature reference is bounded by an upper
limit 7p0; ¢mar and a minimum limit of max(5°C, Teoos ¢ams) tO
prevent freezing inside the condenser. Ambient cooling
temperature 7coo; c.omp SEtS @ minimum possible temperature.

dl

stack
—dl stack max < 4 < dl stack max
‘ (26)
stack,min < ]x/a(/f < [.s/a(‘k,max
max|5, 7'('0017(‘,11171/7) s cool _cref < T

cool _c,max

The optimal control problem is discretized into N time steps
with sampling time step length 7,=500ms. Prediction horizon
is N*T,. Two independent control variables would lead to 2NV
variables to be solved for. To keep the number of variables
low, the slow condenser cooling system dynamics are ex-
ploited and T, . Stays constant over the whole prediction
horizon. So, the vector u,,, = 10 uy ;... 11 k..U N1 u,]" with the
optimization variables has length N+/. Only the instances u;
and u, of the optimal control sequence are applied. The
optimal control problem is turned into a nonlinear
programming problem by discretization of (24) through time-
integration over prediction horizon N T;. Time-integration
leads to N+1 state vectors including the initial condition
)_Cnmpc,k:[xnmpc,k(l) xnmpc,k(z)mxnmpc,k(6)]T with nstates:6 states
and N+1 outputs Vs Time integration is done by a 4™
order Runge-Kutta method with constant step size (27).

(k+D)T,

=X e J.f (‘Inmp(‘ (7)9 [ul,A Uy Ui ]T T (Z)yf

L nmpe
KT,

Yumpe = hnmp(‘ (’inmpc,k )

27

X nmpe,k+1
Fpmpeo = e+ T,), k=0,1,.N =1)

The nonlinear minimization problem is stated as follows (28).

J(Eopl ) =4y (xmnpcw - X2 ref )2 +4,, (y/zmp(‘N (5)2 +... (ng)
N-I
+7, Z [‘121 (‘xnmp(‘,k - X2 ref )2 +4q5 (ynmp(‘,k )h +...
=0
+q5 (ul,k Uy )2 +qy (”2 )2 ]
k=0: u: = dl pman Ty Sty S “; R~ (28C)
k=1.N-1: —dl T, < Uy —Upy S T e o L
stack;min St < L ek max (28(1)
max(S 3ot camb) SUy S T o ¢,max

It is subject to system dynamics (27) and constraints (28c-d).
Objective function J(u,,) (28b) to be minimized (28a) gains
state vector X« from (27). It combines tracking control of
ODA-gas mass flow for reference value x,,r by
simultaneously requiring low ODA-gas water loading. Input
variables are penalized to prevent their heavy use. Weighing
factors q;;5, qi12, q21...,q24 influence balance between control
performance and accuracy in steady state. (Morari et al.,
2012) show that steady state accuracy can be achieved by
introducing an input reference gained by steady state analysis
of the system model with disturbances. To improve steady
state accuracy but also to prevent nonlinear effects due to
incorporation of noisy disturbances, stack current reference
urrer (29) based on a stationary analysis of (1a) and (1b)
requiring W, =X, and z,,=0 is introduced in (28b).
Optimization objective J (28b) consists of a Lagrange term
(k=0, 1...N-1) for transient behavior and a terminal penalty
term (k=N) (Allgower et al., 2004). NMPC needs N > 2 for a
working algorithm (Griine and Pannek, 2011).

0.79
U = 4F/[”(‘e[/v (Moz (“ stoic 1)+ Ustoic H My, ]J X2 ref

The linear gradient inequality constraints (26) are discretized
by finite differences leading to the linear inequality
constraints for the input variables u; (28c). Values ;" are the
optimal control sequence of the last NMPC run. Lower and
upper bounds on the optimization variables are derived from
(26) and applied for every time instant & (28d).

(29)

NMPC requires the entire state x,,,,,c(#) as initial condition for
the nonlinear programming problem. It is assumed that the
state vector can be measured perfectly or estimated and is
available at present time. The nonlinear optimization problem
(28) is solved by SOLNP (Ye, 1989). For faster convergence
of the iterative SQP algorithm the solution vector of the
present step is taken for construction of the optimization
initial condition for the next step as follows [u; ;...u k...t N
UN.1 uz]T. The first element u;, is discarded and the last
element u;y; is taken twice. Value u, is initialized as
max(5°C, Teoo1 c.amp) to gain minimum water loading.

4. SIMULATION AND EXPERIMENTAL RESULTS

The NMPC strategy based on the model (24) was applied to
the plant model (1). Disturbance mass flow z,z is set 0
constantly. There is no model/plant mismatch in this
simulation study. The simulation study was performed with
constant weighing parameters and was started from steady
state for every trial. Stack cooling inlet temperature reference
is 58°C and stoichiometry was set to u,,= 1.7 for every trial
to gain 10% ODA-gas oxygen content. Figure 3 shows the
results for runs with u; ,,,=0 and u, ., set to improve steady
state accuracy. Reference for W,,, is 0.1 and 0.167 g/s/cell.
Stack current gradient is limited to dlguek max=0.0125A/5/1,4.
As shown in figure 3 steady state accuracy of the ODA-gas
mass flow improves significantly by using the control input
reference value in the objective function. The simulation
shows only a minor deviation of ODA-gas water loading
between the runs which is due to the mass flow and hence
system pressure differences. As there is no disturbance
acting, ODA-gas oxygen content stays close to 10%. This
NMPC algorithm finishes within the sampling time of 500ms
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and thus is applicable for real-time application as validated
by experiments shown in figure 4 performed with the
parameters used for the simulation study and with u; . set.
An Unscented Kalman Filter algorithm presented in (Schultze
et al., 2013b) is used for fuel cell system state estimation.
Despite disturbances on the real plant the mass flow is
controlled for very accurately. Due to mass flow disturbances
and as stoichiometry is kept at uy,,. =1.70, oxygen content
increases to a value greater than 10% but still less than 11%.
The NMPC algorithm keeps the operational limitations.
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Fig. 3. Simulation results: ODA-gas mass flow scaled to 7.
(top); stack current normalized (2™ from top); condenser
cooling reference temperature, ODA-gas water loading (3"
from top) and O, content (bottom) for u; ;=0 and u; ,,r set
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Fig. 4. Experimental results: ODA-gas mass flow per cell
(top), stack current normalized (2™ from top), ODA-gas
water loading (3" from top) and oxygen content (bottom)

5. CONCLUSIONS

A nonlinear model predictive control (NMPC) strategy for
the control of a PEM fuel cell system for oxygen depleted air
production is developed and presented in this paper. The
NMPC strategy includes inequality constraints to satisfy
operational limitations of the fuel cell system. The
optimization problem is attacked by an iterative SQP method
and solved within the sampling time. The NMPC algorithm
has been applied to simulation and experiments at the real
plant. Results are shown.
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