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Abstract: In this paper, we consider the leader-following consensus problem for multiple
uncertain rigid spacecraft systems with the attitude being represented by unit quaternion.
Existing results on this problem rely on the assumption that all parameters of the rigid spacecraft
system are known exactly. By employing a nonlinear distributed observer for the leader system,
we first convert the leader-following consensus problem into a global adaptive stabilization
problem of a well defined error system. Then, under the standard assumption that the state
of the leader can reach every follower through a path, we further show that this stabilization
problem is solvable by a distributed adaptive control law.
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1. INTRODUCTION

One of the key issues in formation flying of a group of
spacecraft systems is to asymptotically aline the attitude
and angular velocity of all spacecraft systems to the de-
sired attitude and angular velocity generated by a refer-
ence system called leader system. Such a problem is also
called leader-following consensus of multiple spacecraft
systems.

Depending on whether or not the state of the leader is
accessible to all followers, there are roughly two control
schemes for dealing with the leader-following consensus
problem: decentralized control and distributed control.
The former one assumes that the state of the leader is
available to all the followers (Abdessameud and Tayebi
(2009); VanDyke and Hall (2006)), while the latter one
only requires the state of the leader can pass to each of the
followers through a path (Bai et al. (2008); Cai and Huang
(2014); Ren (2007)). When some followers cannot access
the state of the leader, the first scheme is not applicable.
One can only make use of local information determined
by a communication graph to handle the problem, which
has to resort to a distributed control law. Recently, some
attempts have been made to deal with the second scenario
Bai et al. (2008), Cai and Huang (2014), Ren (2007).
The results in Bai et al. (2008) and Ren (2007) have both
achieved leader-following consensus for angular velocity.
However, in Bai et al. (2008), the consensus for attitude
has been realized in a leaderless way, i.e., the attitudes
of all followers will converge to a common trajectory
determined by the initial condition. In Ren (2007), the

⋆ This work has been supported in part by the Research Grants
Council of the Hong Kong Special Administration Region under
grant No. 412810, and in part by National Natural Science Foun-
dation of China under grant No. 61174049.

leader-following attitude consensus is only applicable to
some special type of communication topologies such as
a tree. More recently, the authors of this paper solved
the leader-following consensus problem for multiple rigid
spacecraft systems in Cai and Huang (2014) under the
same assumption on the communication graph as in Bai
et al. (2008). The result in Cai and Huang (2014) has
two features. First, a marginally stable linear system
is introduced to generate the desired angular velocity.
This scheme enables the control law to handle a class of
reference trajectories including step signal with arbitrary
magnitude, sinusoidal signal with arbitrary amplitude and
initial phase and the combination of the step signal and
the sinusoidal signal. Second, the control law achieves both
attitude and angular velocity tracking. It is noted that a
key technique developed in Cai and Huang (2014) is a
nonlinear distributed observer for the leader system which
will also play an important role in this paper.

Like all previous papers on leader-following consensus
problem of multiple spacecraft systems, the result in
Cai and Huang (2014) assumed that all parameters
in the spacecraft system are known precisely. This is a
quite unrealistic assumption as the mass distribution of
the spacecraft system is practically uncertain and may
change with time due to fuel consumption or spacecraft
reconfiguration (Ahmed et al. (1998); Luo et al. (2005)).
To make the result of Cai and Huang (2014) more
practically useful, in this paper, we will further consider
the leader-following attitude consensus problem without
the exact knowledge of the inertial matrix of the spacecraft
system. To this end, by employing the same nonlinear
distributed observer for the leader system as the one in Cai
and Huang (2014), we first convert the leader-following
consensus problem into a global adaptive stabilization
problem of a well defined error system. Then, under the
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standard assumption that the state of the leader can reach
every follower through a path, we further show that this
stabilization problem is solvable by a distributed adaptive
control law. Finally, the effectiveness of our control scheme
is evaluated by simulation.

For the rest of this paper, we use the following notation. ⊗
denotes the Kronecker product of matrices. 1N denotes an
N dimensional column vector whose components are all
1. ||x|| denotes the Euclidean norm of vector x and ||A||
denotes the Euclidean norm of matrix A. For xi ∈ Rni ,
i = 1, ...,m, col(x1, · · · , xm) = [xT1 , · · · , xTm]T . For x =
col(x1, x2, x3) ∈ R3, define

x× =

[
0 −x3 x2
x3 0 −x1
−x2 x1 0

]
.

