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Abstract: Polymer electrolyte membrane (PEM) fuel cells are highly efficient energy converters and 
provide electrical energy, cathode exhaust gas with low oxygen concentration and water. They are 
investigated as replacement for auxiliary power units (APU) that are currently used for electrical power 
generation on aircraft. For generation of oxygen depleted cathode exhaust air (ODA) oxygen 
concentration must be 10-11%. A challenging task is controlling the fuel cell system for this product and 
simultaneously keeping fuel cell stack degradation, voltage losses and stack damage as low as possible as 
well as keeping the system within operational limitations such as bounds and gradients on control 
parameters. This constrained control task for PEM fuel cell systems is attacked by a nonlinear model 
predictive control (NMPC) strategy. Simulation and experimental results are shown. 

Keywords: Nonlinear Model Predictive Control, PEM Fuel Cell System, Aircraft Application. 

 

1. INTRODUCTION 

Aircraft are becoming more and more electric as technology 
relying on electrical power has developed at high pace 
(McLaughlin, 2009). During ground operations electrical 
power on aircraft is provided by an auxiliary power unit 
(APU), which is a significant source of CO2 as well as noise. 
PEM fuel cells are very efficient energy converters and are 
the most suitable for dynamic applications. They are 
investigated for use on aircraft in a multifunctional manner 
(Vredenborg et al., 2010). Besides electrical energy, they 
provide oxygen depleted cathode exhaust air (ODA) for tank-
inerting purposes. Oxygen concentration in ODA-gas must 
not exceed 12% to prevent inflammable fuel vapors 
(Friedrich et al., 2009) and should stay between 10-11% 
(Kallo, 2010). Thus far, PEM fuel cell systems have been 
studied for electrical power supply of autonomous robots 
(Niemeyer, 2009) or for automotive applications (Pukrushpan 
et al., 2004), (Karnik et al., 2009). Operation of PEM fuel cell 
systems for inerting has not yet been studied in detail and is 
central topic of this paper. Proper fuel cell system operation 
such as keeping the membrane well hydrated and to proper 
supply fuel and air as oxygen carrier is a central aspect 
(Pukrushpan et al., 2004), (Borup et al., 2007). The system 
studied has an anode recirculation loop for efficient use of 
hydrogen fuel and for humidification. Water separation in the 
recirculation loop prevents anode flooding, which is more 
likely to occur than cathode flooding as cathode gas flow 
continuously removes cathode water (McKay et al., 2005). 
Fuel and air supply as well as cooling temperature gradient 
across the stack is managed by an internal fuel cell system 
controller. The stack is connected to an ohmic load. Figure 1 
shows a schematic of the multifunctional fuel cell system 
with dehumidifying section consisting of a condenser and 
water separators (Sep. 1, 2). Oxygen excess ratio termed 
stoichiometry ustoic, stack current Istack, stack cooling system 

valve position uvalve_OL and reference value Tcool_c,ref for the 
condenser cooling inlet temperature Tcool_c are the fuel cell 
system inputs u=[Istack, Tcool_c,ref, ustoic, uvalve_OL]T. Condenser 
cooling inlet temperature Tcool_c is controlled for separately. 

 

Fig. 1. Schematic of the fuel cell system comprising stack, 
separators (Sep.1, 2), condenser, inlet-, outlet- and exit 
manifold (im, om, em), condenser and stack cooling system 
with intercooler and cooling valve; H2 is recirculated. 

For controlling the fuel cell system for ODA-gas mass flow, 
operational limitations such as bounds and gradient on stack 
current and bounds on condenser cooling temperature have to 
be satisfied. A suitable approach is model predictive control 
due to its inherent capability of incorporating constraints. 
Model predictive control (MPC) has been successfully 
applied to fuel cell systems for electrical power supply 
(Niemeyer, 2009). In a preliminary simulation study MPC 
was applied to control for ODA-gas mass flow and stack 
cooling temperature (Schultze et al., 2013a). To keep 
computational burden low, stack cooling control is managed 
by a separate cooling controller. This paper presents a real-
time capable nonlinear model predictive control strategy 
based on a sequential quadratic programming (SQP) 
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approach (Grüne and Pannek, 2011) to control the fuel cell 
system for ODA-gas generation. The system model is briefly 
outlined in section 2. Fuel Cell System Model. The nonlinear 
model predictive control (NMPC) strategy is presented in 
section 3. NMPC Strategy.  Simulation and experimental 
results are shown in Section 4. Simulation and Experimental 
Results. 

