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Abstract: Most of the existing results on distributed distance-based rigid formation control
establish asymptotic and often exponentially asymptotic convergence. To further improve the
convergence rate, we explain in this paper how to modify existing controllers to obtain finite
time stability. For point agents modeled by single integrators, the controllers proposed in this
paper drive the whole formation to converge to a desired shape with finite settling time. For
agents modeled by double integrators, the proposed controllers allow all agents to both achieve
the same velocity and reach a desired shape in finite time. All controllers are totally distributed.
Simulations are also provided to validate the proposed control.
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1. INTRODUCTION

Formation control of networked multi-agent systems has
received considerable attention in recent years due to its
extensive applications, the underlying objective of which
is to maintain a pre-specified geometric shape for a group
of agents Anderson et al. (2007),Yu et al. (2009). Ac-
cording to different measurements and actively controlled
variables, the existing formation control strategies can be
classified as position-based methods, displacement-based
methods and distance-based methods Oh et al. (2012).
In the distance-based control approach, the desired for-
mation shape is specified by a certain set of inter-agent
distances, though each agent requires the relative position
measurements in order to control the distances. We adopt
the notation convention as in Dimarogonas and Johansson
(2009) and Oh et al. (2012) and call it the distance-based
formation stabilization approach. This approach attracts
particular interest since it does not require a common
sense of orientation for each individual agent. Along this
direction, Krick et al. (2009), Dimarogonas and Johansson
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(2009), Dorfler and Francis (2010), Cao et al. (2011), Mou
et al. (2011) and Oh and Ahn (2013) have studied the
distance-based formation control for different formation
shapes, all with asymptotic convergence (or sometimes
exponentially asymptotic convergence).

One objective of this paper is to design controllers to
stabilize rigid formation shapes with a finite settling time.
Finite time convergence brings about many benefits, which
include not only a faster convergence rate, but also im-
proved disturbance rejection and robustness properties
Bhat and Bernstein (2000), Hui et al. (2008). We modify
the commonly-used gradient control law and devise a sim-
ple finite time controller which can be easily implemented
in a decentralized way. Compared with the finite time
formation control proposed by Xiao et al. (2009), which
can be transformed into a linear consensus problem and
requires a global coordinate system for controlling relative
positions, the finite time controller devised in this paper
does not require a global coordinate system for each agent
and thus can be implemented in a totally distributed way.

Another aim of this paper is to design a novel flocking
controller for agents modeled by double integrators such
that all agents achieve the same velocity and the whole
formation converges to a desired shape. This problem
was solved in Anderson et al. (2012) by combining the
consensus protocol and distance-based shape control. In
this paper we modify this kind of control to achieve the
desired goal in finite time.

The paper is organized as follows. In Section 2, preliminary
concepts on graph theory, rigidity theory and finite time
stability are introduced. In Section 3, the modified gradi-
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ent control law is proposed which can achieve finite time
formation stabilization. In Section 4, we further consider
the distance-based flocking problem when agents are mod-
elled by double integrators. Some simulations are provided
in Section 5. Finally, Section 6 concludes this paper.

Notations. The notations used in this paper are fairly
standard. Rn denotes the n-dimensional Euclidean space.
Rm×n denotes the set of m × n real matrices. A matrix
or vector transpose is denoted by a superscript T . The
rank, image and null space of a matrix M are denoted by
rank(M), Im(M) and ker(M), respectively. When m is
an n-tuple vector, the symbol |m|α (α > 0) represents∑n
i=1 |mi|α, where mi is the i-th element of m. As in

Xiao et al. (2009), the function sig(x)α is defined as
sig(x)α = sign(x)|x|α with α ∈ (0, 1), x ∈ R, and
sign(·) is the signum function. If x is a real vector,
then sig(x)α is a vector function which is defined in
a componentwise way. The notation diag{x} denotes a
diagonal matrix with the vector x on its diagonal, and
span{v1, v2, · · · , vk} represents the subspace spanned by
a set of vectors v1, v2, · · · , vk. The symbol In denotes the
n × n identity matrix, and 1n denotes a n-tuple column
vector of all ones. We use ⊗ to denote the Kronecker
product.

