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Abstract: In this paper, multiobjective optimization (MOO) is applied to an optimal control
problem for a grab-shift unloader crane. The crane is modeled as a cart-pendulum system
with varying rope length and the trajectory of the grab is limited by the ship, the quay,
and the crane structure. The objectives to minimize are chosen as time, energy and maximal
instantaneous power. The optimal control problem is solved using a direct simultaneous optimal
control method. The study shows that MOO can be an efficient tool when choosing a good
compromise between conflicting objectives such as time and energy. Furthermore, navigation
among the Pareto optimal solutions has proven to be very useful when a user wants to learn
how the control variables interact with the process.
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1. INTRODUCTION

Grab-shift unloader cranes are used to move bulk material
from a ship to a hopper at shore. This type of cranes
are today normally operated by an operator controlling
the motion of the trolley and the grab so that fast and
efficient trajectories are obtained. In order to improve
the operation even more, the idea in this paper, is to
determine the trajectories using optimal control instead.
The optimal trajectories and control signals can then be
used in many ways to improve the operation, for instance,
to teach the operators or to run the crane autonomously.
The formulation and solution of optimal control problems
for cranes have been studied in several earlier references,
see for instance, Al-Garni et al. (1995); Auernig and Troger
(1987); Hu and Teo (2004).

It is important that the cost function reflects the desired
behavior of the crane since the achieved trajectory and
control signals are chosen to make the cost function
as good as possible. Often the desired behavior is a
compromise between different objectives such as speed,
energy efficiency, control utilization etc. The objectives
are commonly conflicting which means that depending
on how the different objectives are prioritized, different
trajectories and control signals will be optimal. Here
optimal means that there is no way to improve one
objective without deteriorating another (Miettinen, 1999).
A solution that satisfies this property is denoted Pareto
optimal and the set of all Pareto optimal points is the
Pareto set. The image of the Pareto set in the objective
space is denoted the Pareto frontier. An optimal control
problem with many objectives is denoted a multiobjective
optimal control problem.

The multiobjective optimal control problem is in this
paper reformulated as a nonlinear program and the result
is a multiobjective optimization problem (MOO) which
can be written as

minimize
x

{f1(x), f2(x), . . . , fm(x)}
subject to x ∈ X

(1)

There are many algorithms to “solve” a MOO. One class is
scalarization methods and another is vector optimization
methods, see Miettinen (1999). The first class combines
the objectives to form scalar objective functions that are
solved as single-objective problems to yield one point
in the Pareto set at a time. The second class treats
the objectives independently and solves the MOO as a
vector-valued optimization problem where many points in
the Pareto set are obtained at once. In this work, the
scalarization approach has been used.

In addition to how the Pareto optimal points are com-
puted, another choice is at which time the decision maker
(DM), i.e., the person who decides which solution is
“best”, makes the decision. In this paper, an interactive
method has been chosen where the DM is able to itera-
tively choose between different Pareto optimal solutions.
In this way, the DM can control the search for a final
solution depending on how the objective values and design
variables vary in the Pareto set. The process of choosing
the preferred solution is also often a good way to learn
about the optimization problem and the plant. For large-
scale problems, such as the optimal control problem for
cranes, it can take substantial amount of time to find a sin-
gle Pareto optimal solution using the scalarization method
and an interactive process can then be slow and tedious for
the DM. In recent research two-phase methods have been
introduced. In these methods, the Pareto frontier is first
sparsely sampled and the DM is then able to continuously
“navigate” on an approximation of the frontier in real-
time, see Eskelinen et al. (2010); Hartikainen et al. (2011);
Monz et al. (2008). However, the approaches in these
papers either require a convex Pareto frontier to yield good
approximations (which is not always the case for industrial
processes) or the computation of the approximation can be
tedious. In this paper, an approach introduced by Linder
et al. (2012) is used instead. By sampling the Pareto
frontier in a specific manner and decomposing the set of
sampled points into convex sets, it is possible to compute
an approximate Pareto frontier fast even for non-convex
Pareto frontiers, see Linder et al. (2012) for details.

