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ABSTRACT This paper investigates nonlinear control of cooperative adaptive
cruise control (CACC) system with sensor failures. A nonlinear vehicular model
involving sensor failure is established. Based on the nonlinear model, a switching
controller design method is proposed. It is shown that the obtained control scheme
can achieve the objective of individual vehicle stability and string stability. The
effectiveness of the proposed method is demonstrated by a numerical simulation.
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1. INTRODUCTION

Traffic congestion is one of today’s most serious social,
economical, and environmental problems in the world. In
China alone, traffic congestion costs billions of dollars each
year with hundreds of thousands of persons killed or injured.
The problem is intractable since continue to build additional
highway capacity is becoming increasingly difficult, for both
financial and environmental reasons. As a result, the solution
to the problem must lie in other approaches that can make
better use of the existing highway infrastructure.
Cooperative adaptive cruise control (CACC) is one such
strategy regarded as the most promising in intelligent
transportation system applications [1-3]. CACC is an
extension of the existing longitudinal control function
known as adaptive cruise control (ACC), which relieves the
driver from adjusting the speed to the vehicle in front.

The synthesis of a CACC system consists of designing a
spacing policy and a controller to regulate the speed of the
vehicle [4]. Generally, there are two types of spacing
policies that are widely used for vehicular cooperative
control, i.e., the constant-spacing policy and the constant
time headway spacing policy, depending on whether the
required spacing of a vehicle is free of its speed. The
constant time headway spacing policy applies mainly to
ACC of a single car driving control, which has been
equipped in many luxury cars [5]. The constant-spacing
policy is widely used for autonomous platoon control. Here,
as in [6], we will investigate a combined spacing policy.

It is worth noting that most existing results on CACC are
limited in at least the following two aspects. First,
linearization is frequently used to simplify the model [7]-[9],
which has clear shortcomings in practice, since it is usually
very difficult for implementation, especially when treated
jointly with the effect of sensor failures. Sensor failure is
another factor that increases the difficulty of CACC. The
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problem of sensor failure has been investigated by
researchers in different circumstances, see, e.g., in [10] a
sensor data fusion technology was used to estimate the
dynamics of the front target which can realized tracking
control for autonomous vehicle with sensor failures, and in
[11] a guaranteed cost method dealing with limited sensing
capability was proposed. However, these results are based
on a simplified vehicle model and hence are not adequate for
achieving more stringent performance requirement for
CACC systems that are nonlinear inessential. To the authors’
knowledge, strategies systematically taking into account the
desired system performance, nonlinear vehicle dynamics and
sensor failures have not yet been reported.

The rest of this paper is organized as follows. In Section 2, a
nonlinear CACC model is built by taking into account the
sensor failures. In Section 3, a switching controller is
designed for the nonlinear CACC system to deal with sensor
failures. The issue of string stability is investigated in
section 4. Numerical simulations are presented in Section 5,
showing the usefulness and effectiveness of the proposed
method. The conclusions are given in Section 6.

1. PROBLEM FORMULATION

Consider a CACC system composed by n vehicles (see Fig.1)
running in a horizontal environment. All followers are
equipped with on-board sensors to measure the distance and
relative velocity between it and its preceding vehicle. Each
vehicle transmits its acceleration to its follower via a
wireless communication channel. In what follows, we will
describe the nonlinear CACC vehicle model, sensor failures,
and our objective in detail one by one.

1.1. Nonlinear CACC system modeling

Denote by z,v, and @, the ith (i=0,...,n-1) vehicle’s
position, velocity and acceleration, with /=0 standing for the
lead vehicle and the others being followers.
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Fig. 1. CACC system

Define the spacing error of the ith following vehicle as:
6,=z,—z,—L—hv,—d (z,=0 in 6,), (1
where / is the time gap, d, is a given minimum distance,
L, is the length of the vehicle. Then the dynamics of the ith

following vehicle can be modeled by the following nonlinear
differential equations (see e.g., [12] [13] for details):

S, = v, —v,—hv, )
éi =a4,.,—4, 3)
a=fv)+gO)u,, 4)
where u, is the control input of the ith vehicle’s

engine/brake, with u, >0 and u, <0 representing the
throttle input and the brake input, respectively, f,(v,,a,)
and g,(v,) are given by:

) Ac, . Ac, vy,
f,(v,)z—i(v,. n ‘721% " +dmj_ OA,C, VY, , (5)

m ' om m,

i i

1
gv)=—, (6)
with o, 4, ¢, d
of the air, the cross-sectional area, drag coefficient,

mechanical drag, mass and engine time constant of the ith
vehicle, respectively. Here, oA,c,/2m,; stands for the air

m; and ¢, being the specific mass

mi

resistance. Note that the vehicles considered here can be
different (in size and weight, etc.), while most existing
results consider identical vehicles.

By combining the dynamics of the vehicular system (2)-(4)
and equation (1), and setting w,(¢) =a, (f) as a measurable

disturbance from the preceding vehicle, we end up with the
following nonlinear state space equation for the CACC
system

X)) =F(x,@)+Gu, (1), v, =[x (),w@®)], (7
where x (1)=[5.(t) e(t) a@®)] (i=1,...n-1) is the state
of the CACC system, y,(¢) is the measurement output,
F(x,(t) = [vH -v,.—ha, a_ —a, f,,(vl.,al.)]r , and

G = [O 0 1/mg, ]T is a nonlinear time-varying term.

Since x, =0 is an equilibrium of the CACC system (7), i.e.,
F(0)=0, and according to [17], we can design the
stabilize each

following switching control (k) to

following vehicle:
ui(k)zciui(k_1)+Diyi(k_1)n (8)
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where ke N and u,(k) represents the control between
[kT ,(k+1)T ] , T is the fixed period of the switching time,
u,(k) switches values at every fixed time k7" ,and C, is

D,=[p, p. p, p.] are the
controller gain vector to be designed.

a proper matrix,

Remark 1. 4). Note that the switching time 7 is different
from the sampling period of digital implementation of
continuous-time control systems. Usually, the switching time
is much longer than the sampling period. B). The control law
(8) is based on the spacing error and the relative velocity
error between vehicle i and its preceding vehicle, the
acceleration of vehicle i, and the acceleration of vehicle i-1.
The first two quantities are measured by on-board sensors
while the proceeding vehicle’s acceleration is transmitted
through a wireless communication channel.

2.2. Effect of sensor failures

In this subsection, we consider the problem of sensor
failures, and adopt the general failure model in [14] to
describe the failure phenomena in the distance and relative

velocity sensors, namely, [5/(/() e/'(k)]zpl.[é)‘i(k) e,(k)],
where the failure status p, is a Bernoulli process with
probabilities Pr[p, =0]=p, and Pr[p, =1]=1-p,. Thus
p, represents the sensor failure probability of the ith

vehicle.
Taking sensor failure effects into consideration, the
measurements output vector for vehicle 7 can be written as:

v/ (k) =py,(k), ©)
where y/(k) is the output from the sensor that failed,
p, =diag{p,,p,,},1} is the failure status matrix of the ith
vehicle.

We now proceed to show how the sensor failures affect the
nonlinear CACC system. To this end, we rewrite the
controller in (8) as

u,(k)=Cu,(k—=1)+ D, w,(k-1) +D, x,(k-1), (10)

iw Vi ixp; Vi

where D =[p,p, pp. p.J> D,=p,.-

Replacing F(x,(t)) in (7) by its Taylor series expansion
and according to (10), the CACC system (7) can be rewritten
as:

5,(1) = A5, (6) + G, (k) + B (x,) (11)
u,(k+1)=Cu,(k)+ D, (k)yw,(k) +D, x,(k) . (12)
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where /,(x,) contains all the high-order terms of the
Taylor series of F(x,(2)),and 4, =(3F,(x,)/ox,)],

From (11), we then have
(k+1)T

J.eA,«kﬂ)rq)hi (x‘.)dr

kT

x(k+1) =e"x (k) +

(k)T

el I eI g (kY (13)
kT

Let £ (k+1) =[x,k +1),u,(k +1)]" . Then, by (12) and (13),

we can obtain that

£k +1) = H .2 (k) + M, (k, % (k) (14)
where
A[T A k
N
Dixﬁ[e" Cl.+A‘.0(k)
M, (k5 =[A, (k) Dw )],
and
(k+1)T (k+1)T
8,0 =G, [z, ()= et xde
kT kT

Since /#,(x,) contains all high-order terms of the Taylor
series of F/(x/(t)) at the
configuration, lim,_  (|h(x)||/|x[p=0 . 1t follows that

expansion equilibrium

there exists a &, >0 such that
el < e (15)

whenever ||x,. || <g,.