It can be verified that xTx× = 0.

2. PROBLEM FORMULATION

We consider a group of N rigid spacecraft systems with
the following motion equations:

˙̂qi =
1

2
q̂×i ωi +

1

2
q̄iωi, ˙̄qi = −1

2
q̂Ti ωi (1a)

Jiω̇i = −ω×
i Jiωi + ui, i = 1, . . . , N (1b)

where qi = col(q̂i, q̄i) with q̂i ∈ R3, q̄i ∈ R is the unit
quaternion expression of the attitude of the body frame
Bi of the ith spacecraft relative to the inertial frame
I. ωi ∈ R3 is the angular velocity of Bi relative to I;
Ji ∈ R3×3 is the positive definite inertia matrix; ui ∈ R3

is the control torque. ωi, Ji and ui are all expressed in Bi.

Following the notation introduced as follows (Tayebi
(2008)), for two quaternion qi = col(q̂i, q̄i) and qj =
col(q̂j , q̄j) with q̂i, q̂j ∈ R3, q̄i, q̄j ∈ R, the product of qi
and qj is given by

qi ⊙ qj =

(
q̄iq̂j + q̄j q̂i + q̂×i q̂j

q̄iq̄j − q̂Ti q̂j

)
and the conjugate of qi is given by q∗i = col(−q̂i, q̄i). If qi
is a unit quaternion, then its inverse is given by q−1

i = q∗i .

As in Chen and Huang (2009), we assume that the desired
attitude q0 of system (1) is generated by the following
system

˙̂q0 =
1

2
q̂×0 ω0 +

1

2
q̄0ω0, ˙̄q0 = −1

2
q̂T0 ω0 (2)

where q0 = col(q̂0, q̄0) with q̂0 ∈ R3, q̄0 ∈ R represents
the attitude of the leader frame B0 relative to the inertial
frame I; ω0 ∈ R3 is the angular velocity of B0 relative to
I, expressed in B0.

Like in Cai and Huang (2014), we view the system
composed of (1) and (2) as a multi-agent system of (N+1)
agents with (2) as the leader and the N subsystems of (1)
as N followers. Given (1) and (2), we can define a graph
1 Ḡ = (V̄, Ē) with V̄ = {0, 1, . . . , N} and Ē ⊆ V̄ × V̄.
Here the node 0 is associated with the leader system (2)
and the node i, i = 1, . . . , N , is associated with the ith

subsystem of the follower system (1). For i = 0, 1, . . . , N ,
j = 1, . . . , N , (i, j) ∈ Ē if and only if uj can use the full
state of agent i for control. Let N̄i denote the neighbor
1 See Appendix for a summary of graph.

set of the node i of Ḡ. We can further define a subgraph
G = (V, E) of Ḡ where V = {1, . . . , N} and E ⊆ V × V is
obtained from Ē by removing all the edges between node
0 and the nodes in V.
In terms of Ḡ, we can describe a distributed control law as
follows, for i = 1, . . . , N ,

ui = ki(qi, ωi, φi, ψi) (3a)

ψ̇i = fi(qi, ωi, φi) (3b)

φ̇i = gi(φi, φj − φi, j ∈ N̄i) (3c)

where ki, fi and gi are smooth functions, and φ0 =
col(q0, ω0).

We introduce the attitude and angular velocity errors
between systems (1) and (2) as follows:

ϵi = q−1
0 ⊙ qi, (4a)

ω̂i = ωi − Ciω0 (4b)

where ϵi = col(ϵ̂i, ϵ̄i), ϵ̂i ∈ R3, ϵ̄i ∈ R and Ci = (ϵ̄2i −
ϵ̂Ti ϵ̂i)I3+2ϵ̂iϵ̂

T
i −2ϵ̄iϵ̂

×
i is called the direction cosine matrix,

which represents the relative attitude between Bi and B0.
Then, we have

˙̂ϵi =
1

2
ϵ̂×i ω̂i +

1

2
ϵ̄iω̂i, ˙̄ϵi = −1

2
ϵ̂Ti ω̂i (5a)

Ji ˙̂ωi = −ω×
i Jiωi + Ji(ω̂

×
i Ciω0 − Ciω̇0) + ui. (5b)

Remark 1. Note that for i = 0, 1, . . . , N , ||qi(0)|| = 1
implies ||qi(t)|| = 1 for all t ≥ 0. Also, by Proposition
1 of Yuan (1988), Bi and B0 coincide if and only if ϵ̂i = 0.