There are also other papers that have studied MOO
applied to optimal control problems for cranes, see for
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instance, Deb and Gupta (2004), Logist et al. (2010), and
Sakawa and Shindo (1982).

The remainder of this paper is organized as follows: In
Section 2 the model of the grab-shift unloader crane is
presented. Section 3 shows how the MOO problem is stated
from the optimal control problem. Section 4 introduces
the developed MOO framework with a short description
of how it can be used to investigate the Pareto frontier. In
Section 5 the framework is applied to the crane optimal
control problem. Finally, some conclusions are presented
in Section 6.

2. MODELING OF A HARBOR CRANE

2.1 The Trolley and the Grab
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Fig. 1. The crane system including the trolley, the grab
and the ship, quay and hopper profile.

In principle, the crane can be described as a cart-pendulum
system, see Figure 1. The trolley and the hoist (the drum
that controls the rope length) are driven by electric motors
and it is assumed that there are inner feedback loops so
that the optimal control formulation can use the trolley
and the hoist accelerations as control inputs. With these
control inputs the model can be written as

ṗt = vt (2a)

v̇t = at (2b)

l̇r = vr (2c)

v̇r = ar (2d)

θ̇ = ω (2e)

ω̇ =
1

lr

(
− 2vrω − cos(θ)at − g sin(θ)

)
(2f)

where pt is the trolley position, vt is the trolley speed, lr is
the rope length, vr is the hoist speed (the first derivative
of the rope length), θ is the pendulum angle, ω is the
pendulum angular velocity, at is the trolley acceleration,
and ar is the hoist acceleration (the second derivative of
the rope length).

The grab position can be expressed as

xpl = pt + lr sin(θ) (3a)

ypl = h− lr cos(θ) (3b)

where ypl and xpl are the grab position vertically and
horizontally, respectively, and h is the height of the crane.
The forces on the trolley and in the rope are given by

Ft

ml
=
ml +mt

ml
at + lr cos(θ)ω̇

+ sin(θ)ar − lrω2 sin(θ) + 2vr cos(θ)ω (4a)

Fr

ml
= − sin(θ)at − ar + lrω

2 + g cos(θ) (4b)

where Ft is the force acting on the trolley, Fr is the force
acting in the rope, ml is the mass of the load and mt is
the mass of the trolley. Based on (4), the power required
by the trolley and hoist motors can be written as

Pt

ml
=
Ft

ml
vt,

Pl

ml
=
Fr

ml
vr (5)

The model described by (2) – (5) has 14 variables. How-
ever, in order to improve convergence and speed of the
optimizations extra variables and equations are introduced
to split complicated expressions into parts. This is denoted
lifting and is inspired by Albersmeyer and Diehl (2010).
Because of the lifting, the dynamical model used in the op-
timization has 22 variables. Throughout the paper, these
22 variables except the control signals (at and ar) are
concatenated to a vector denoted x(t) while the control
signals are concatenated to a vector denoted u(t).

2.2 Obstacles and Limitations

The motion and the control inputs are also subject to
limitations. The states and the controls are constrained
by simple bound constraints

−10 ≤ pt ≤ 50
−4.33 ≤ vt ≤ 4.33

0 ≤ lr ≤ 60
−2.33 ≤ vr ≤ 3.17

−π
2
≤ θ ≤ π

2
−5 ≤ ω ≤ 5
−1.5 ≤ at ≤ 1
−1 ≤ ar ≤ 2

The grab must also avoid obstacles such as the crane
structure, the ship and the quay. The height profile for
these obstacles is described the black solid line in Figure 2.

Fig. 2. The height profile of the crane, quay and ship (black
solid), and the quadratic approximations horizontally
(blue dashed) and vertically (red dash-dotted).