2. FUEL CELL SYSTEM MODEL 

The fuel cell system model comprises the fuel cell stack 
cathode and anode and a controlled air-valve for cathode feed 
air supply (mass flow controller, MFC). A thin polymer 
membrane with high water diffusivity separates cathode from 
anode. Due to the membrane’s high diffusivity, stack 
humidification is maintained as long as stack temperature, 
gas flow through cathode and load change gradient stay 
within operational limits. Under these assumptions, a 
perfectly hydrated membrane can be assumed. The MFC 
delivers a cathode feed air mass flow as specified by actual 
stoichiometry and stack current. However, it may deliver 
slightly too much flow in order to allow for fast air delivery. 
This behavior leads to a higher ODA-gas mass flow than 
expected and results in an ODA-gas oxygen concentration 
rise as more oxygen is fed to the cathode. Stack temperature 
is managed by an internal controller operating stack cooling 
pump, whereas reference temperature difference across the 
stack ΔTstack,ref is a function of system inputs. ODA-gas and 
inlet air are modeled as ideal gases with inlet air considered 
dry and consisting of 21% (vol.) oxygen (O2) and 79% 
nitrogen (N2). When limiting stack current slope sufficiently, 
oxygen starvation and cathode flooding can be prevented to 
avoid serious dynamic voltage losses. With the previous 
assumptions a reduced order model is derived. The model 
captures two major dynamics: gas and thermal dynamics. 
Model states are as follows and y the model output with Xoda 
being the ODA-gas water loading. 
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1.1 Fuel Cell System Gas Dynamics 

Pressure in the volumes establishes fast as compared to the 
remaining system dynamics and therefore is modeled as static 
(Niemeyer, 2009). Pressure depends on the gas mass flow 
through the fuel cell system. Cathode feed air mass flow is 
provided by the MFC, whose dynamics are described by a 
first order time system with time constant Tmfc. Gas flow 
dynamics through the inlet manifold, cathode and the 
downstream volumes such as outlet manifold, condenser and 
exit manifold are grouped together and are modeled as a first 
order time system with time constant TFC. A disturbance mass 
flow zmfc accounts for the feed air mass flow deviation. 
Measurement of the oxygen concentration cO2 is a relatively 
slow process and is captured by a first order time system with 
time constant TO2. The gas states are as follows with Wmfc the 
mass flow provided by the MFC, Woda the ODA-gas mass 
flow leaving the fuel cell system and zmfc the mass flow 
disturbance of the MFC. Model equations for the gas 

dynamics are stated by (2). Cathode feed air mass flow is the 
sum of Wmfc and zmfc and a mass flow IstackncellsMO2/(4F) of O2 
is consumed by the chem. reaction 4H+ + O2 + 4e- → 2H2O. 
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Oxygen concentration is determined by O2 molar flow NO2out 
and nitrogen molar flow NN2out leaving the stack (3). Both 
flows are determined by O2 mass fraction of air xO2 and molar 
masses MO2 for O2 and MN2 for N2. Oxygen inlet flow is 
reduced by the consumption during chemical reaction. 
Cathode feed air mass flow is determined as sum of Wmfc and 
zmfc. Number of cells in stack is ncells. F is Faraday constant. 
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1.2 Fuel Cell System Thermal Dynamics 

Thermal dynamics cover stack cooling system, condenser 
cooling system and ODA-gas water loading, which depends 
on temperature and pressure. The stack cooling system’s 
inner cooling loop is filled with coolant of specific heat 
capacity cint and is being pumped at cooling mass flow Wint. 
The outer loop coolant is being pumped at mass flow Wext and 
has a specific heat capacity cext. Wint is driven by an internal 
controller to satisfy cooling temperature gradient across the 
stack. Outer loop coolant mass flow is set constant. Both 
loops are coupled by an intercooler. The intercooler is 
captured as a static model (Schultze et al., 2012) as the 
cooling system’s thermal mass is higher than the intercooler’s 
thermal mass. Cooling valve position uvalve_OL in the outer 
loop sets the level of mixture of cooler and bypass coolant. 
This is described by a static model. Thermal states are stack 
temperature Tstack, TIL1 and TIL2 being the inner loop, TOL1 and 
TOL2 being the outer loop cooling temperatures, cooler 
temperature Tcool_OL and condenser cooling inlet temperature 
Tcool_c. Water loading is given by Xoda in g/kg. The system 
schematic in figure 1 depicts the temperature locations. 
Further parameters for the thermal model are stack heat 
capacity Cstack, coolant masses mIL1, mIL2 in the inner loop, 
mOL1, mOL2 and mc in the outer loop and the cooler as well as 
time constant Tc of the controlled condenser cooling system, 
ambient temperature Tamb and cooler parameter kc. A portion 
of 6% of Wext is taken for hydrogen recirculation pump 
cooling (Schultze et al., 2012). The coolant temperature rise 
through the compressor, however, is considered negligible 
small as the hydrogen compressor generates a low heat flow 
as compared to the fuel cell stack. Cooling mass flow through 
the intercooler is modeled as 94% of Wext. The thermal model 
differential equations are stated below (4a-g). 
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(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