We now state our problem as follows.

Problem 1. Given systems (1), (2) and the graph Ḡ, design
a control law of the form (3) such that, for i = 1, . . . , N ,

lim
t→∞

ϵ̂i(t) = 0 and lim
t→∞

ω̂i(t) = 0

for all ωi(0) and all qi(0) satisfying ||qi(0)|| = 1.

Remark 2. WhenN = 1, the above problem reduces to the
problem studied in Ahmed et al. (1998). If every follower
can receive the state from the leader, the approach in
Ahmed et al. (1998) can be directly extended to handle
Problem 1 and this kind of control scheme is called
decentralized control. What makes our current problem
interesting is that, without the assumption that every
follower can receive the state from the leader, we can still
solve the leader-following attitude consensus problem by a
distributed control law of the form (3).

We need the following assumptions.

Assumption 1. Ḡ contains a spanning tree with the node
0 as the root.

Assumption 2. The desired angular velocity ω0 is gener-
ated by the following system

ω̇0 = Sω0 (6)

which is marginally stable with constant matrix S ∈ R3×3.

Remark 3. Assumption 1 is the standard assumption in
consensus problem that imposes a mild constraint on
the information exchange among agents. Assumption 2
is made so that the desired angular velocity ω0 can be
estimated by every follower. System (6) can generate step
functions of arbitrary magnitudes and sinusoidal functions
of arbitrary amplitudes and initial phases.
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3. MAIN RESULT

Let Ā = [aij ] be any weighted adjacency matrix of Ḡ. For
i = 1, . . . , N , define a nonlinear distributed compensator
as follows:

˙̂ηi =
1

2
η̂×i ξi +

1

2
η̄iξi + µ1

N∑
j=0

aij(η̂j − η̂i) (7a)

˙̄ηi = −1

2
η̂Ti ξi + µ1

N∑
j=0

aij(η̄j − η̄i) (7b)

ξ̇i = Sξi + µ2

N∑
j=0

aij(ξj − ξi) (7c)

where ηi = col(η̂i, η̄i), η̂i ∈ R3, η̄i ∈ R, ξi ∈ R3, and
η0 = q0, ξ0 = ω0. µ1, µ2 are some positive numbers.

It was shown in Cai and Huang (2014) that, under
Assumption 1 and the assumption that the communication
among the followers is bidirectional, i.e., the matrix Ā
is symmetric, (7) is a distributed observer of the leader
system. Here we will further remove the assumption that
the matrix Ā is symmetric as shown by the following
lemma.

Lemma 1. Consider (2) and (7). Under Assumptions 1 and
2, for all ηi(0), ξi(0) and any µ1, µ2 > 0, for i = 1, . . . , N ,
ηi(t) and ξi(t) exist and are bounded for all t ≥ 0 and
satisfy

lim
t→∞

(ηi(t)− q0(t)) = 0, lim
t→∞

(ξi(t)− ω0(t)) = 0. (8)

Also, for i, j = 0, 1, . . . , N ,
∫∞
0

||ξi(τ) − ξj(τ)||dτ and∫∞
0

||ηi(τ)− ηj(τ)||dτ are bounded.

Proof: Consider the system composed of (6) and (7c).
Let L be the Laplacian of G. Let ξ = col(ξ1, . . . , ξN ) and
ω = ξ − 1N ⊗ ω0. Then we have

ω̇ = ((IN ⊗ S)− (µ2H ⊗ I3))ω (9)

where H = L + diag{a10, . . . , aN0}. Note that, H is not
symmetric since Ā is not. Nevertheless, by Lemma 1
of Su and Huang (2012), under Assumption 1, all the
eigenvalues of H have positive real parts and therefore H
is an M matrix. By Remark 4 of Su and Huang (2012),
for any µ2 > 0, limt→∞(ξi(t) − ω0(t)) = 0 exponentially,
for i = 1, . . . , N . Then,

∫∞
0

||ξi(τ)−ω0(τ)||dτ exists and is
bounded. It follows from the inequality ||ξi(τ)− ξj(τ)|| ≤
||ξi(τ)−ω0(τ)||+||ξj(τ)−ω0(τ)|| that

∫∞
0

||ξi(τ)−ξj(τ)||dτ
also exists and is bounded for i, j = 0, 1, . . . , N . Under
Assumption 2, ω0 is bounded, so is ξi.