In order to obtain a smooth NLP, it is desired that
the constraints are differentiable. Therefore, a smooth
approximation of the obstacles parameterized in the grab
position is derived. The limitation of this approach is
of course that it could be hard to find good smooth
approximations of rectangular obstacles. However, the
approximation need not be accurate for all positions but
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only where the optimal trajectory often interfere with
the obstacle, typically the corners. Therefore, quadratic
functions have been chosen to represent the obstacles. For
the quay and the crane it is appropriate to parametrize
the quadratic functions in the horizontal grab position as

ypl > a+ bxpl + cx2pl, ∀xpl (6)

where the coefficients a, b and c are computed by choosing
three points so that the quadratic functions covers the
corners. The constraints in (6) are shown as blue dashed
lines in Figure 2.

For cycles where the grab travels outside the ship, the
constraints in (6) are enough. However, in this report, we
have also studied cases when the grab starts and ends
inside the ship. For such cases, the grab must avoid the
ship latches as well and therefore additional constraints
are necessary. For convenience, these approximations are
also expressed as quadratic functions but parametrized in
the vertical grab position instead,

xpl > a+ bypl + cy2pl, ∀ypl (7)

The resulting constraints are shown as the red dash-dotted
line in Figure 2.

3. MULTIOBJECTIVE OPTIMAL CONTROL

3.1 Background to Optimal Control

Fig. 3. Strategies for solving optimal control problems.

A multiobjective optimal control can be cast as follows

min
u(t), tf

{J1, . . . , Jm}

s.t.
F (ẋ(t), x(t), u(t)) = 0

c
(
x(t), u(t)

)
≤ 0

x(0) = x0
ψ
(
x(tf )

)
= 0

(8)

where

Ji =

∫ tf

0

Li

(
x(t), u(t)

)
dt, i = 1, . . . ,m

The function F (·) is a strangeness-free DAE model de-
scribing the dynamical model including algebraic relation-
ships, c(·, ·) are additional constraints, ψ(·) are terminal
constraints, Ji are the objectives, Li(·, ·) are the cost
functions, and tf is the final time.

There are many methods to solve optimal control prob-
lems but basically there are two different categories of
methods namely direct or indirect, see Figure 3. Direct
methods means that the control signals are parameterized
using a finite number of parameters. The result is a finite
dimensional optimization problem that include dynamical
equations. The dynamical equations can be solved in either

of two ways. Sequential methods, also known as shoot-
ing methods, means that a standard optimization solver
changes the parameters and for given parameters the dy-
namical equations are solved using an integrator routine.
Simultaneous methods, or collocation based methods, on
the other hand discretize the dynamical equations as well
and solves the whole problem at once as a large but sparse
optimization problem. Indirect methods are based on the
Pontryagin Minimum Principle (or variational calculus).
It means that the necessary conditions for optimality of
the optimal control problem, which is a two-point bound-
ary problem, are solved either using a sequential or a
simultaneous method. The advantages and disadvantages
of the different methods are described thoroughly in Betts
(2001). In this paper, the direct simultaneous method is
chosen. One of the major benefits with this method is that
quite general constraints can be dealt with in a straight
forward manner.

3.2 Discretization to NLP

For simultaneous methods, discretization is the step when
the optimal control problem (8) is reformulated as a
nonlinear program (NLP). There are a vast number of
different discretization methods and depending on which is
chosen, the sparsity pattern for the NLP will be different.
A thorough discussion on this topic can be found in
Betts (2001) and Kunkel and Mehrmann (2006). In this
paper a first order backward-difference formula (BDF)
has been used. The main motivation for choosing a first
order BDF instead of a higher order is that the first order
BDF yields the most sparse NLP and the accuracy of
the solution is sufficient (up to third order was evaluated
for comparison). An approximation of the solution to the
dynamical system (8) will then, using the first order BDF,
be given by

ckd(xk+1, xk, uk+1) =

F
(xk+1 − xk

Ts
, xk+1, uk+1

)
= 0, k = 0, . . . , N − 1

where Ts =
tf
N and N is the number of discretization

points. The equality constraints cd are usually denoted
defect constraints.