2. PRELIMINARIES

2.1 Basic Concepts on Graph and Rigidity Theory

Consider an undirected graph with m edges and n vertices,
denoted by G = (V, E) with vertex set V = {1, 2, · · · , n}
and edge set E ⊂ V × V. The neighbor set Ni of node
i is defined as Ni := {j ∈ V : (i, j) ∈ E}. The matrix
relating the nodes to the edges is called the incidence
matrix H = {hij} ∈ Rm×n, whose entries are defined as
(with arbitrary edge orientations)

hij =

{
1, the i-th edge sinks at node j
−1, the i-th edge leaves node j
0, otherwise

The adjacency matrix A(G) is a symmetric n × n matrix
encoding the vertex adjacency relationships, with entries
Aij = 1 if {i, j} ∈ E , and Aij = 0 otherwise. Another
important matrix representation of a graph G is the Lapla-
cian matrix L(G), which is defined as L(G) = HTH =
diag{A1n} − A. For a connected undirected graph, one
has rank(L) = n− 1 and ker(L) = ker(H) = span{1n}.
Let pi ∈ Rd where d = {2, 3} denote a point that is as-
signed to i ∈ V. The stacked vector p = [pT1 , p

T
2 , · · · , pTn ]T ∈

Rdn represents the realization of G in Rd. The pair (G, p)
is said to be a framework of G in Rd. By introducing the
matrix H̄ := H ⊗ Id ∈ Rdm×dn, one can construct the
relative position vector as an image of H̄ from the position
vector p:

z = H̄p (1)
where z = [zT1 , z

T
2 , · · · , zTm]T ∈ Rdm, with zk ∈ Rd being

the relative position vector for the vertex pair defined by
the k-th edge.

Given an arbitrary ordering of the edges in E , the rigidity
function rG(p) : Rdn → Rm associated with the framework
(G, p) is given as:

rG(p) =
1

2

[
· · · , ‖pi − pj‖2, · · ·

]T
, (i, j) ∈ E (2)

where the norm is the standard Euclidean norm, and the
k-th component in rG(p), ‖pi − pj‖2, corresponds to the
squared length of the relative position vector zk which
connects the vertices i and j.

The rigidity of frameworks is then defined as follows.
Definition 1. (Asimow and Roth (1979)) A framework
(G, p) is rigid in Rd if there exists a neighborhood U of
p such that r−1G (rG(p)) ∩ U = r−1K (rK(p)) ∩ U where K is
the complete graph with the same vertices as G.

In the following, the set of all frameworks (G, p) which
satisfies the distance constraints is referred to as the target
formation. One useful tool to characterize the rigidity
property of a framework is the rigidity matrix R ∈ Rm×dn,
which is defined as

R(p) =
∂rG(p)

∂p
(3)

It is not difficult to see that each row of the rigidity matrix
R takes the following form

[01×d, · · · , (pi − pj)T , · · · ,01×d, · · · , (pj − pi)T , · · · ,01×d]
(4)

In the following, we indicate a simple expression for the
rigidity matrix which involves both the network topol-
ogy and position configuration. Recall (1), which shows
that the relative position vector lies in the image of H̄.
The rigidity function is a map from the node positions
to the squared edge lengths. Thus we can redefine the
rigidity function, gG(z) : Im(H̄) → Rm as gG(z) =
1
2

[
‖z1‖2, ‖z2‖2, · · · , ‖zm‖2

]T
. From (1) and (3), one can

obtain the following simple form for the rigidity matrix

R(p) =
∂rG(p)

∂p
=
∂gG(z)

∂z

∂z

∂p

=

 zT1 · · · 0
...

. . .
...

0 · · · zTm

 H̄

=ZT H̄ (5)

where Z = diag{z1, z2, · · · , zm}.
The rigidity matrix will be used to determine the infinites-
imal rigidity of the framework, as shown in the following
definition.
Definition 2. (Hendrickson (1992)) A framework (G, p) is
infinitesimally rigid in d-dimensional space if

rank(R(p)) = dn− d(d+ 1)/2 (6)

Specifically, the framework (G, p) is infinitesimally rigid in
R2 (resp. R3) if and only if rank(R(p)) = 2n − 3 (resp.
rank(R(p)) = 3n − 6). Obviously, in order to have an
infinitesimally rigid framework, the graph should have at
least 2n − 3 (resp. 3n − 6) edges in R2 (resp. R3). If the
framework is infinitesimally rigid in R2 (resp. R3) and has
exactly 2n − 3 (resp. 3n − 6) edges, then it is called a
minimally and infinitesimally rigid framework.