Since H is an M matrix, by Lemma 2 in the Ap-
pendix, there is a positive definite diagonal matrix D =
diag{d1, . . . , dN} such that H̄ = DH + HTD is positive
definite. Let η = col(η1, . . . , ηN ), x = η − 1N ⊗ q0 and

V̄ = xT (D ⊗ I4)x. (10)

Then,

˙̄V =
N∑
i=1

di(η̂
T
i − q̂T0 , η̄i − q̄0)[

η̂×i ξi + η̄iξi +
∑N

j=0 2aijµ1(η̂j − η̂i)− q̂×0 ω0 − q̄0ω0

−η̂Ti ξi +
∑N

j=0 2aijµ1(η̄j − η̄i) + q̂T0 ω0

]

=
N∑
i=1

N∑
j=0

2diaijµ1(η
T
i − qT0 )(ηj − ηi)

+
N∑
i=1

di
(
−q̂T0 η̂×i ξi + η̄iη̂

T
i ξi − η̄iq̂

T
0 ξi − η̂Ti q̂

×
0 ω0 − q̄0η̂

T
i ω0

+q̄0q̂
T
0 ω0 − η̄iη̂

T
i ξi + q̄0η̂

T
i ξi + η̄iq̂

T
0 ω0 − q̄0q̂

T
0 ω0

)
=

N∑
i=1

N∑
j=0

2diaijµ1(η
T
i − qT0 )(ηj − ηi)

+
N∑
i=1

di
[
q̂T0 (ξ

×
i − ω×

0 )η̂i + (q̄0η̂
T
i − η̄iq̂

T
0 )(ξi − ω0)

]
= −xT (2µ1DH ⊗ I4)x+ ϕ(t)

= −xT (µ1H̄ ⊗ I4)x+ ϕ(t)
(11)

where

ϕ(t) =
N∑
i=1

di
[
q̂T0 (ξ

×
i − ω×

0 )η̂i + (q̄0η̂
T
i − η̄iq̂

T
0 )(ξi − ω0)

]
.

Since q0 is bounded and limt→∞(ξi(t) − ω0(t)) = 0
exponentially, there exist m1,m2,m3 > 0 such that

ϕ(t) ≤ m1e
−m2t||η||

≤ m1e
−m2t(||x||+ ||1N ⊗ q0||)

≤ m1||x||+m3.

(12)

SinceH is positive definite, from (11) and (12), there exists
m4 > 0 such that

˙̄V ≤ −m4||x||2 +m1||x||+m3. (13)

Therefore, if ||x|| > (m1 +
√
m2

1 + 4m4m3)/2m4, we have
˙̄V < 0. Also noticing that V̄ is positive definite in x

and ˙̄V is continuous, by Theorem 2.5.7 of Lewis et al.
(1999), we conclude that x is bounded. Therefore η and
hence ηi are also bounded, which implies limt→∞ ϕ(t) = 0
exponentially.

Let λ∗ denote the smallest eigenvalue of H, λ∗ > 0.
Therefore, by (10) and (11),

˙̄V ≤ −2λ∗µ1x
Tx+ ϕ(t) = −2λ∗µ1V̄ + ϕ(t). (14)

Define a linear stable differential equation as follows:

Ẇ = −2λ∗µ1W + ϕ(t). (15)

Then, clearly, the solutionW (t) of (15) will approach zero
as t tends to infinity. By the comparison lemma as can be
found in, say, Lemma 3.4 of Khalil (2002), we conclude
V̄ (t) ≤ W (t) for t ≥ 0. Since V̄ (t) ≥ 0 for all t ≥ 0, we
have limt→∞ V̄ (t) = 0. Thus limt→∞(ηi(t)− q0(t)) = 0 for
i = 1, . . . , N . From (14)

V̄ ≤ − 1

2λ∗µ1
( ˙̄V − ϕ(t)) (16)

which implies∫ ∞

0

V̄ (τ)dτ ≤ − 1

2λ∗µ1
(V̄ (∞)− V̄ (0)−

∫ ∞

0

ϕ(τ)dτ).
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Since limt→∞ ϕ(t) = 0 exponentially,
∫∞
0
ϕ(τ)dτ is bound-

ed. Since limt→∞ V̄ (t) = 0,
∫∞
0
V̄ (τ)dτ is bounded. Thus,∫∞

0
||ηi(τ) − q0(τ)||dτ is bounded. It follows from the in-

equality ||ηi(τ)−ηj(τ)|| ≤ ||ηi(τ)−q0(τ)||+||ηj(τ)−q0(τ)||
that

∫∞
0

||ηi(τ)−ηj(τ)||dτ is bounded for i, j = 0, 1, . . . , N .

