
Control strategies for predictable
brownouts in cloud computing

Martina Maggio ∗ Cristian Klein ∗∗ Karl-Erik Årzén ∗

∗ Department of Automatic Control, Lund University
∗∗ Department of Computing Science, Ume̊a University

Abstract: Cloud computing is an application hosting model providing the illusion of infinite
computing power. However, even the largest datacenters have finite computing capacity, thus
cloud infrastructures have experienced overload due to overbooking or transient failures.
The topic of this paper is the comparison of different control strategies to mitigate overload
for datacenters, that assume that the running cloud applications are cooperative and help
the infrastructure in recovering from critical events. Specifically, the paper investigates the
behavior of different controllers when they have to keep the average response time of a cloud
application below a certain threshold by acting on the probability of serving requests with
optional computations disabled, where the pressure exerted by each request on the infrastructure
is diminished, at the expense of user experience.

Keywords: Computer systems, Feedback loops, Model-based control, Multiprocessor systems,
Probabilitstic models, Queuing theory.

1. INTRODUCTION

Cloud computing is changing the way computing resources
are provisioned. In the past, it was necessary to buy a new
physical machine every time the hosted application was
not reaching its target performance. Now, on the contrary,
it is possible to simply upgrade the virtual machine that
is deployed in the cloud infrastructure, letting the cloud
provider decide when to physically upgrade the infras-
tructure. This decoupling from the infrastructure allows
cloud applications to be scaled on-demand, for example as
needed when the number of users increases because the
application becomes popular. However, it comes with the
inherent assumption that the cloud provider has infinite
computing capacity that can be delivered instantaneously.

Given the tendency to move as many applications as pos-
sible to the cloud, this assumption will eventually reach its
limits. Building datacenters with the necessary computing
power to serve all the incoming requests, despite unex-
pected events, will become prohibitive. Therefore, we need
to start managing our cloud applications in a smarter way,
letting them take into account infrastructure limitations
and decrease the burden they impose on the datacenter
as required to recover from overload due to hardware
failures (Guo et al., 2013), overbooking or other emergency
situations.

This work originates from the observation that these emer-
gency situations might require drastic countermeasures. In
a typical situation, overloads have the direct consequence
of application unavailability, i.e., a blackout. This paper

? This work was partially supported by the Swedish Research
Council (VR) for the projects “Cloud Control” and “Power and
temperature control for large-scale computing infrastructures” and
through the LCCC Linnaeus Center. Also, we received partial
support from the ELLIIT Excellence Center.

argues that it would better serve the user to keep the
application available, degrading user experience instead,
what we call a brownout.

Brownout builds on the basic mechanism called optional
computations. A cloud application typically serves requests
providing responses. These responses can be decomposed
into computations, some of which are necessary to satisfy
the user’s request, others are optional, merely improving
user experience. This paper’s proposal is to probabilis-
tically turn off the invocation of the components that
produce these optional parts of the response to deal with
overload conditions predictably. The solution leverages
control theory to synthesize the adaptation mechanism
that selects the probability of serving a request with op-
tional components activated or deactivated, based on mea-
surements obtained from the running application. In Klein
et al. (2014) we proposed a simple controller that keeps the
average user perceived latency, also called response time,
below a certain threshold. The purpose of this paper is
to compare different control solutions to improve on the
simple controller.

The contribution of this paper lays in the analysis of differ-
ent control strategies for brownout-compliant applications.
The paper compares the behavior of different controllers
when the cloud application and the infrastructure hosting
it is exposed to variations. These variations include sud-
den increases in the popularity of the cloud application,
through the number of users accessing it. Also, it compares
how the controllers react to changes in the amount of
resources allocated to the cloud application. It finally tests
the response of the application to requirement changes, for
example due to more challenging — possibly transient —
service requirements.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 689

The remainder of this paper is organized as follows.
Section 2 describes the model of the cloud application.
Section 3 shows the possible control strategies that the
paper studies, while Section 4 describes the experimental
evaluation carried on to compare the controllers. We
simulated the different control strategies, demonstrating
their advantages in specific conditions. The paper also
discusses the related literature in Section 5 and draws some
conclusions in Section 6.