 (4f) 

(4g)

1.3 Intercooler Model 

A counter-flow heat exchanger interconnects inner and outer 
cooling loop. For modeling heat exchangers the effectiveness 
NTU method (Shah and Sekulic, 2003) has shown very good 
results. NTU is the number of transfer units, which is an 
important parameter in heat exchanger design. Outlet 
temperatures are calculated explicitly on the inlet 
temperatures and the cooling mass flows. Heat flow is gained 
by inlet temperature differences, minimum heat capacity flow 
Cmin = min(Ch,Cc) and effectiveness eNTU. Temperatures into 
inner loop TIL1in (5) and into outer loop TOL2in (6) are gained 
by heat capacity flow of inner Ch=Wintcint and outer loop 
Cc=0.94Wextcext. Intercooler inlet temperatures are TIL2 and 
TOL1. Effectiveness eNTU for a counter-flow heat exchanger 
(Shah and Sekulic, 2003) is given by (7), (8) with UA being 
the parameter describing the heat transfer. 
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1.4 Fuel Cell System Pressure 

System pressure is necessary for determining stack heat flow, 
voltage and ODA-gas water loading. As mentioned 
previously, pressure establishes fast in comparison to the 
major system dynamics (Niemeyer, 2009), (Pukrushpan et al., 
2004) and therefore is obtained by a static model. It is 
assumed that pressure changes with ODA-gas mass flow. 
System pressure is obtained by nonlinear flow equations due 
to water loading and a turbulent flow regime (Schultze and 
Horn, 2012). Inlet manifold pressure pim is not required in the 
following. Pressure vector p=[pca, pom, pcin, pcout, pem]T could 
be computed at once, which however would require an 
iterative algorithm. An alternative is calculating the pressure 
vector starting from the last element by inverting the mass 
flow equations with pamb being ambient pressure. ODA-gas in 

the exit manifold has a very low water loading due to the 
dehumidifying section. The nonlinear flow is gained by ௢ܹௗ௔ = ݇௘௠ඥ݌௘௠ −  ௔௠௕. Exit manifold pressure is obtained݌
by equation (9) with kem being the flow constant. ODA-flow 
at the condenser exit is considered to carry a low vapor mass 
flow due to the low temperature. Therefore, pressure pcout 
(10) at the condenser outlet is gained equivalently to pem. 

( ) ambemodaem pkWp += 2   (9) 

( ) emsepodacout pcWp += 2
2

  (10) 

At the condenser inlet the ODA-gas flow is assumed to be 
fully saturated at nearly stack temperature and thus has a high 
water loading. The temperature at condenser inlet, which is 
assumed to be outlet manifold temperature Tom, is gathered by 
Tom = Tstack - ΔTom with ΔTom accounting for ODA-gas 
cooling. The change of water loading across the upstream 
separator (sep. 1) is negligible small leading to the 
assumption that water loading Xom in the outlet manifold 
equals the one at the condenser inlet. The nonlinear flow is 
gained as (11) with flow constant csep1 and cc for the separator 
and the condenser, respectively. 
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( ) ( )( ) vodaom
sat
vomom

sat
vom RRTppTpX ⋅−=  (12) 

Comparing equations (11) with each other leads to (13) 
determining outlet manifold pressure pom. Inserting equation 
(13) into (12) leads to (14) that is an equation of one 
unknown pcin, which is solved by the iterative regula-falsi 
method “Illinois Algorithm” (Ford, 1995). 

( ) ( )coutcinsepccinom ppccpp −+= 2
1

 (13) 

( ) odaomcoutcinc WXppc +−−= 10   (14) 

Flow equation for the fully saturated gas flow with high 
water loading leaving the cathode is given by equation (16). 
Cathode pressure pca is determined iteratively as done for pcin.  
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( ) ( )( ) vodastack
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vcastack

sat
vca
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⋅−=

+−−= 10  (16) 

Liquid water resides in the cathode, hence fully saturated gas 
is assumed there. Dry gas cathode pressure is obtained by 
subtracting vapor saturation pressure from pca. Cathode O2 
partial pressure (17) is gained by applying O2 molar fraction 
cca,O2=NO2out/(NO2out+NN2out) with flows of equation (3).  