2.3. The objective

Our objective of this research is to design a switching
controller for the CACC system to maintain a safety
inter-vehicle spacing and to meet the following criteria:

(1) Individual vehicle stability: the entire closed-loop CACC
system is exponentially stable.

(i1) Steady state performance: the relative velocity errors
Av,(z) approach to zero for all vehicles.

(iii) String stability: the oscillations are not amplifying with
vehicle index due to any maneuver of the lead vehicle,
|G
G(z)=06,2)/6.,(z) with &,(z) and &, (z) denotes the
z-transforms of the spacing J,(r) and o, (), respectively.

namely, where

<1 for any wo,

2. SWITCHING CONTROLLER DESIGN

In this subsection, we give a switching control method for
the nonlinear CACC system to ensure that all the vehicles in
the string are asymptotically stable under the effect of sensor
failures. We first present the following two propositions
which play a key role in the main results.

Proposition 1: Consider the CACC system composed by (11)
and (12). For any ke N, it is true that ||x,. (’?)" <y, forall

4192

re[kT,(k+DT], whenever |x,(k)|<z, and |u, (k)< z,.
(+1/mg)x..

=T (|| 4; |+1
where y, =e "I

Proof. Suppose this is not true, then there must exist a
r, € (kT,(k+1DT), such that "xi (ro)" =y, and "x,.(r)" <7
forall re[kT,r,]. By (11), Vre[kT,r,], we have that

e, ()] < [, CO|| + e, ()|, + j (4] +1x.()|dz . where

we have used the fact ||h,,(x,.(z'))||S||x, (T)" . Since
"x‘(k)"S ¥, and "ui(k)”S X.» by the Gronwall- Bellman
inequality, the following holds true
e ()] < (e, () + o, () /6, e M1 (16)
forall re[kT,r,].

Hence, [x,(r)|< ze" ™™ < z,, where r, <kT+T.
This contradicts with the assumption that ||)c,,(r(J )|| = y,. This

completes the proof.
It follows from (17) that

e, < (x, O + [, R PA+ Y mg> (17)
for all relkT,(k+1)T] , whenever "x,.(k)”S;(“ and

e (O] < 2,

Proposition 2: Consider the CACC system composed by (11)
and (12). For any given ¢, >0, there existsa y,, >0 and
Xia < %, such that for any given ke N it is true that
||A,.] (k)||s 5“")2,.” , whenever ||x (k)"égi4 and ||ui(k)||§ £,

Proof. For any given &, >0, choose &, >0 such that
&, =2¢,- " (1+1/mg) . According to (15), there

exists a y, such that ||h,.(x,.)||S$,.3||x,.|| whenever
el 2.

Define 7, =min{z, /2,(%:/Q2(1+1/mg)e""™)} . Then,
whenever ||xl,(k)|| <y, and ||u (k)"S X 1t 1s true by (17)
that

e < 22,0+ Ymg)e™™ < 4, (18)
forall re[kT,(k+1)T]. So, from (17), we have that
[ Ce.00l < 2ol + [ (O - (4 Ymg ) (19)
for all re[kT,(k+1)T] , whenever "xl, (k)” <y, and
| ()] < -
In addition, according to (15), A, (k) can be written as

(k+1)T
Ak =€ [ x ez (20)

whenever ||x,,||s X, and ||u[||S Xia- So, by (19), we have
||A‘,, (k)" < (||x,. (k)||+ ||ul.(k)||) £, / V2, whenever the conditions
||x,,||S X, and ||u||£ %, are satisfied. Furthermore, since