The objectives need to be discretized as well and the
discretized expressions become the NLP objectives. In this
paper, the objectives are discretized using the standard
Riemann sum which gives∫ tf

0

L(x, u) dt =
tf
N

N−1∑
k=1

L(xk, uk)

For a general multiobjective optimal control problem, the
MOO NLP generated will be

min
xk,uk,tf

{ tf
N

N−1∑
k=1

L1(xk, uk), . . . ,
tf
N

N−1∑
k=1

Lm(xk, uk)
}

s.t. cd(xk+1, xk, uk+1, tf ) = 0, k = 0, . . . , N − 1
c(xk, uk) ≤ 0, k = 0, . . . , N

x(0) = x0
ψ
(
xN
)

= 0

(9)

3.3 Objectives

In this paper three important objectives have been chosen
for analysis. The objectives are:
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• f1: Minimize the time of one cycle, i.e., the time of
moving the endpoint of the pendulum from point A
to point B.
• f2: Minimize the total energy consumed in the move.
• f3: Minimize the maximum instantaneous power used

by the system during the move.

The motivation to use the two first objectives is quite
clear. However, the motivation to use the third objective
might not be so obvious. The idea is that when many
cranes operate simultaneously the power consumed by the
harbor will be very large if all the cranes are allowed to
use large instantaneous powers. The harbor will then draw
large currents from the power grid which is something the
harbor owner is charged for and not only the energy used
by the harbor. Hence, it is interesting to investigate if
there is a good compromise between cycle time, energy
consumption and maximum instantaneous power.

The mathematical formulation of the objective functions
are

z1 = f1(x) = tf (10a)

z2 = f2(x) =

N∑
i=1

(P+
t,i + P+

l,i) (10b)

z3 = f3(x) = max(P+
t,1 + P+

l,1, . . . , P
+
t,N + P+

l,N ) (10c)

where tf is the total time of one cycle, Pt and Pl are the
trolley and hoist motor powers given by (5), respectively,
and (·)+ = max(0, ·). N is the number of time steps and x
is the set of all decision variables. Hence, the energy and
maximal instantaneous power objectives are chosen to only
consider power consumed to accelerate the trolley or the
grab and not power fed back while braking. The positive
parts are reformulated by splitting the variable into two
positive parts as

P = P+ − P−, P+ ≥ 0, P− ≥ 0

The reformulation requires P+ and P− to be pulled toward
zero since otherwise many combinations of P+ and P− can
fulfill P = P+ − P− for given P . The pull is achieved by
adding a regularization term to the objectives in (10) as

f̄k(x) = fk(x) + δ

N∑
i=1

(
P+
t,i + P−t,i + P+

l,i + P−l,i
)

where k = 1, . . . , 3 and δ is small number (≈ 10−3).

4. FRAMEWORK FOR INTERACTIVE MOO

In order to compute the Pareto frontier and navigate on
it, a framework developed in Linder et al. (2012) has been
used. Basically, it can be divided into two phases.

In the first phase, the Pareto frontier is sampled with an
automatic method which is executed without the inter-
action of the DM. Since it can take several minutes to
find even one solution, it is advantageous that the DM
can run this phase unattended. In the second phase, the
sampled Pareto set is loaded into a GUI that the DM uses
to navigate continuously on an approximated Pareto set.

4.1 Phase I: Offline phase

The offline phase samples the complete Pareto frontier
evenly. Figure 4 shows an example of the sampling in R2.
This phase can be divided into three steps; pre-processing,
sampling and post-processing.

First, the pre-processing step creates a direction of search d
and a reference point set zRx . The points in the reference

zR11

zR10

zR9

zR8

zR7

zR6

zR5

zR4

zR3

zR2

zR1

d
Z

z̄2∗

z̄1∗

z1

z 2

Fig. 4. An example of a reference point set (zRx) with the
direction d in a two dimensional MOO problem. The
reference points are created equidistantly between the
individual minima z1∗ and z2∗. Note that it is not
necessary that the reference hyperplane is ”above” the
complete Pareto frontier.

point set is used as starting points for the optimization
of every sample, see Figure 4. The reference points are
created equidistantly on the hyperplane spanned by the
individual minima of the MOO problem (z1∗ and z2∗ in
Figure 4) and the direction is chosen as the normal to the
reference hyperplane. The individual minima are found by
dividing the MOO problem into a set of singleobjective
optimization (SOO) problems, and solving every objective
individually.