2. THE MODEL OF THE CLOUD APPLICATION

Cloud applications serve multiple users and their compu-
tations can generally be seen as independent and stateless
patterns of requests and responses, as described by Field-
ing and Taylor (2002). An essential requirement of these
applications is that they should act in a time-sensitive way,
otherwise unsatisfied users would abandon the service. Nah
(2004) showed that a tolerable waiting-time for the users
is between two and four seconds.

Every response that is produced can be divided into two
different parts: the necessary information to be given to
the user and some optional components that improve user
experience but do not constitute the main reason why the
user queried the application. For example, when browsing
items on an e-commerce website, showing recommenda-
tions about similar items to the user greatly improves
the navigation, but is resource hungry for the underlying
infrastructure. Denoting τm the time needed to execute
the mandatory part of the response generation and with
τo the optional computation time, the response time ri for
each request can be written as

ri = τm + ηi · τo (1)

where ηi is either one or zero and denotes if the optional
computation has been performed or not, respectively. We
select as our control variable the probability π(k) of
executing optional computations between the controller
execution at time k and the next execution at time k +
1. Every time a request is processed, a Bernoulli trial
is performed, to determine if the optional computations
should be executed, based on the current value of π.

Equation (1) can be used to determine the response time
of the cloud application, otherwise modeled as an M/D/n
queue, where n workers serve requests that takes a de-
terministic (D) time to be processed. The requests arrival
rates are determined by a Poisson process (M). This queue
is memoryless and every request is independent, with a
determined response time. n represents the number of
independent threads waiting for incoming requests.

Equation (1) represents the behavior of the application.
However, it does not define a model that is suitable for
control purposes. In fact, it does capture only the behavior
of each single request. On the contrary, the M/D/n queue
captures the behavior of the application in steady state,
but cannot be used to synthesize a control strategy,
because it does not describe the transient phase. This
paper tries to overcome the mentioned limitation using a
primitive, yet useful, model. We assume that the average
response time of the web application, measured at regular
time intervals, follows the equation

t(k + 1) = α(k) · π(k) + δt(k) (2)

i.e., the average response time t(k + 1) of all the requests
that are served between time k and time k+1 depends on a
time varying unknown parameter α(k) and can have some
disturbance δt(k) that is a priori non-measurable. α(k)
takes into account how our control value — the probability
of executing the optional computations — affects the
response time. δt(k) is an additive correction term that
models exogeneous variations, like a variation in retrieval
time of data due to cache hit or miss. The controller design
should aim at canceling the disturbance δt(k) and selecting
the value of π(k) so that the average response time would
be equal to our setpoint value.

3. CONTROL STRATEGIES

In this section, we discuss different control alternatives,
designed using the model defined by Equation (2). It
also motivates why each of these control strategies might
be considered a good idea for the specific problem. The
controllers measure the average response time — or av-
erage lantecy — of the cloud application and select the
probability π of executing the optional code. This section
discusses seven control alternatives. The controller class
spans from PIs and PIDs to feedforward plus feedback and
deadbeat regulators. The estimation method can be a Re-
cursive Least Square (RLS) filter or the simple application
of Equation (2). In the following this second estimation
strategy is called “bare” estimation methodology.

Adaptive PI controller: The first proposed alternative
is synthesized through loopshaping, constraining the trans-
fer function of the closed loop. As a first step of the design,
α(k) is treated as a known parameter and assumed to be
constant and equal to α. In a second phase, the current
value of α(k) is estimated, obtaining therefore an adaptive
controller. The transfer function P (z) from the input π to
the measured average response time is

P (z) =
T (z)

π(z)
=
α

z
(3)

where T (z) is the Z-transform of t(k) and π(z) transforms
π(k).