Also, if (G, p) is infinitesimally rigid, so is (G, p′) for a
generic (open and dense) set of p′. Generally speaking,
infinitesimal rigidity implies rigidity, but the converse is
not true. From the definition of infinitesimal rigidity, one
could easily prove the following lemma:
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Lemma 1. If the framework (G, p) is minimally and in-
finitesimally rigid in the d-dimensional space, then the
matrix R(p)R(p)T is positive definite.

Another useful observation shows that there exists a
smooth function which maps the distance set of the mini-
mally rigid framework to the distance set of its correspond-
ing framework modeled by a complete graph.

Lemma 2. Let rG(p) be the rigidity function for a given
infinitesimally minimally rigid framework (G, p). Further
let r′G′(p) denote the rigidity function for an associated
framework (G′, p), in which the vertex set remains the same
as (G, p) but the underlying graph is a complete one (i.e.
there exist n(n− 1)/2 edges which link any vertex pairs).
Then there exists a continuously differentiable function
f : rG(p)→ Rn(n−1)/2 for which r′G′(p) = f(rG(p)).

Lemma 2 indicates that all the edge distances in the
framework (G′, p) modeled by a complete graph can be
expressed in terms of the edge distances of a correspond-
ing minimally infinitesimally framework (G, p) via some
smooth functions. This is almost intuitively obvious. The
proof of the above Lemma 2 is omitted here and can be
found in Mou et al. (2014).

In this paper, we focus on the formation control problem
in which the desired formation shape is feasible 1 and is
minimally infinitesimally rigid.

2.2 Finite Time Stability

Finite time stability was studied in Bhat and Bernstein
(2000), from which we record the following finite time
Lyapunov theorem.

Lemma 3. (Bhat and Bernstein (2000)) Consider the sys-
tem ẋ = f(x), f(0) = 0, x ∈ Rn. Suppose there exist a
continuous positive definite function V (x) : U → R, real
numbers c > 0 and α ∈ (0, 1) and an open neighborhood

U0 ⊂ U of the origin such that V̇ (x) + c(V (x))α ≤
0, x ∈ U0 \ {0}. Then V (x) approaches 0 in finite time.
In addition, the finite settling time function T satisfies

T ≤ V (x(0))1−α

c(1−α) .

In the later part of this paper, we will also employ the
following inequality in deriving an upper bound for the
finite settling time.

Lemma 4. (Hardy et al. (1952)) Let x1, x2, · · · , xn ≥ 0.
Given α ∈ (0, 1], then(

n∑
i=1

xi

)α
≤

n∑
i=1

xαi (7)

3. FORMATION STABILIZATION CONTROL FOR
SINGLE INTEGRATOR AGENTS

In this section, we will devise a new control law to stabilize
a minimally and infinitesimally rigid formation in finite
time when each agent is modeled by a single integrator.
The problem considered in this section is formally formu-
lated as follows:
1 A feasible formation shape is one that can actually be realized; for
a triangle, for example, prescribed distances must satisfy the triangle
inequality.

Problem 1. Consider a network of n agents in d-
dimensional space with associated minimally rigid graph
and in which

ṗi = ui, i = 1, 2, · · · , n (8)

Design the control ui for each agent i in terms of pi − pj ,
j ∈ Ni such that ||pi−pj || converges to the desired distance
d∗ij in finite time.

Let ekij = ‖pi − pj‖2 − (d∗ij)
2 denote the squared distance

error. One popular distance-based formation control is the
following gradient control

ui =
∑
j∈Ni

ekij (pj − pi)

which was first proposed by Krick et al. (2009) and then
developed by Dimarogonas and Johansson (2009), Dorfler
and Francis (2010), Cao et al. (2011) and Oh and Ahn
(2013). However, all of these results establish asymptotic
convergence, i.e. the convergence of the formation shape
can only be achieved in infinite time. To solve Problem 1,
we propose the following control for each agent i:

ui =
∑
j∈Ni

sig(ekij )
α(pj − pi) (9)

Using (9), we shall establish the main result of this section.

Theorem 1. The modified controller (9) achieves the finite
time convergence of the formation shape.

3.1 Obtaining the Overall System

To prove Theorem 1, we let p =
[
pT1 , p

T
2 , · · · , pTn

]T
and

e =
[
eT1 , e

T
2 , · · · , eTm

]T
. One obtains the following overall

system:
ṗ = −RT (z)sig(e)α (10)

The above compact form of the overall system can be
derived by using the expression of the rigidity matrix as
shown in (4) and (5). Note from the overall system one
has immediately the following lemma, the proof of which
will be found elsewhere.