. 0]+ e (0] < V2, (o

, we know that for any given
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g, >0, there exists a ¢, >0, such that "An (k)" < g,l”fc, (k)" ,

whenever ||x[(k)||§ ., and ||u,,(k)||s X, for any keN,
where y,, < y, . This completes the proof.
Theorem 1: The CACC system in the form of (11) can be

locally asymptotically stabilized to the equilibrium state by
the switching controller in (12), if C,, D,and T can be
chosen such that H, has all eigenvalues within the unit
circle, where

(k+1)T

G IeAi((kH)T—r)dT

kT
i (k+1)T .
AT Ai (k+1)T-7)
D e C+G, I e dr
kT
Proof. Substitute the first term on the right-hand of (14)
with its Taylor series expansion at the origin, and replace all

high-order terms with A, then, there must exista y,, and
such that

(e2)

€i2

IS P

By Proposition 2 and (22), we have
M1, . % (o <[, o) + A (R
then ||M,(k)||§£,
and y, =min{y,,7,}.
Assume all eigenvalues of H, in (21) are within unit

(22)

<(g,+ 5,2)"5‘,” , choosing

&=¢€,+¢ fc,(k)" whenever ||fc|| <o

2

circle, then there must exist a positive-define matrix P,
such that H'PH,—P =-21 . Define
Lyapunov function

V(%,r) = & (PR ().

Forany ke N, by (23), we have

V.(x,(k + 1),k +1)=V,(x,(k),k)

< 2% M + M, -[B]+2m ®flpH %] - 24)

the following

(23)

Choose  0<e, <(|PH|[ +2|B|-|RH /|| . then

261.0"BH,.||+€I.20 <2. By Proposition 2, there must exists a
Xo(€,) , such that ||M . (k)" < gm"fci (k)" , Whenever
||fci (k)" < .,(€,) . Then, from (24), we have
V.(x,(k+1),k+1)=V.(x(k),k)

<|f @[ 2+, |PH,|+|P]) <0 (25)

In what follows, we will show that (25) is true for any
k,e N andall k>k, whenever

%) < A 2 (B 2 (B) 2 (610) (26)
where A (P) and A (P) represent the minimum and

‘min ‘max

maximum eigenvalues of P, respectively. From (22) and
(26), we have

V(& (k). k) < A (RYE k)| < A (P) 7 (5,) -
£ &)< z.() . we get from (25) that
V.(x,(k, +1),k, +1) <V/(x,(k,),k,) . Therefore

Since
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V.3 (ky + D,k + D < A, (P 4 (&), (27)
which along with (22) implies that | (k, + D)< z.(s,). It
then follows that V(% (k, +2),k, +2) < V(% (k, +1),k, +1)
and ||fc,.(k0 +2)||< 2.(g,) . By mathematical induction, it is

easy to obtain that ||fc, (k)||< x:(g,) for all k>k,. Hence,
(25)istrue forall k =k, aslong as (26) is true.

Choose = max(e!*™". 7"’y Then From (16), we
know that ||x, (r)" 7} (||x[ (k)” + ||u,,(k)||) . Also, since
)] <2
Ao Y O+ ot O )2, (P

< Ay PYN 201, + D[R (O 2 (B -

Then, from (21), we have

A PR <V, (7)) < 2, (RYF O

V(5.1 < W24, 417 A (P, (5, (R).K)/ 2 (P).

It follows from Theorem 4.1 in [15] that the equilibrium
state of the system (11) and (12) is uniformly asymptotically
stable. This completes the proof.

)Ac[(k)” whenever ||x,,(r)||£ X, then

3. STRING STABILITY ANALYSIS

In the previous section, considerations have been
focused primarily on asymptotic stability of all the
individual vehicles in the CACC system. This section is
concerned with the issue of string stability, which is
associated with objectives (ii) and (iii) given in subsection
2.3. Here, we give an additional set of constraint results on
string stability, which are derived based on the switching
controller (12).