The control system is designed so that the closed loop
transfer function G(z) is equal to

G(z) =
C(z) · P (z)

1 + C(z) · P (z)
=

1− p1
z − p1

(4)

where p1 is a stable pole, in the experiments 0.9. Substi-
tuting the plant transfer function of 3 into 4 it is possible

to derive the expression C(z) = (1−p1)·z
α(z−1) for the controller,

which is a PI controller where the controller coefficients
depend on α. Applying the inverse Z transform on C(z),

π(k + 1) = π(k) +
1− p1
α
· e(k + 1) (5)

where e(k+1) is error between the average latency and its
setpoint. This solution is coupled with two possible online
estimation methods for α(k). In the first case, we simply
invert the relationship given by Equation (2), substituting
the measured average latency and the value of the previous
control variable and computing a measured α. In the
second case, an RLS estimator is implemented to keep
track of variations of α, using a forgetting factor of 0.2.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

690

Adaptive deadbeat controller: Since the plant pole is
inside the unit circle, an adaptive deadbeat controller can
be synthesized with the same procedure used to derive
the adaptive PI, imposing that the pole p1 lays in zero.
A deadbeat controller may be a good choice, since the
controller should react faster in case of sudden changes
that the plant might have, as happens with flash-crowds
or hardware failures.

Adaptive PID controller: It is also interesting to test a
PID controller, adding a derivative action to the adaptive
PI controller. In fact, the derivative action can increase
stability and improve settling time thanks to its future
trend prediction. The derivative gain is manually tuned,
selecting the value of 0.2.

Feedforward plus feedback controller: Although it
may require significant engineering effort, it is possible to
obtain the number of currently queued request from the
application, therefore it is interesting to test if exploiting
this information could result in a better controller. Denot-
ing m(k) the number of queued request at time k, we can
predict that the latency experienced by the i-th request
that entered the queue is (τm + π · τo) · i, therefore the
average latency experienced by the m requests should be

(τm + π · τo) ·
m+ 1

2
. (6)

This value can be used to setup a feedforward control
strategy, that selects

π(k + 1) = (1− µ) · π(k) + µ ·
2 · t̄

τo · [m(k) + 1]
−
τm

τo
(7)

where t̄ is the desired latency value and µ is a discount
factor. The implementation uses the value of 0.9 for the
discount factor. The feedforward controller is also coupled
with a feedback PID, with proportional gain 0.15, and
integral and derivative gain 0.1. These values are found
with empirical tests and resulted to be optimal for the
specific control problem. Also, the feedfoward regulator
is executed with a period that is 10 times the period of
the feedback one. One of the main differences between
this controller and the previous ones is that the other
alternatives were estimating the model parameter α, while
in this case the controller receives more information from
the infrastructure but does not perform online estimation.

4. EXPERIMENTAL VALIDATION

This section discusses our experimental validation. First
it describes the SimEvents (Clune et al., 2006) based
simulator that was built in Simulink to simulate the
behavior of brownout-compliant application and the action
of different control strategies. Then, it illustrates the
comparison metrics that will be used for two experiments
and their results. The first experiment is carried on varying
the number of users accessing to the application and the
application requirements in terms of the desired average
response time. The second experiment tests the amount of
resources given to the application in terms of the amount of
CPUs that the application can use during the simulation.

4.1 Brownout-compliant simulator

SimEvents (Clune et al., 2006) is a well known discrete
event simulation tool. In this paper, it is used to implement

a model of a brownout-compliant cloud application. Here,
we introduce both the simulator and the parameters that
are not changed during the experiments. The parameters
that specifically belongs to one experiment are introduced
in the corresponding section.

The SimEvent based model is simulating both the infras-
tructure and the cloud application that is deployed on
top of it. The infrastructure is represented as n servers,
where n is the number of CPUs that the application is
allocated. The amount of available resources is decided by
the cloud provider, therefore the simulation platform is
built to be able to dynamically change this value during
the simulation execution. A request generator is included
in the simulation, that is able to load our server with
different input rates. It is possible to simulate the variation
of the input rate in order to test the application’s reaction
in conditions like flash-crowds. In the experiments, we vary
the amount of requests introduced changing the average of
an exponential distribution. By attaching a tag to every
request when it enters the system, it is possible to obtain
statistics on the average latency and to provide the neces-
sary measurements for the control system to operate.