2

Based on the distributed observer of (7), we further define
the errors as follows:

ei = η∗i ⊙ qi (17a)

ω̄i = ωi − Ĉiξi + ki1êi (17b)

where ki1 > 0, ei = col(êi, ēi) with êi ∈ R3, ēi ∈ R and

Ĉi = (ē2i − êTi êi)I3 + 2êiê
T
i − 2ēiê

×
i , which leads to the

following error system:

˙̂ei =
1

2
(ê×i + ēiI3)(ω̄i − ki1êi) + αi(t) (18a)

˙̄ei = −1

2
êTi (ω̄i − ki1êi) + βi(t) (18b)

Ji ˙̄ωi = −ω×
i Jiωi + Ji((ω̄i − ki1êi)

×Ĉiξi − ĈiSξi

+
1

2
ki1(ê

×
i + ēiI3)(ω̄i − ki1êi)) + γi(t) + ui (18c)

where

αi(t) =

N∑
j=0

aijµ1

(
(η̄j − η̄i)q̂i − (η̂j − η̂i)

×q̂i − q̄i(η̂j − η̂i)
)

− 1

2
(eTi ei − 1)(ê×i − ēiI3)ξi (19a)

βi(t) =
N∑
j=0

aijµ1

(
q̂Ti (η̂j − η̂i) + q̄i(η̄j − η̄i)

)
− 1

2
(eTi ei − 1)êTi ξi (19b)

γi(t) = −Ji

ςi(t)ξi + µ2Ĉi

N∑
j=0

aij(ξj − ξi)− ki1αi(t)


(19c)

with ςi(t) = 2ēiβi(t)I3−2êTi αi(t)I3+2αi(t)ê
T
i +2êiαi(t)

T−
2βi(t)ê

×
i − 2ēiαi(t)

×.

Remark 4. Let V̄i = eTi ei. It was shown in Cai and Huang
(2014) that limt→∞ V̄i(t) = 1 and ei is bounded over
t ≥ 0. Moreover, αi(t), βi(t) and γi(t) will tend to zero
as t tends to infinity and

∫∞
0

||αi(τ)||dτ ,
∫∞
0

||βi(τ)||dτ
and

∫∞
0

||γi(τ)||dτ are all bounded over t ≥ 0.

Remark 5. It was shown by Lemma 4.1 of Cai and Huang
(2014) that for i = 1, . . . , N , for any piecewise contin-
uous time function ω̄i(t) defined for t ≥ 0 satisfying
limt→∞ ω̄i(t) = 0, the solution of the subsystem composed
of (18a) and (18b) is bounded for all t ≥ 0 and satisfies
limt→∞ êi(t) = 0.

In order to put equation (18c) in the standard form where
the unknown parameters appear linearly, we adopt the
following notation introduced in Ahmed et al. (1998).
For any vector x = col(x1, x2, x3) ∈ R3, define a linear
operator L acting on x by

L(x) =

[
x1 0 0 0 x3 x2
0 x2 0 x3 0 x1
0 0 x3 x2 x1 0

]
.

Let Ji be denoted by

Ji =

[
Ji11 Ji12 Ji13
Ji12 Ji22 Ji23
Ji13 Ji23 Ji33

]
.

Define Θi = col(Ji11, Ji22, Ji33, Ji23, Ji13, Ji12). Then

Jix = L(x)Θi. (20)

Thus, equation (18c) can be rewritten as

Ji ˙̄ωi = χi(t)Θi + γi(t) + ui (21)

where

χi(t) = −ω×
i L(ωi) + L((ω̄i − ki1êi)

×Ĉiξi − ĈiSξi

+
1

2
ki1(ê

×
i + ēiI3)(ω̄i − ki1êi)).