Theorem 2. The closed-loop CACC system (11) is string
stable if the following conditions are satisfied:

=0
" . 27)
nn,+nn, <0

where n,=p,p,T ) n=pp,— T’ )

n,=—mT+pp, +ppT+pT+pT , n=2smTl ,
n4 = gimi *
Proof: By Maclaurin series expansion of f;(v,) in (4), we

obtain

. -d
PPIGET

mi i
The above equation can be represented by difference
approximation,

u, (k) — sim, (ai (k)T_ ai(k B 1))
and combined with the switching controller (12), we can get
(k) ~ 1, (k= 1)

=p.p,0,(k)+ p,p.e (k)

+pv(k)+p,a(k)+p,.a_ (k). (30)
From (29) and (30), the relation between 0,(z) and J, (z)
in the z-domain can be written as,

(28)

+d (29)

mi %
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(32)

8,(2) n, 24 nz package in MATLAB. Comparisons are made between the
5 (2) = Nz +nz—n GD new method and the RBFNN in [16]. The parameters of the
e o o o vehicles can be obtained from paper [13]. In the simulation,
If we impose the condition |5,- (e"")/8,,(e"")| <1 for any we suppose that all the following vehicles have the same
w, then, we can obtain the following inequality: sensor failure status, namely, p, = . We use a Bernoulli
(n,n, —nn,) cos(2Tw) + n,n, cos(3Tw) — n,n, cos(Tw)) sequence to describe the sensor operating mode over time
>0 (32) interval [0,60s], as shown in Fig. 2, the normal operation
If the conditions 7, =0 hold, then we get status p =1 with probability 0.97 and failure status p =0
2 )
—n,n, cos(2Tw) — n,n, cos(Tw)) = 0 with probability 0.03.
TZ 2
Dueto n,n, >0, cos(Tw)>1- v '
and cos(2Tw)>1-2T°w* , we have for w>0 that 1
nn,+nn, <0 , which is identical with the second
inequality in (27). This completes the proof. e
Remark 2. It is important to emphasize that the string oo o wox mex
stability requirement does not impose serious constraints on
the obtained switching controller gains in Theorem 1. s
0 10 20 30 40 50
4.  SIMULATIONS
) ) Fig. 2 sensor failure status
In this section, we show how to apply the proposed control
method to a three-vehicle CACC system, which runs in a
virtual environment established using System Build software
spacing errors velocities accelerations
0.4 14
0.3 12
0.2 10
0.1
= i w8 =
-0.1 ©_
-0.2 4
-0.3 2
-0.4 0 -
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Timel[s] Timel[s] Timel[s]
(a) (b) (c)
Fig. 3 Five-vehicle CACC system under proposed controller: (a) Spacing errors; (b) Velocities; (c) Accelerations.
spacing errors welocities accelerations
14 3
o f N %
10
=8
£
>'6
4
0.6 2 e
0 80 10 20 30 40 50 00 10 20 30 40 50 ) 30 10 20 30 40 50
Timel[s] Timel[s] Timel[s]
(a) (b) (c)
Fig. 4 Five-vehicle CACC system under controller [16]: (a) Spacing errors; (b) Velocities; (c) Accelerations.
calculations show that the eigenvalues of H, are

By Theorem 1 and 2, choose p,=28.84, p =21.94,

p,=213 , p. =156, p,=5% , T=0.1s. Simple
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0.075£0.043; and 0.065x0.168;, which are within the
unit circle. Choose sampling period of the digital system as
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0.005s. Using the aforementioned parameters for the CACC
system, Fig.3was obtained, which has shown the obvious
advantages over those given in [16]. The maximum absolute
spacing error and acceleration are 0.39 m and 2.2 m/s?,
respectively, showing that the whole vehicular string is
tracking accurately. In the same case, when the method
suggested in [16] is used, the system is string unstable (see
Fig. 4 the spacing error is amplified as they propagate along
the string of vehicles). The maximum absolute spacing error
and acceleration are 0.6 m and 2.5 m/s”, respectively, which
are much higher than in our case in Fig. 3.

5. CONCLUSIONS

This paper has developed a nonlinear CACC approach using
a switching control scheme. By considering the sensor
failure phenomena, a switching controller is designed. The
effectiveness of the presented method was demonstrated by
simulations.

In future research, we plan to study the integrated constraints
of sensor and communication network and derive more
effective and practical CACC methods.
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