Lemma 5. The system defined by (8) with the designed
finite time controller (9) have the following properties:

(i) The controller is decentralized in that each agent
requires only relative position measurements of its
neighboring agents.

(ii) The center of the mass of the formation is station-
ary.

(iii) The controller for each agent is independent of any
global coordinates. That is, each agent can use its
own coordinate system to measure relative positions
and implement the control.

3.2 Stability Analysis of the Error System

We firstly define the equilibrium set for the overall system
(10). For a given realization p∗ = [p∗T1 , · · · , p∗Tn ] ∈ Rdn
with the desired distances d∗ij , the set PS of the target
formation shape which is congruent to p∗ is defined as:

PS = {p ∈ Rdn : ‖pj − pi‖ = ‖p∗j − p∗i ‖ = d∗ij ,

∀ i, j ∈ V and i 6= j}(11)

Note that PS is generally not compact, which complicates
the stability analysis when the overall system is discussed.
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For this reason, we will analyze instead the error system,
which describes the evolution of e. Note that

ė =
∂e

∂p
ṗ = 2

∂rG(p)

∂p
ṗ = 2ZT H̄ṗ = 2R(z)ṗ (12)

Using this and (10) one has the error system as follows:

ė = −2R(z)RT (z)sig(e)α (13)

Observe that the error system (13) involves the matrix
product M(z) := R(z)RT (z), the entries of which have
the following property.

Lemma 6. When the formation is close to the desired
one, the entries of the matrix M(z) = R(z)RT (z) are
continuously differentiable functions of e.

Note that the above lemma holds locally when e is small
and the formation is close to the desired one. A proof
for triangular formations can be found at Belabbas et al.
(2012), and the rather more difficult proof for minimally
rigid formations with four or more vertices can be found at
Mou et al. (2014). Also note that it indicates that the error
system (13) is self-contained. Hence we could rewrite it as
ė = −2M(e)sig(e)α, in which the matrix M(z) is rewritten
as M(e) in order to reflect the result from Lemma 6.

3.3 Proof of the Main Result

Now we are ready to give the proof of Theorem 1 as follows:

Proof of Theorem 1: Define a compact level set H(ρ) =
{e : V (e) ≤ ρ} for some small ρ (ρ > 0), such that for
all the points in the set H(ρ) the formation is infinitesi-
mally and minimally rigid. The set also defines the initial
formation shape which is close to the target one. Note
that the set does not need to be arbitrarily small since the
infinitesimal rigidity of the formation is a generic property
for a dense set.

Consider the following Lyapunov function candidate:

V =
1

α+ 1

m∑
i=1

|ei|1+α (14)

Obviously V is locally Lipschitz and continuously every-
where, and V > 0 for e 6= 0. Its derivative along the error
system (13) is

V̇ =
1

α+ 1

m∑
i=1

∂|ei|1+α

∂ei

dei
dt

=

m∑
i=1

sig(ei)
αėi

= (sig(e)α)
T

(−2M(e)) sig(e)α

(15)

The second equality of the above equation has used the
following fact:

∂

∂ei
|ei|α+1 = (α+ 1)sig(ei)

α (16)

Note that in the set H(ρ) the rigidity matrix is of full row
rank, and further M(e) is positive definite according to
Lemma 1. Further let λ denote the smallest eigenvalue of
RRT when e is in the set H (i.e. λ = min

e∈H
eig(M(e)) > 0).

The reason that λ exists is because that the set H(ρ) is a
compact set and the eigenvalues of a matrix are continuous
functions of the matrix elements. Then the following holds:

V̇ ≤ −2λ (sig(e)α)
T
sig(e)α (17)

Since α ∈ (0, 1), then 2α/(α + 1) ∈ (0, 1). According to
(14), one has

V
2α
α+1 =

(
1

α+ 1

) 2α
α+1

(
m∑
i=1

|ei|1+α
) 2α
α+1

≤
(

1

α+ 1

) 2α
α+1

m∑
i=1

|ei|2α

=

(
1

α+ 1

) 2α
α+1

(sig(e)α)
T
sig(e)α (18)

For all e ∈ H(ρ) \ {0}, V
2α
α+1 (t) > 0. Thus

V̇ ≤−2λ (sig(e)α)
T
sig(e)α

=−2λ
(sig(e)α)