The cloud application simulates the service of a request
by generating a random number and comparing it to the
control signal π and deciding if the optional part should
be enabled or disabled. Plausible values for the optional
computation τo time and the mandatory computation time
τm were selected, but our simulator also introduces some
variability to represent the real server conditions — where
caching effects, locks and shared resources could introduce
noise. Therefore the simulator uses random numbers com-
ing from a normal distribution having a variance of 0.05.
The average for the optional execution time is 0.3 seconds,
while for the mandatory part of the request we assume that
on average 0.1 seconds are consumed. The simulator allows
the user also to vary the desired average latency. Notice
that the chosen values are simply potential numbers for
the simulations. Clearly, the infrastructure should be sized
to serve the number of incoming requests. Usually, sizing
the computing infrastructure is done offline, deciding the
amount of servers to allocate to a certain application with
a prediction of the incoming load and of the service times.
It can also be done dynamically by changing the number
of CPUs assigned to the virtual machine hosting a cloud
application. The adaptation of the number of CPUs is not
considered in this work, instead, the amount of received
resources to execute on is seen as an exogenous disturbance
and the control solutions should react to it by selecting the
best possible value of π.

Finally, the simulations are run for 1000 seconds and the
controllers acts every 5 seconds, using as feedback signal
the average latency measured over the last 15 seconds
of execution. The simulator also selects the seed for the
random number generation so that different experiments
are comparable and repeatable.

4.2 Comparison metrics

To compare the behavior of the different controllers five
different metrics are used. Four of them came from the
control theoretical domain, while the last one is more cloud
oriented. The control-based metrics are the Integral of

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

691

Table 1. Performance metrics for the experiment varying application popularity and require-
ments.

Controller opt% ISE ISTE IAE ITAE

Adaptive PI (bare) 0.3005383 4535.517 1904275 5374.772 2203108
Adaptive PI (RLS) 0.3014424 4117.492 1534573 5168.061 2002305
Adaptive PID (bare) 0.3036972 2523.083 767550 4191.676 1562685
Adaptive PID (RLS) 0.2912218 2214.995 768936 3993.482 1582531
Adaptive deadbeat (bare) 0.2334130 15527.860 5322117 10590.770 3886003
Adaptive deadbeat (RLS) 0.2658776 12437.960 4663479 9613.271 3793741
Feedforward plus feedback 0.2723032 1566.729 498571 3707.945 1384026

0 300 500 700
0

1

2

3

4

5

Adaptive PI (bare)

0 300 500 700
0

1

2

3

4

5

Adaptive PI (RLS)

0 300 500 700
0

1

2

3

4

5

Adaptive PID (bare)

0 300 500 700
0

1

2

3

4

5

Adaptive PID (RLS)

0 300 500 700
0

1

2

3

4

5

Adaptive deadbeat (bare)

0 300 500 700
0

1

2

3

4

5

Adaptive deadbeat (RLS)

0 300 500 700
0

1

2

3

4

5

Feedforward plus feedback

Fig. 1. Average latency (black) and corresponding setpoint (red) for the experiment varying application popularity and
requirements.

the Squared Error (ISE), the Integral of Timed Squared
Error (ITSE), the Integral of the Absolute Error (IAE)
and the Integral of Timed Absolute Error (ITAE). They
are calculated as follows.

ISE =
∑

[e(t)]2 (8)

ISTE =
∑

t · [e(t)]2 (9)

IAE =
∑
|e(t)| (10)

ITAE =
∑

t · |e(t)| (11)

To evaluate the control strategy also from a cloud per-
spective, we use the percentage of requests served with
the optional code enabled, opt%. Clearly, the application
developer would like the optional code to be enabled as
often as possible, increasing revenue. Therefore, this is an
important parameter to be optimized and it is a good index
for comparison. Intuitively, the best controller achieves
the highest value of opt% while keeping low error-based
metrics.