( )( )stack
sat
vcaOcaOca Tppcp −= 2,2,

  (17) 

1.5 Fuel Cell Voltage and Fuel Cell Stack Heat Flow 

Stack voltage depends on stack current, temperature, oxygen 
partial pressure and on membrane humidity (O'Hayre et al., 
2009), (Amphlett et al., 1995). The membrane is assumed 
perfectly hydrated due to its thinness. This motivates 
reducing the humidity dependent membrane resistance 
(O'Hayre et al., 2009) to a constant ohmic resistance Rohm. 
Reversible cell voltage Urev depends on hydrogen partial 
pressure. Motivated by the anode pressure control (Niemeyer, 
2009), a constant hydrogen partial pressure pH2 is assumed. 
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Stack voltage Ustack is the sum of all cell voltages Ucell, which 
is modeled as Ucell = Urev –ηact –ηohm as follows (18). 
Parameters ζ1,…ζ4 and Rohm have been identified by a least 
square error minimization using experimental data. 
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stackohmohm IR=η   (18) 

The stack heat flow is the sum of heat flow generated by the 
chemical reaction and caused by the fluid flows in the stack. 
It is assumed that liquid water is produced by the reaction and 
partially evaporates in the stack. Hence, higher heating value 
(HHV) of hydrogen is assumed. Water leaves the stack as 
liquid and vapor. H2 chemical energy flow reduced by stack 
electrical power leads to the chemical reaction heat flow (19). 

( )( ) ( ) stackstackcellsstackstackcellsreaction IUVnIUFHHVnQ −=−= 48.12  (19) 
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flowreactionfc QQQ  +=   (21) 

Heat flow transported by the fluids (20) is a static model with 
cair, coda, cv, cl being the specific heat capacities of air, ODA, 
vapor and water as well as h0 being the enthalpy of 
evaporation. Inlet manifold temperature Tim is set constant. 
Heat is transported by inlet air, ODA-gas flow, vapor and 
liquid water. A water mass flow of WH2O=MH2O/(2F)ncells Istack 
is generated by the reaction. Water evaporates until it reaches 
vapor saturation pressure or until all water available has 
evaporated, which is accounted for by modeling vapor mass 
flow as Wv = min(WH2O, XcaWoda) with Xca as in equation (16) 
and liquid mass flow gained by Wl =WH2O-Wv. Heat flows 
(19) and (20) result in the fuel cell stack heat flow (21). 

1.6 Inner Loop Coolant Mass Flow, ODA-Gas water loading 

An internal PI controller adjusts the inner loop cooling pump 
leading to a temperature difference ΔTstack = Tstack - TIL1 across 
the stack matching the reference ΔTstack,ref. Wint measurement 
signal is not available online. Evolution of Wint is captured by 
a static model (22) derived from a stationary energy balance 
across the stack. Wint is limited to minimum Wint,min and 
maximum Wint,max by Wint = min(max(Wint,ref, Wint,min), Wint,max). 

( )refstackfcref TcQW ,intint, Δ=    (22) 

Both water separators in the dehumidifying section exhibit 
very high separation rates, which are modeled as 100% 
efficient. As only vapor and ODA-gas leave the downstream 
separator, water loading Xoda in g/kg is determined as follows 
(23). Due to very high cooling capacity, ODA-gas is cooled 
to almost cooling inlet temperature Tcool_c. Therefore, exit 
manifold temperature Tem at which ODA-gas leaves the 
condenser is modeled as Tem=Tom - eNTU,c(Tom-Tcool_c) with 
effectiveness eNTU,c=1. Besides temperature, condensation 
depends on pressure, which is modeled as the arithmetic 
mean of condenser inlet and outlet pressure pcin and pcout.
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3. NMPC STRATEGY 