(22)

For i = 1, . . . , N , let

˙̂
Θi = Λ−1

i χi(t)
T ω̄i (23a)

ui = −χi(t)Θ̂i − ki2ω̄i (23b)

where ki2 > 0, Λi ∈ R6×6 is the positive definite gain
matrix.

Theorem 1. Given systems (1), (2) and the graph Ḡ, under
Assumptions 1 and 2, problem 1 is solvable by the control
law composed of (7) and (23).

Proof: Let Θ̃i = Θi−Θ̂i. Then substituting (23b) into (21)
gives

Ji ˙̄ωi = χi(t)Θ̃i − ki2ω̄i + γi(t). (24)

Let

V =
1

2

N∑
i=1

(
ω̄T
i Jiω̄i + Θ̃T

i ΛiΘ̃i

)
. (25)

Let 0 < εi < 2ki2 and k̃i2 = ki2 − εi/2. Then

V̇ =
N∑
i=1

ω̄T
i (χi(t)Θ̃i − ki2ω̄i + γi(t))− Θ̃T

i χi(t)
T ω̄i

=
N∑
i=1

−ki2ω̄T
i ω̄i + ω̄T

i γi(t)

≤
N∑
i=1

−ki2ω̄T
i ω̄i +

εi
2
ω̄T
i ω̄i +

1

2εi
||γi(t)||2

= −Ω(t) + ζ(t)

(26)

where

Ω(t) =
N∑
i=1

k̃i2ω̄
T
i ω̄i, ζ(t) =

N∑
i=1

1

2εi
||γi(t)||2. (27)

By Remark 4, we have
∫∞
0
ζ(τ)dτ is bounded. Since Ω(t) ≥

0 for all t ≥ 0, we have

V̇ ≤ ζ(t). (28)

Therefore ∫ ∞

0

V̇ (τ)dτ ≤
∫ ∞

0

ζ(τ)dτ (29)

Since
∫∞
0
ζ(τ)dτ is bounded, V is bounded, which implies

ω̄i and Θ̃i are bounded. Since ei and ξi are bounded, by
(17b) and (22), ωi and hence χi is bounded. Therefore,
˙̄ωi is bounded by (24). By (27), Ω̇(t) is bounded, which
implies Ω(t) is uniformly continuous.
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Fig. 1. The network topology Ḡ

We now claim limt→∞ Ω(t) = 0. Otherwise, since Ω(t) ≥ 0
for all t ≥ 0, there exists ε > 0 and a sequence {tk},
k = 1, 2, . . . satisfying tk → ∞ as k → ∞ such that
Ω(tk) > ε. Since Ω(t) is uniformly continuous, there exists
δ > 0, such that |Ω(tk)− Ω(t)| < ε/2 whenever |tk−t| < δ.
Without loss of generality, we can always choose {tk} such
that t1 > δ and tk+1 − tk > 2δ. Therefore, Ω(t) > ε/2
whenever |tk − t| < δ.

Therefore,∫ ∞

0

Ω(τ)dτ ≥
∞∑
k=1

∫ tk+δ

tk−δ

Ω(τ)dτ = +∞. (30)

Since
∫∞
0
ζ(τ)dτ is bounded,

∫∞
0
V̇ (τ)dτ = V (∞)−V (0) =

−∞, which contradicts with the fact that V (t) ≥ 0 for
all t ≥ 0. Thus we have proved our claim, which implies
limt→∞ ω̄i(t) = 0 and by Remark 5, limt→∞ êi(t) = 0.
Since limt→∞ V̄i(t) = 1, we have limt→∞ |ēi(t)| = 1 and

therefore limt→∞ Ĉi(t) = I3. By Lemma 1, limt→∞(ηi(t)−
q0(t)) = 0 and therefore limt→∞ êi(t) = 0 implies that

lim
t→∞

ϵ̂i(t) = 0

and hence limt→∞ Ci(t) = I3.

By (17b), we have limt→∞(ωi(t)−Ĉiξi(t)) = 0. By Lemma
1, limt→∞(ξi(t) − ω0(t)) = 0. Note that both Ci(t) and

Ĉi(t) will tend to I3 as t tends to infinity. By the following
identity,

ω̂i(t) = ωi(t)− Ciω0(t)

= (ωi(t)− Ĉiξi(t)) + (Ĉiξi(t)− Ciω0(t))
(31)

we have
lim
t→∞

ω̂i(t) = 0.