T
sig(e)α

V
2α
α+1

V
2α
α+1

≤−2λ
(sig(e)α)

T
sig(e)α(

1
α+1

) 2α
α+1

(sig(e)α)
T
sig(e)α

V
2α
α+1

=−2λ(α+ 1)
2α
α+1V

2α
α+1 (19)

By choosing K = 2λ(α + 1)
2α
α+1 , the finite time stability

of the error system is thus proved according to Lemma 3.
According to the definition of rigidity (Definition 1), the
finite time convergence of the error system is equivalent
to the finite time convergence of the set PS . Furthermore,

the settling time satisfies T ≤ (1+α)V (0)
1−α
1+α

K(1−α) . �

Note that the convergence of the inter-agent distances
will not directly guarantee the convergence of the agents’
positions to some fixed points. However, we observe that
a sufficient condition for the position pi of agent i to
converge to a fixed point is that

∫∞
0
|ui(t)|dt <∞, which is

true since all |ui(t)| are upper bounded and converge to the
origin in finite time. Thus pi(t)t>T = p∗i which is constant
in PS . To sum up, one has the following Corollary:

Corollary 1. For t > T , the control law achieves the finite
time convergence of p to a fixed point in PS .

Remark 1. The modified controller in (9) introduces the
sig function, which indicates that the right side of (9)
is continuous everywhere and locally Lipschitz everywhere
except the origin. Thus the uniqueness of the solution with
initial condition in Rdn \{0} is guaranteed in forward time
on a sufficiently small time interval. We note that there are
some recent papers which focus on sliding mode control
(involving discontinuous control) in distributed controller
design; see e.g. Cao et al. (2010), Meng et al. (2013), Jafar-
ian and De Persis (2013). Since discontinuous/non-smooth
terms are involved in these works, non-smooth analysis
comes into play and one should also be cautious about
the often undesired chattering phenomena. In this paper,
since the function sig(·)α with α ∈ (0, 1) guarantees the
continuity of the controllers, there can be no chattering.
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Remark 2. The target formation shape set PS is not a
compact set, which thus complicates the stability analysis.
In Krick et al. (2009), the center manifold theorem is
employed for the stability analysis. In this section we have
focused first on the error system for which the equilibrium
set is compact.

Remark 3. The multi-agent finite time control problem
(but not shape control problem) with more realistic agent
models are discussed in several recent papers. For example,
in Meng et al. (2010) the authors discussed the finite
time attitude containment control for agents modeled by
rigid body dynamics, while in Li and Wang (2013) the
problem of position consensus for multi-AUV systems with
collision avoidance was addressed. How to design finite
time formation shape controller by considering these more
realistic models could be an interesting future direction.

4. FORMATION AND FLOCKING CONTROL FOR
DOUBLE INTEGRATOR AGENTS

In this section, we are interested in solving the following
problem:

Problem 2. Consider a network of n agents in d-
dimensional space with associated minimally rigid graph
and in which

ṗi = vi

v̇i = ui, i = 1, 2, · · · , n (20)

where vi ∈ Rd is the velocity of agent i. Design the control
ui for each agent i in terms of pi−pj , vi−vj where j ∈ Ni
such that ||pi − pj || converges to the desired distance d∗ij
and all vi converge to the same v∗ in finite time.

Anderson et al. (2012) employed a combination of the
distance-based formation shape control and flocking con-
trol to achieve the exponential convergence. In this paper,
we borrow the idea of previous works Bhat and Bernstein
(1998) and Hong et al. (2002) on finite time stability
of scalar double-integrator systems to obtain a modified
control:

ṗi = vi

v̇i =
∑
j∈Ni

sig(vj − vi)α +
∑
j∈Ni

sig(eij)
α

2−α (pj − pi) (21)

which will be shown to solve Problem 2 as stated in the
following theorem.

Theorem 2. For minimally and infinitesimally rigid for-
mation shapes, the controller in (21) will guarantee the
finite time convergence for the flocking of desired for-
mation shape, with convergence of agents’ velocities to
v∗ = 1

n

∑n
i=1 vi(0).