4.3 Varying application popularity and requirements

This experiment tests the effect of application popularity
and of the average response time requirement set for the
cloud service. To do so, we launch a server with one single
CPU and do not change the resources available to the
application during the simulation. To simulate the change
in the application popularity the simulation is started with
3 requests per second to be served by the web application

and the number of requests per second is increased to 5
after 300 seconds from the simulation start. At time 500
the load is reduced back to the initial value. To simulate
the requirement change, the desired average latency is set
at 0.5 seconds per request and decreased to 0.2 seconds at
time 700.

The system is tested with all the seven control strategies
introduced and the performance metrics described in Sec-
tion 4.2 are computed, reporting the values in Table 1.
Figure 1 shows the average latency and the setpoint value
during the experiment with the seven different control
strategies. From the reported numbers, it is evident that
the control strategies resulting in the highest number of
optional code served are the Adaptive PIs and PIDs. It
is also clear that adding a derivative action improves the
control performances, the errors are lower. The adaptive
PID with RLS estimator is able to keep the ISE lower
than the others, at the expense of fewer recommendations
served. The deadbeat controllers, although being very fast
in reacting to changes, are also too sensitive to distur-
bances and therefore perform poorly compared to their
adaptive counterparts — both the percentage of requests
served with optional code enabled and the control based
metrics are worse than their counterparts.

On the contrary, the feedforward plus feedback controller
serves less optional code (27% of requests are served
with the optional code enabled, compared with the 30%
achievable with adaptive control strategies) but reduce the
error (all the control indexes are better than the respec-
tive counterparts). From this experiment it is possible to
conclude that the feedforward plus feedback controller is

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

692

Table 2. Performance metrics for the experiment varying resource availability.

Controller opt% ISE ISTE IAE ITAE

Adaptive PI (bare) 0.7148029 793.073 314201 3115.364 1385175
Adaptive PI (RLS) 0.7183862 1684.972 593336 3421.560 1484901
Adaptive PID (bare) 0.7223227 1211.365 439000 3095.480 1350509
Adaptive PID (RLS) 0.7173301 645.596 240696 2677.837 1209246
Adaptive deadbeat (bare) 0.7114378 1279.612 591899 4097.543 1873055
Adaptive deadbeat (RLS) 0.7103646 1192.516 628194 3810.441 1954958
Feedforward plus feedback 0.6691487 780.614 296312 3287.870 1391454

0 300 700
0

1

2

3

4

5

Adaptive PI (bare)

0 300 700
0

1

2

3

4

5

Adaptive PI (RLS)

0 300 700
0

1

2

3

4

5

Adaptive PID (bare)

0 300 700
0

1

2

3

4

5

Adaptive PID (RLS)

0 300 700
0

1

2

3

4

5

Adaptive deadbeat (bare)

0 300 700
0

1

2

3

4

5

Adaptive deadbeat (RLS)

0 300 700
0

1

2

3

4

5

Feedforward plus feedback

Fig. 2. Average latency and corresponding setpoint for the experiment varying resource availability.

more conservative and exploits the additional information
received from the cloud application to better react to
disturbances and track the setpoint. The adaptive PID
controllers (especially with the RLS estimator) still achieve
a low error, serving more optional code. Hence, if the
service level objectives are very strict and variations of the
cloud application behavior are subject to a high penalty,
it is advisable to implement the feedforward plus feedback
strategy, while in case the requirements are less strict,
the adaptive PID controllers are a very good compromise
between control performances and user experience.

4.4 Varying resource availability

This experiment tests the effect of resource availability
changes on the cloud service. The simulation is launched
assuming that the application has four CPUs to be used.
At time 300 two CPUs are removed from the application,
e.g. due to a hardware failure, and added back at time 700.
During the interval between 300 and 700, the application
can use only two CPUs. It should therefore decrease
the number of requests served with optional code, still
maintaining the average latency close to the setpoint value.
The experiment simulates the arrival of 5 requests per
second, which can be served almost entirely with the
optional code enabled when four CPUs are available and
should be served with about half of the optional code
enabled when only two CPUs are available.