Second, the sampling step uses the reference point set
together with the scalarization method described in Pas-
coletti and Serafini (1984) to solve the MOO problem.
For every reference point a SOO problem is solved using
the software package IPOPT (Wächter and Biegler, 2006).
This step do the actual optimizations to find the Pareto
frontier and depending of the number of samples and the
size of the MOO problem, this step can take hours to
complete.

Third, the post-processing step applies a Pareto filter that
removes all non Pareto optimal solutions. To handle non-
convex and disconnected Pareto frontiers in the online
phase, the Pareto set is decomposed into simplices using
the reference points and Delaunay triangulation. This
makes it possible to create a linear approximation between
the samples, even though the Pareto set is non-convex.

4.2 Phase II: Online phase

When the Pareto set has been obtained and decomposed
into simplices, it can be opened in the navigation applica-
tion. The DM uses the GUI to navigate on the sampled
Pareto set by interactively changing sliders and watching
the result in real-time, see Figures 5. When the DM moves
the slider for one objective, the software instantaneously
searches for a solution on the approximated Pareto set
that corresponds to the desired value and visualizes the
result, both for objectives and decision variables. It is
also possible for the DM to change the boundaries of
the objectives and the decision variables to see how new
constraints might change the possible solutions.

The advantage of using a piecewise linear approximation
of the Pareto frontier in the online phase is that a new
approximately Pareto optimal solution can be obtained
by solving a linear optimization problem. This type of
optimization problems can be solved very fast which gives
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(a)

(b)

Fig. 5. A snapshot of the two navigation application
windows. The first window seen in a) shows the
window used to choose solution. It includes range bars
in the lower left corner representing the objectives.
The DM can navigate on the Pareto frontier by pulling
the small arrows above the range bars. A list of
decision variable sets for different time steps is shown
in the top left and the selected set is shown as range
bars next to the list. The plot on the right-hand
side shows the trajectory (or some other variable)
for the currently chosen Pareto solution. The second
window seen in b) visualizes the Pareto frontier and
some additional information like the currently chosen
Pareto solution (see the blue dot at end of the arrow).
This is also updated continuously when the DM pulls
the arrows above the range bars.

the user a smooth interaction experience when navigating,
even on a normal laptop. However, a drawback of using an
approximation of the Pareto frontier in the navigation is
that the solution found by the tool might not be Pareto
optimal or even feasible. This issue can be solved by
re-running the original MOO problem with the desired
solution as starting point.

Finally, it is worthwhile to remember that one of the main
advantages with Pareto navigation is not to find a solution,
but to interactively move around on the approximated
Pareto set and get an understanding of how the objectives,
the control signals and model variables relate to each
other.

5. RESULTS

This section presents some results for the crane MOO
problem. The number of discretization points N in the
MOO NLP (9) is chosen as 200. This choice yields a
reasonable compromise between computational time and
numerical accuracy. The final time is bounded to the
interval 10− 50s and the sampling times will then be less
than 50/200 = 0.25s which is sufficiently short for the
crane system. Further, the masses are chosen as mt =
40000kg and ml = 30000kg which are typical numbers for
the trolley and the grab. However, it should be noted that
all figures in this section present the normalized energy
z2/ml and maximal instantaneous power z3/ml.

The Pareto frontier of the crane MOO is sampled with 931
points using the generic framework. A three dimensional
plot of the resulting Pareto frontier can be seen in Figure 6
and the projections of the Pareto frontier on every coordi-
nate axis are shown in Figure 7. The magenta markers in
the blue area show the Pareto optimal points computed
with the Pareto filter. There were 412 Pareto optimal
points and the solver Ipopt was unable to find a solution
for 106 points. The gray lines show non Pareto optimal
surfaces. The red circles are the individual minima that
were obtained by just optimizing w.r.t. to each objective.