4.1 Analysis

For a given realization p∗ = [p∗T1 , · · · , p∗Tn ] ∈ Rdn with the
desired distances d∗ij and the desired final velocity v∗, we
define the following set PD

PD = {[pT , vT ]T ∈ R2dn : ‖pj − pi‖ = ‖p∗j − p∗i ‖ = d∗ij ,

vi = vj = v∗,∀ i, j ∈ V and i 6= j} (22)

By using a similar strategy as in Section 3 and realizing
that ė = 2Rṗ (see (12)), we derive the following equations
which involve the distance error e and the velocity term v:

ė= 2Rv

v̇i =
∑
j∈Ni

sig(vj − vi)α +
∑
j∈Ni

sig(eij)
α

2−α (pj − pi) (23)

Further let δ̄ ∈ Rd denote the average velocity of all the
agents, i.e. δ̄(t) = 1

n

∑n
i=1 vi(t). Observe that δ̄(t) is time

invariant, since a simple calculation using (23) shows that
˙̄δ = 0. We introduce the velocity disagreement vector
δ = [δT1 , δ

T
2 , · · · , δTn ]T , where δi is defined as δi = vi − δ̄.

Thus, one has δ̇i = v̇i. Notice that vi − vj = δi − δj .
Therefore, there hold Rv = ZT H̄v = ZT H̄δ = Rδ. Hence,
one can transform (23) into the following equation:

ė= 2Rδ

δ̇i =
∑
j∈Ni

sig(δj − δi)α +
∑
j∈Ni

sig(eij)
α

2−α (pj − pi) (24)

To prove Theorem 2, one also needs the following lemma,
the proof of which is omitted here.

Lemma 7. The set of velocity disagreements satisfies the
following equality in the n-agent network:

n∑
i=1

∑
j∈Ni

δTi sig(δj − δi)α = −1

2

n∑
i=1

∑
j∈Ni

|δj − δi|1+α (25)

4.2 Proof of the Main Result

Now we are ready to give the proof of Theorem 2:

Proof of Theorem 2: For the same reason as mentioned
in Theorem 1, the equilibrium set defined in PD is not
compact. Hence we will focus on (24) which involves the
distance error e and disagreement velocity δ. Note that
(24) is not a self-contained system, since the relative posi-
tion term zi appears in the right-hand sides of (24). Nev-
ertheless, we can still proceed with the stability analysis
by employing a Lyapunov-like function.

Consider the following Lyapunov-like function candidate

V (e, δ) =
1

2

n∑
i=1

δTi δi +
2− α

4

m∑
i=1

|ei|
2

2−α (26)

It is obvious that V is continuously differentiable every-
where, positive definite and radially unbounded. Differen-
tiating V (e, δ) along system (24), one has
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V̇ (e, δ) =

n∑
i=1

δTi δ̇i +
1

2

m∑
i=1

sig(ei)
α

2−α ėi

=

n∑
i=1

δTi
∑
j∈Ni

sig(δj − δi)α

−δTRT sig(e)
α

2−α +
(
sig(e)

α
2−α
)T
Rδ

= −1

2

n∑
i=1

∑
j∈Ni

|δi − δj |1+α due to (25)

≤ −1

2

 n∑
i=1

∑
j∈Ni

(δi − δj)2
(1+α)/2

due to (7)

= −1

2

(
2δT L̄δ

)(1+α)/2
= −2(1+α)/2

2
|H̄δ|1+α

The level sets of V (e, δ) are compact w.r.t. the distance

error e and velocity disagreement term δ. Since V̇ (e, δ) ≤
0, one has V (e(t), δ(t)) ≤ V (e(0), δ(0)), which indicates
that e(t) and δ(t) are bounded. Due to the fact that (24)
is not a self-contained system, it is not straightforward to
apply LaSalle’s Invariance Principle here. Let us examine
the term V̇ (e, δ) and its derivative:

V̈ (e, δ) = −1 + α

2

n∑
i=1

∑
j∈Ni

(sig(δi − δj)α)
T

(δ̇i − δ̇i) (27)

Since V̈ (e, δ) is continuous and bounded, V̇ is uniformly
continuous. By invoking Barbalat’s Lemma Slotine and Li
(1991), one can conclude that all the agents will converge
to a configuration in which |H̄δ|1+α = 0, or equivalently,
H̄δ = 0. Note that H̄ = H ⊗ Id and ker(H) = span{1n}.
This implies δ1 = δ2 = · · · = δn. Further note that∑n
i=1 δi = 0, which indicates that δ1 = δ2 = · · · = δn = 0

at the steady state. Thus, all the components of v in each
direction will be the same, i.e., the velocity alignment is
achieved.
Note that at the steady state δi = 0 also implies that
δ̇i =

∑
j∈Ni sig(eij)

α
2−α (pj − pi) = 0, which can be

written in a compact form as δ̇ = −RT sig(e)
α

2−α = 0.
Since RT is of full column rank due to the minimal and
infinitesimal rigidity of the target framework, one obtains
sig(e)

α
2−α = 0, or equivalently, e = 0. In conclusion,

the trajectories will converge to the largest invariant set
Ω = {(e, v) : v = v∗ ⊗ 1n and e = 0}. Note that the set Ω
is the same as the objective formation set PD according to
the definition of the framework rigidity. Thus the control
goal is achieved, at least asymptotically.