The computed performance metrics for this experiment are
reported in Table 2. Figure 2 shows the average latency
and the setpoint value during the experiment execution
with the seven different control strategies.

The results confirm the insight obtained with the previ-
ous experiment. The feedforward plus feedback controller
serves slightly less recommendations, however, lowering
the error compared to the other controllers. In this case,
the adaptive PID tuned with the bare estimator is able
to obtain a lower ISE compared to the feedforward plus
feedback controller. However, the time-weighted errors are
higher for this controller with respect to the feedforward
plus feedback case. Also in this case, the deadbeat con-
trollers are too sensitive to model perturbation and do not
offer any significant advantage over the other strategies.

Overall, the results show that, if the effort of obtaining
the necessary information to build the feedforward plus
feedback controller is affordable, it is worth implementing
this control strategy. Otherwise, an adaptive PID strategy
can be used without sacrificing control performance.

5. RELATED WORK

This paper discusses control strategies for building self-
adaptive cloud applications through brownout. In software
engineering, self-adaptivity is playing a key role in the de-
velopment of software systems (Kramer and Magee, 2007;
Cheng et al., 2009; Kephart, 2005) and control theory
has proved to be a useful tool to introduce adaptation
in such systems (Diao et al., 2006; Weyns et al., 2012;
Filieri et al., 2011; Brun et al., 2009). Many attempts
have been made to apply control theory to computing sys-
tems, as the survey by Patikirikorala et al. (2012) testifies.
However, the research is still in a preliminary stage and
the achievable benefits are yet to be clearly defined (Zhu
et al., 2009; Hellerstein, 2010). The presented problem and
solution were inspired by the idea that there might be

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

693

multiple code alternatives for the same functionality (Diniz
and Rinard, 1997; Ansel et al., 2009) and not all the
code that a software application is executing is necessary.
Often, some of the application code might be skipped to
achieve better performance, for example as implemented
by Misailovic et al. (2010). A similar concept has been
proposed in the web context. Degrading the static content
of a website was first proposed by Abdelzaher and Bhatti
(1999) and has been subsequently extended to dynamic
content by Philippe et al. (2010). However the idea has
not yet been applied to cloud computing applications.

The self-adaptive cloud application that is closest to the
vision proposed in this paper is Harmony (Chihoub et al.,
2012). It adjusts the consistency-level of a distributed
database as a function of the incoming end-user requests,
so as to minimize resource consumption. This is a specific
example of how a cloud application can be compliant with
the proposed paradigm. This paper however presented
a general technique to introduce control theory into a
vast class of cloud applications and a comparison of the
results of different control solutions. In the current re-
search on self-adaptivity, usually one single control strat-
egy is designed and refined until it matches specific re-
quirements. However, an in-depth exploration of different
control strategies and trade-offs is rarely provided. Thus,
it is unknown whether a different control strategy could
have offered a better solution for the specific problem. Our
works fills this gap, by offering a comparison of different
strategies for the same control problem.

6. CONCLUSION

This paper proposed different control strategies for cloud
computing applications that are made self-adaptive by
exposing optional computations and allowing them to
be skipped on a per-request basis. It defined a model
for the application and validated control strategies by
simulating different load conditions with SimEvents, a
Matlab toolbox to simulate discrete event systems. The
simulator includes the typical variations that a cloud
application can be subject to, from resource availability to
popularity and requirement changes. The paper describes
two case studies, involving the various stimuli that our
simulator allows us to give to the cloud application.
The obtained results indicate that either the controllers
need information about the plant status — the number of
queued requests and an estimation of the mandatory and
optional time, for the feedforward plus feedback case — or
they should resort to online estimation. If this information
is easy to obtain, the feedforward plus feedback strategy
give significant improvements.