2

4. SIMULATION

Consider four follower systems whose motion equations are
described by (1), with the following parameters
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Fig. 2. Tracking performance of attitude.
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Fig. 3. Tracking performance of angular velocity.

Θ1 = col(1.2, 3.5, 4.7, 0, 0, 0)

Θ2 = col(5.4, 1.3, 7.2, 0, 0, 0)

Θ3 = col(1.9, 2.1, 3.5, 0, 0, 0)

Θ4 = col(4.6, 5.1, 3.1, 0, 0, 0).

Let the leader system be described by (2) with
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S =

[
0 2 0
−2 0 0
2 0 0

]
.

Clearly, such a leader system satisfies Assumption 2 and
can generate sinusoidal signals with arbitrary amplitudes
and initial phases. Assume the graph Ḡ is shown in Figure 1
which satisfies Assumption 1. Thus we can design a control
law of the form of (7) and (23) with the following design
parameters: µ1 = 20, µ2 = 20, ki1 = 20, ki2 = 20, Λi = I6.
We let aij = 1 whenever (j, i) ∈ Ē .
The performance of the control law is simulated with the
following initial condition q0(0) = [1, 0, 0, 0]T ; ω0(0) =

[0, 1, 1]T ; q1(0) = [0, 0, 0, 1]T ; q2(0) = [0.5, 0,
√
3/2, 0]T ;

q3(0) = [
√
3/2, 0.5, 0, 0]T , q4(0) = [0,

√
3/2, 0, 0.5]T ;

ωi(0) = ξi(0) = 0, ηi(0) = 0, Θ̂i(0) = 0.

Figures 2 and 3 show the tracking performance of the
attitude and angular velocity of each coordinate of qi
and ωi, respectively, for i = 1, 2, 3, 4. It can be observed
that the tracking performance is satisfactory and further
validates the effectiveness of our control law.

5. CONCLUSION

In this paper, we have presented a result on the leader-
following consensus problem for multiple uncertain rigid
spacecraft systems. In comparison with the existing re-
sults, our control law can handle the case of unknown
parameters of the spacecraft system. We first convert the
leader-following consensus problem into a global adaptive
stabilization problem of a well defined error system based
on a nonlinear distributed observer for the leader system.
Then, by proposing a distributed adaptive control law,
this stabilization problem is solved under the standard
assumption that each of the followers can receive the state
of the leader through a path.
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Appendix A. GRAPH

We introduce some graph notation which can be found in
Godsil and Royal (2001). A digraph G = (V, E) consists
of a finite set of nodes V = {1, . . . , N} and an edge
set E = {(i, j), i, j ∈ V, i ̸= j}. An edge from node i
to node j is denoted by (i, j), and node i is called the
neighbor of node j. If the digraph G contains a sequence of
edges of the form (i1, i2), (i2, i3), . . . , (ik, ik+1), then the set
{(i1, i2), (i2, i3), . . . , (ik, ik+1)} is called a path of G from
i1 to ik+1, and node ik+1 is said to be reachable from node
i1. A graph is said to contain a spanning tree if there exists
a node i such that any other node is reachable from node i.
The node i is called the root of the spanning tree. The edge
(i, j) is called undirected if (i, j) ∈ E implies (j, i) ∈ E . The
graph is called undirected if every edge in E is undirected.
A graph Gs = (Vs, Es) is called a subgraph of G = (V, E) if
Vs ⊆ V and Es ⊆ E ∩ (Vs × Vs). The weighted adjacency
matrix A = [aij ] ∈ RN×N of G is defined as aii = 0;
for i ̸= j, aij > 0 ⇔ (j, i) ∈ E and aij = aji if (i, j) is
an undirected edge of E . The Laplacian of G is defined as

L = [lij ] ∈ RN×N , where lii =
∑N

j=1 aij , lij = −aij for
i ̸= j.

Appendix B. LEMMA 2

Lemma 2. (Theorem 2.5.3 of Horn and Johnson (1991)),
A matrix A ∈ RN×N is called an M matrix if aij ≤ 0
for i ̸= j, i, j = 1, . . . , N and all the eigenvalues of
A have positive real parts. Then, A is an M matrix if
and only if there is a positive definite diagonal matrix
D = diag{d1, . . . , dN} such that DA + ATD is positive
definite.
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