In the following, we will prove that the convergence of the
velocity alignment, as well as the convergence of formation
shape stabilization, can be achieved in finite time. The
proof is inspired by Bhat and Bernstein (1998). It can be
verified that, for k > 0,

V (k2−αe, kδ) = k2V (e, δ) (28)

V̇ (k2−αe, kδ) = k1+αV̇ (e, δ)

By letting k = (V (e, δ))
− 1

2 , one can obtain
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Fig. 1. Finite time stabilization of a double tetrahedron formation.
Left: the trajectories of five agents and the final formation
shape. Right: Time evolutions of the squared distance errors.

V
(

(V (e, δ))
− 2−α

2 e, (V (e, δ))
− 1

2 δ
)

=
(

(V (e, δ))
− 1

2

)2
V (e, δ) = 1

Define the set S = {(eT , δT )T ∈ Rm+dn : V (e, δ) = 1}.
Since V is radially unbounded, the set S is compact.
Furthermore, since V̇ is continuous, V̇ can achieve its
maximum on the compact set S. Thus, one obtains

V̇ (e, δ)

(V (e, δ))
1+α
2

= V̇
(

(V (e, δ))
− 2−α

2 e, (V (e, δ))
− 1

2 δ
)

≤ max
(e,δ)∈S

V̇ (e, δ) = −c (29)

where c > 0. This is due to the fact that −V̇ is positive
definite on the set S. The following result then follows

V̇ (e, δ) ≤ −c(V (e, δ))
1+α
2 (30)

Note that since α ∈ (0, 1), one has 1+α
2 ∈ (0, 1). From

Lemma 3, one obtains the origin of the system is a finite
time stable equilibrium with the settling time satisfying

T ≤ 2
c(1−α) (V (e(0), δ(0)))

1−α
2 . This completes the proof.

�

5. SIMULATIONS

We first perform simulations of controlling a five-agent
minimally rigid formation in 3D, in which each agent
is modeled by a single integrator. The underlying graph
is with a double tetrahedron of nine edges. The desired
distance for each edge is set to be 6. The initial positions
are chosen such that the initial formation is infinitesimally
rigid and is close to the target formation shape. By
employing the finite time controller (9) with α = 0.5, the
five agents finally achieve the desired formation shape in
finite time as shown in Fig. 1. Furthermore, it is worth
mentioning that there is no chattering occurring in the
formation stabilization process.

Then we let each agent be modeled by a double integrator.
The control goal is not only to achieve the desired double
tetrahedron shape but also to drive all agents’ velocities
to be the same in finite time. The simulation settings are
the same as those in the single integrator case, while the
initial velocities for each agent are chosen randomly. The
simulation results are depicted in Fig. 2, which shows that
the five-agent group achieves the desired formation shape
in finite time and then moves together with the common
velocity and with the desired formation shape.
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Fig. 2. Flocking control of five agents with double tetrahedron
formation. Left: the flocking trajectories of five agents. Right:
Time evolutions of the squared distance errors.

6. CONCLUSION

In this paper we have studied the finite time distance-
based formation control problem. A modified gradient con-
trol law was proposed to stabilize a predefined formation
shape for a group of agents modelled by single integrators.
Several interesting properties of the finite time formation
controller were discussed. It should be noted that the
equilibrium set of the overall system is not compact, which
complicates the stability analysis. To deal with this issue,
we have proved that the error system is a self-contained
one with a compact equilibrium set and then the finite time
stability was established. Furthermore, we have considered
double integrator agents and proposed a finite time flock-
ing algorithm so that the agent group can achieve desired
flocking motions with finite time velocity alignments and
finite time convergence of the formation shape. The main
results were proved by finite time Lyapunov theorem and
Barbalat’s Lemma. Typical simulations with a five-agent
group in 3-D space were provided to verify the perfor-
mances of the developed finite time controllers.
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