REFERENCES

Abdelzaher, T.F. and Bhatti, N. (1999). Web content
adaptation to improve server overload behavior. In
WWW, 1563–1577.

Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q.,
Edelman, A., and Amarasinghe, S. (2009). Petabricks: A
language and compiler for algorithmic choice. In PLDI.

Brun, Y., Marzo Serugendo, G., Gacek, C., Giese, H.,
Kienle, H., Litoiu, M., Müller, H., Pezzè, M., and
Shaw, M. (2009). Software engineering for self-adaptive
systems. 48–70.

Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee,
J., Andersson, J., Becker, B., Bencomo, N., Brun, Y.,
Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Finkel-
stein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G.,
Kienle, H., Kramer, J., Litoiu, M., Malek, S., Mirandola,
R., Müller, H., Park, S., Shaw, M., Tichy, M., Tivoli, M.,
Weyns, D., and Whittle, J. (2009). Software engineer-
ing for self-adaptive systems: A research roadmap. In
Software Engineering for Self-Adaptive Systems, 1–26.
Springer Berlin / Heidelberg.

Chihoub, H.E., Ibrahim, S., Antoniu, G., and Perez, M.S.
(2012). Harmony: Towards automated self-adaptive
consistency in cloud storage. In CLUSTER.

Clune, M., Mosterman, P., and Cassandras, C. (2006).
Discrete event and hybrid system simulation with
SimEvents. In 8th International Workshop on Discrete
Event Systems, 386–387.

Diao, Y., Hellerstein, J.L., Parekh, S., Griffith, R., Kaiser,
G.E., and Phung, D. (2006). A control theory founda-
tion for self-managing computing systems. IEEE J.Sel.
A. Commun., 23(12), 2213–2222.

Diniz, P.C. and Rinard, M.C. (1997). Dynamic feedback:
an effective technique for adaptive computing. In PLDI.

Fielding, R.T. and Taylor, R.N. (2002). Principled design
of the modern web architecture. ACM Trans. Internet
Technol., 2(2), 115–150.

Filieri, A., Ghezzi, C., Leva, A., and Maggio, M. (2011).
Self-adaptive software meets control theory: A prelim-
inary approach supporting reliability requirements. In
ASE, 283–292.

Guo, Z., McDirmid, S., Yang, M., Zhuang, L., Zhang, P.,
Luo, Y., Bergan, T., Bodik, P., Musuvathi, M., Zhang,
Z., and Zhou, L. (2013). Failure recovery: when the cure
is worse than the disease. In HotOS, 8–14.

Hellerstein, J.L. (2010). Why feedback implementations
fail: the importance of systematic testing. In FEBID.

Kephart, J.O. (2005). Research challenges of autonomic
computing. In ICSE, 15–22.

Klein, C., Maggio, M., Årzén, K.E., and Hernández-
Rodriguez, F. (2014). Brownout: Building more robust
cloud applications. In ICSE. Available as preprint at:
http://goo.gl/0jMz9S.

Kramer, J. and Magee, J. (2007). Self-managed systems:
an architectural challenge. In FOSE, 259–268.

Misailovic, S., Sidiroglou, S., Hoffmann, H., and Rinard,
M. (2010). Quality of service profiling. In ICSE, 25–34.

Nah, F.F.H. (2004). A study on tolerable waiting time:
how long are web users willing to wait? Behaviour and
Information Technology, 23(3), 153–163.

Patikirikorala, T., Colman, A., Han, J., and Wang, L.
(2012). A systematic survey on the design of self-
adaptive software systems using control engineering
approaches. In SEAMS, 33–42.

Philippe, J., De Palma, N., Boyer, F., and Gruber, O.
(2010). Self-adaptation of service level in distributed
systems. Softw. Pract. Exper., 40(3), 259–283.

Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., and Ahmad,
T. (2012). A survey of formal methods in self-adaptive
systems. In C3S2E, 67–79.

Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.,
Padala, P., and Shin, K. (2009). What does control
theory bring to systems research? SIGOPS Oper. Syst.
Rev., 43(1), 62–69.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

694