We have also evaluated larger cycle times (up to 200s
with 800 sampling points) and as expected the energy and
the maximal instantaneous power then both go to zero.
However, from a practical point of view 50s is sufficiently
long and having fewer sampling points reduces the solution
time.

Fig. 6. The obtained Pareto set with Pareto optimal (blue
faces) and non Pareto optimal (gray lines) areas. The
individual minima of every objective can be seen as
red circles.

(a) The Pareto set of energy z2
with respect to time z1.

(b) The Pareto set of power z3
with respect to time z1.

(c) The Pareto set of power z3
with respect to energy z2.

Fig. 7. The projections of the obtained Pareto set on every
coordinate axis.
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Analysis of the Pareto frontier can reveal many interesting
facts. In Figure 7(a) it can be seen that the frontier
is almost vertical on the left side. This means that the
energy consumption can be decreased significantly without
deteriorating the cycle time much. Actually, by increasing
the total time only 0.4%, the energy consumption can be
reduced by 3.4% and by increasing the time by 4.2%,
the energy can be reduced by 7.4%. For the maximum
power the situation is completely different as shown in
Figure 7(b). In this case, the frontier has a rather even
slope and therefore a reduction in the maximal power will
deteriorate the cycle time as well. This kind of information
is very useful when tuning the crane controller. Further,
it can be noticed that energy consumption and the max-
imal power are conflicting objectives which might not be
obvious. With other words, it means that for a given final
time a lower energy consumption might require a higher
maximal instantaneous power. The conflict can be seen
in Figure 8 where the yellow plane corresponds to a final
time of 22s and the thick black line is the corresponding 2D
Pareto frontier. The explanation is quite straight forward.
In order to reach a certain final time, a certain average
speed is required. If the top speed is reached later, which
happens if the trolley accelerates more carefully to keep the
instantaneous power low, the top speed has to be higher
in order to obtain the same average speed. The higher
top speed requires more kinetic energy and since we do
not recover any energy, more kinetic energy will be wasted
during braking. Hence, from an energy perspective it is
better to accelerate fast using a larger power to a lower
top speed than to accelerate slower to a higher top speed.
However, as mentioned earlier, the higher instantaneous
power might also lead to higher costs for the harbor owner.

Fig. 8. The Pareto frontier cut by a plane at tf = 22s. The
thick black line is the 2D Pareto frontier between the
consumed energy z2 and the maximal instantaneous
power z3 obtained for the given tf .

The trajectories of the crane for the obtained Pareto set
can be seen in Figure 9. In the left plot all trajectories
(gray lines) obtained in the optimization (including non
Pareto optimal trajectories) are shown together with the
individual minimas for each objective. In the right plot
the Pareto filter has been applied and only Pareto optimal
trajectories are shown. It should also be noted that the
total time for one cycle is not illustrated in the figure and
hence the difference in time between the trajectories can
not be seen. For example, when minimizing the time only
(red line with cross markers), the total time for one cycle is
15.2s, while the minimal energy solution and the minimal
maximal power solution both use 50s (square markers and
point markers, respectively). This relation can instead be
seen on the Pareto frontier in Figure 6 and 7.

One interesting fact is that when minimizing the time,
the trajectory is more curvy. The reason is that the

grab reaches a higher point faster by moving the trolley
back and forth and swinging the grab. However, when
minimizing only energy (green line with square markers)
or power (blue line with point markers) the trajectories
are smoother and the paths are shorter.
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Fig. 9. The trajectories (gray lines) of the crane for the
obtained Pareto set. Left plot shows the trajectory
of all sampled points and the right plot shows only
Pareto optimal trajectories. The colored lines with
markers shows the trajectory of the individual minima
of respective objective.