In model predictive control (MPC) a finite horizon open-loop 
optimal control problem is solved online for every sampling 
time step and yields an optimal control sequence from which 
the first sequence is applied. Current system state, which is 
obtained by measurement or estimation, serves as initial state. 
MPC’s major advantage is handling constraints on states and 
inputs (Mayne et al., 2000). MPC is based on linear con-
straints and a linear model describing the system dynamics. 
Nonlinear model predictive control (NMPC) refers to MPC 
schemes being applied to nonlinear constraints and nonlinear 
models describing system dynamics (Allgöwer et al., 2004). 
NMPC problems generally cannot be solved analytically, 
calling for numerical algorithms. Optimal control problems 
can be solved by dynamic programming, direct and indirect 
methods. In dynamic programming the computational cost 
grows with the problem’s dimension (Kirk, 2004). Its 
application is limited to problems with low order such as the 
energy-optimal control of a car (Back, 2005). Indirect 
methods are based on the first order optimality conditions of 
calculus of variations and involve solving a two-point 
boundary value problem, which may require significant effort 
or is impossible for complex systems (Aburajabaltamimi, 
2011). NMPC problems are widely solved by direct methods 
that convert the optimal control problem into a nonlinear 
programming problem, which is solved iteratively by a 
sequential quadratic programming (SQP) method. Inequality 
constraints can easily be included. In this method a quadratic 
program is solved for the linearized optimization problem 
and linearized constraints. A comprehensive overview over 
NMPC is given in (Grüne and Pannek, 2011). This paper 
presents an NMPC strategy solved by an SQP method.  
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The system model fnmpc for the NMPC algorithm leaves out 
the stack cooling system dynamics (4b)-(4f) as these are 
controlled for by a separate cooling controller. Stack cooling 
inlet temperature TIL1 is now considered a constant input to 
the model. The model equations reduce to the set (24). 
Control input unmpc(t) = [u1,0 u2 ustoic]

T with constant 
stoichiometry ustoic, stack current u1,0 and condenser cooling 
reference temperature u2 is applied. Values u1,0 and u2 are the 
first control values of the NMPC algorithm solution vector.  

In real-time environments control inputs are applied at 
constant time intervals. Result unmpc(t) of NMPC algorithm 
started at time instance t is applied at the next time instance 
t+Ts as shown in figure 2. Hence there is a delay of one 
sampling period between the initial condition xnmpc(t) gained 
by measurement or state estimation and application of the 
NMPC result. An estimate of the correct time initial 
condition ݔොnmpc(t+Ts) is gained by a prediction taking xnmpc(t) 
and the present time control input unmpc(t-Ts). Prediction 
involves time-integrating the system equations using a 4th 
order Runge-Kutta scheme with constant step size (25).  
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Fig. 2. NMPC strategy for real-time application with 
prediction for an estimate of the NMPC initial condition 

2.1 NMPC problem formulation 

An algorithm for tracking ODA-gas mass flow and leading to 
minimum ODA-gas water loading is presented below. To 
prevent cathode flooding or oxygen starvation the stack 
current gradient is bounded (26) to limit load change gradient 
and to minimize dynamic stack voltage losses. Limitations on 
gradient of stack current dIstack,max are assumed symmetric. 
Stack current is bounded to Istack,min and Istack,max to keep the 
fuel cell system within its operational limits. Condenser 
cooling inlet temperature reference is bounded by an upper 
limit Tcool_c,max and a minimum limit of max(5°C,Tcool_c,amb) to 
prevent freezing inside the condenser. Ambient cooling 
temperature Tcool_c,amb  sets a minimum possible temperature.  
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The optimal control problem is discretized into N time steps 
with sampling time step length Ts=500ms. Prediction horizon 
is N*Ts. Two independent control variables would lead to 2N 
variables to be solved for. To keep the number of variables 
low, the slow condenser cooling system dynamics are ex-
ploited and Tcool_c,ref stays constant over the whole prediction 
horizon. So, the vector uopt = [u1,0 u1,1...u1,k...u1,N-1 u2]