As mentioned before, there are two control signals, the
trolley and hoist accelerations, respectively. In Figure 10
all the Pareto optimal control signals are shown (gray
lines) together with the control signals for the individual
minimas. Something that becomes clear immediately by
studying this figure is how much the different Pareto opti-
mal solutions actually varies. This is a little bit surprising.

Further, it can be seen that the hoist acceleration for the
minimum time solution behaves like a typical minimum
time solution should do. That is, it either accelerates
or retards fully. However, the same is not true for the
trolley and there are at least two reasons. First, the trolley
sometimes must wait so that the grab avoids the obstacles.
Second, the trolley moves somewhat back and forth to
swing the grab higher in order to reach the destination
faster because the hoist motion is the limiting motion
for this crane. Together, these two reasons give the quite
complicated control signal for the trolley.

The figure also shows that the control signals for the
minimum energy solution are quite passive, especially
the hoist acceleration. The trolley acceleration is also
relatively constant except at the end where it makes a large
bump. On the other hand, it can be seen that the control
signals for minimum maximal power vary much more. The
reason to the larger variations is still not completely clear,
but partly it depends on that only one or a few samples
determine the achieved minimum maximal power. The rest
of the control signals can be set quite arbitrary as long
as the corresponding power does not exceed the power
level. This non-uniqueness easily creates oscillations. One
approach to reduce the oscillating behavior which we have
used is to use regularization with the total energy as shown
in Section 3.3.

Concerning the navigation, the obtained Pareto set with
931 sampled points (only 412 were Pareto optimal) was
tested in the online application. Every point consisted of
three objective values and 8600 decision variable values
which were imported into the online application. The
navigation on the frontier is completely smooth and in-
terpolates both in objective space and the decision space.
However, as mentioned before, interpolation will not cross
non-optimal areas as can be seen in Figure 11, where the
black line shows how the Pareto optimal solution varies
when the DM decreases z1 from the minimum for z2.
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Fig. 10. The trolley acceleration (upper plot) and hoist
acceleration (lower plot). The shaded area is the
feasible interval for control signals and the dotted lines
marks the upper and lower boundaries. The colored
lines show the control signals for f∗1 (red dash-dotted),
f∗2 (green solid) and f∗3 (blue dashed), respectively.

Fig. 11. The black line is the trajectory of Pareto optimal
solutions obtained when the DM decreases z1 from
the minimum for z2.

6. CONCLUSIONS

In this paper, a recent MOO framework developed in Lin-
der et al. (2012) is applied to an optimal control problem
for a crane. The framework is divided into two phases. The
first phase makes a sparse sampling of the Pareto frontier
by solving NLPs that are scalarized and discretized formu-
lations of the multiobjective optimal control problem. In
this phase the DM is not involved which is important since
each solution takes a substantial time to compute (for the
931 sample case, the Pareto front took around 6 hours).

The second phase is an interactive online application which
the DM uses to investigate an piecewise linear approxima-
tion of the Pareto frontier and choose a preferred optimal
solution. This interactive application is fast enough to give
a real-time feeling when the DM traverses the approxima-
tion of the Pareto frontier, which is important for the user
experience.

Concerning the crane MOO, the Pareto frontier shows that
the energy consumption can be reduced by roughly 7% by
increasing the total time of one cycle only 4%. This is

a significant possibility for improvement. Further, it was
realized that the energy consumption and the maximal in-
stantaneous power actually are actually conflicting which
might be unexpected. This may be an indication that a
limitation of simultaneous crane operations can reduce
the overall energy consumption of the cranes, since then
each crane could use a higher instantaneous power without
increasing the maximal power drawn from the power grid.
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step framework for interactive multi-objective optimiza-
tion. Technical Report LiTH-ISY-R-3043, Department
of Electrical Engineering, Linköping University.

Logist, F., Houska, B., Diehl, M., and Impe, V. (2010).
Fast pareto set generation for nonlinear optimal control
problems with multiple objectives. Structural and Mul-
tidisciplinary Optimization, 42, 591–603.

Miettinen, K. (1999). Nonlinear Multiobjective Optimiza-
tion. Springer.
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