T with the 
optimization variables has length N+1. Only the instances u1,0 
and u2 of the optimal control sequence are applied. The 
optimal control problem is turned into a nonlinear 
programming problem by discretization of (24) through time-
integration over prediction horizon N Ts. Time-integration 
leads to N+1 state vectors including the initial condition 
xnmpc,k=[xnmpc,k(1) xnmpc,k(2)… xnmpc,k(6)]T with nstates=6 states 
and N+1 outputs ynmpc,k. Time integration is done by a 4th 
order Runge-Kutta method with constant step size (27). 
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The nonlinear minimization problem is stated as follows (28). 
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It is subject to system dynamics (27) and constraints (28c-d). 
Objective function J(uopt) (28b) to be minimized (28a) gains 
state vector xnmpc,k from (27). It combines tracking control of 
ODA-gas mass flow for reference value x2,ref by 
simultaneously requiring low ODA-gas water loading. Input 
variables are penalized to prevent their heavy use. Weighing 
factors q11, q12, q21…,q24 influence balance between control 
performance and accuracy in steady state. (Morari et al., 
2012) show that steady state accuracy can be achieved by 
introducing an input reference gained by steady state analysis 
of the system model with disturbances. To improve steady 
state accuracy but also to prevent nonlinear effects due to 
incorporation of noisy disturbances, stack current reference 
u1,ref  (29) based on a stationary analysis of (1a) and (1b) 
requiring Woda=x2,ref and zmfc=0 is introduced in (28b). 
Optimization objective J (28b) consists of a Lagrange term 
(k=0, 1…N-1) for transient behavior and a terminal penalty 
term (k=N) (Allgöwer et al., 2004). NMPC needs N ≥ 2 for a 
working algorithm (Grüne and Pannek, 2011). 
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The linear gradient inequality constraints (26) are discretized 
by finite differences leading to the linear inequality 
constraints for the input variables u1 (28c). Values u1

* are the 
optimal control sequence of the last NMPC run. Lower and 
upper bounds on the optimization variables are derived from 
(26) and applied for every time instant k (28d). 

NMPC requires the entire state xnmpc(t) as initial condition for 
the nonlinear programming problem. It is assumed that the 
state vector can be measured perfectly or estimated and is 
available at present time. The nonlinear optimization problem 
(28) is solved by SOLNP (Ye, 1989). For faster convergence 
of the iterative SQP algorithm the solution vector of the 
present step is taken for construction of the optimization 
initial condition for the next step as follows [u1,1…u1,k…u1,N-1  

u1,N-1 u2]
T. The first element u1,0 is discarded and the last 

element u1,N-1 is taken twice. Value u2 is initialized as 
max(5°C,Tcool_c,amb) to gain minimum water loading. 

4. SIMULATION AND EXPERIMENTAL RESULTS 

The NMPC strategy based on the model (24) was applied to 
the plant model (1). Disturbance mass flow zmfc is set 0 
constantly. There is no model/plant mismatch in this 
simulation study. The simulation study was performed with 
constant weighing parameters and was started from steady 
state for every trial. Stack cooling inlet temperature reference 
is 58°C and stoichiometry was set to ustoic= 1.7 for every trial 
to gain 10% ODA-gas oxygen content. Figure 3 shows the 
results for runs with u1,ref =0 and u1,ref set to improve steady 
state accuracy. Reference for Woda is 0.1 and 0.167 g/s/cell. 
Stack current gradient is limited to dIstack,max=0.0125A/s/Imax. 
As shown in figure 3 steady state accuracy of the ODA-gas 
mass flow improves significantly by using the control input 
reference value in the objective function. The simulation 
shows only a minor deviation of ODA-gas water loading 
between the runs which is due to the mass flow and hence 
system pressure differences. As there is no disturbance 
acting, ODA-gas oxygen content stays close to 10%. This 
NMPC algorithm finishes within the sampling time of 500ms 
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and thus is applicable for real-time application as validated 
by experiments shown in figure 4 performed with the 
parameters used for the simulation study and with u1,ref set. 
An Unscented Kalman Filter algorithm presented in (Schultze 
et al., 2013b) is used for fuel cell system state estimation. 
Despite disturbances on the real plant the mass flow is 
controlled for very accurately. Due to mass flow disturbances 
and as stoichiometry is kept at ustoic =1.70, oxygen content 
increases to a value greater than 10% but still less than 11%. 
The NMPC algorithm keeps the operational limitations. 

Fig. 3. Simulation results: ODA-gas mass flow scaled to ncells 
(top); stack current normalized (2nd from top); condenser 
cooling reference temperature, ODA-gas water loading (3rd 
from top) and O2 content (bottom) for u1,ref =0 and u1,ref set 

Fig. 4. Experimental results: ODA-gas mass flow per cell 
(top), stack current normalized (2nd from top), ODA-gas 
water loading (3rd from top) and oxygen content (bottom)  

5. CONCLUSIONS 

A nonlinear model predictive control (NMPC) strategy for 
the control of a PEM fuel cell system for oxygen depleted air 
production is developed and presented in this paper. The 
NMPC strategy includes inequality constraints to satisfy 
operational limitations of the fuel cell system. The 
optimization problem is attacked by an iterative SQP method 
and solved within the sampling time. The NMPC algorithm 
has been applied to simulation and experiments at the real 
plant. Results are shown. 
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