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Abstract: We approach the simultaneous localization and mapping problem by using an
ultrasound sensor and wheel encoders on a mobile robot. The measurements are modeled to yield
a conditionally linear model for all the map states. Moreover, we implement a Rao-Blackwellized
particle smoother (RBPS) for jointly estimating the position of the robot and the map. The
method is applied and successfully verified by experiments on a small Lego robot where ground
truth was obtained by the use of a VICON real-time positioning system. The results show that
the RBPS contributes with more robust estimates at the cost of computational complexity and
memory usage.

1. INTRODUCTION

Having a robot simultaneously localizing itself and learn-
ing its map is commonly referred to as simultaneous lo-
calization and mapping (SLAM). The problem is often
solved using odometry in combination with vision or range
sensors. In mobile robotics it has been studied extensively
over the last three decades. For surveys and tutorials of the
SLAM problem and its different solutions up to recently,
see for example [Thrun, 2002] or [Durrant-Whyte and
Bailey, 2006].

At least since the early 1990s the approach to SLAM
has been probabilistic. In [Smith et al., 1990], extended
Kalman filtering (EKF) was used for state estimation. An
issue with using Kalman filtering is that the nonlinearities
that typically are present tend to lead to divergence of the
state estimates. For example, the kinematics of a planar
mobile robot is nonlinear in the heading angle, and the
consequent linearizations that the EKF uses for estimating
the odometry may lead to instability. To remedy this,
particle filtering was introduced as a means to solve the
SLAM problem. State-of-the-art particle filter algorithms
when using high-resolution laser scanners are found in
[Grisetti et al., 2005, 2007].

One way to describe the map is to use occupancy-grid
mapping [Siciliano and Khatib, 2008]. The grids are con-
sidered to be either occupied or free, with some proba-
bility distribution associated with the grid. One usage of
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occupancy-grid maps is when utilizing range sensors, such
as laser sensors or sonar sensors. Both types of sensors
have noise and may occasionally give severe measurement
errors. Since laser sensors have very high spatial resolu-
tion, thus giving a sharp probability distribution, they
appear to be the most common solution, see [Hähnel et al.,
2003], [Eliazar and Parr, 2003], [Grisetti et al., 2007]. In
contrast, sonar sensors cover a cone in space. Because
of the low spatial resolution in the tangential direction,
it is impossible to determine from a single measurement
whether a certain cell is occupied or not. Also, ultrasound
sensors are sensitive to the angle of an object’s surface
relative to the sensor; that is, they have a small angle of
incidence. This leads to that measurements of the same
surface from slightly different angles may render different
results. Obviously, this could potentially lead to estimation
errors and must be handled by the algorithms.

In [Nordh and Berntorp, 2012] we performed SLAM us-
ing differential-driven mobile robots equipped with an
ultrasound sensor. To handle the deficiencies with sonar
sensors we extended the occupancy-grid concept by di-
viding every cell into subcells. Further, we developed a
conditionally linear Gaussian state-space model for use in
SLAM. In this paper we propose a novel measurement
model aimed at sonar sensors, and extend the work in
[Nordh and Berntorp, 2012] to include Rao-Blackwellized
particle smoothing (RBPS) as a means for SLAM. Rao-
Blackwellization takes advantage of a linear substructure
in the model, which can be handled by a Kalman filter.
Rao-Blackwellized particle filtering (RBPF) has been used
for a number of years, see [Andrieu and Doucet, 2000],
[Doucet et al., 2000], [Schön et al., 2005]. During the last
years Rao-Blackwellized particle smoothers have gained
interest, see [Särkkä et al., 2012], [Lindsten and Schön,
2011], where RBPS are developed for conditionally linear
Gaussian models. We utilize the methods in [Lindsten and
Schön, 2011] and provide an extension to also handle uni-
form noise for the class of differential-drive mobile robots.
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Particle filters for SLAM tend to have a particle depletion
problem, thus producing overconfident estimates of un-
certainty and eliminating particles with low weights. This
leads to that the number of particles used to perform loop
closure decreases, yielding degenerate performance [Kwak
et al., 2007]. Using particle smoothing could potentially
eliminate this loop-closure problem since more information
is available for map estimation and position localization.

We verify the method on a Lego Mindstorms mobile robot,
see Fig. 1, equipped with a low-cost ultrasonic range
finder. The Lego Mindstorms robot has low-performance
motors, with severe backlash and highly uncertain encoder
readings. Therefore, this setup represents a worst-case
scenario.

1.1 Related Work

Using sonar sensors for SLAM has been studied before; an
example is [Burgard et al., 1999], in which an offline expec-
tation maximization algorithm was used for occupancy-
grid mapping using 24 Polaroid sensors with 15 degrees
opening angle. An early work is [Rencken, 1993], where
the SLAM problem was solved in simulation using 24 ul-
trasonic sensors by estimating the errors introduced in the
localization and mapping parts, respectively, and correct-
ing for them using a modified Kalman filter approach. A
third example is [Leonard et al., 1992], in which a feature-
based approach with the aid of servo-mounted ultrasonic
sensors was used. A more recent work is [Ahn et al., 2008],
where ultrasonic sensors and a stereo camera is used in
an EKF-SLAM setting. All of the previously mentioned
work either use offline approaches and/or a vast number
of sensors to perform SLAM. As such, their approaches are
quite different from ours.

The state-of-the-art algorithms mentioned earlier, [Grisetti
et al., 2005, 2007], are designed for use with laser scan-
ners. Further, laser scanners, besides having high precision,
are several orders of magnitude more expensive than the
sensors we use. Therefore, a comparison with laser-based
approaches would be unfair.

1.2 Outline

The structure of the rest of the paper is as follows: In Sec. 2
we give the preliminaries. Sec. 3 presents the state-space
and measurement model, and Sec. 4 explains the forward
filter used. In Sec. 5 we summarize the RBPS, derive
how to handle uniform noise in the RBPS, and discuss
implementation aspects. The algorithm is evaluated in Sec.
6. Finally, we conclude the paper in Sec. 7.

2. PRELIMINARIES

The conditional distribution density of the variable x at
time index k conditioned on the variable y from time index
i to time index k is denoted p(xk|yi:k). At each time step
k the state can be partitioned into a nonlinear part ξk
and a linear part zk. The total state vector is a discrete-
time Markov process, which obeys the transition density
p(ξk+1, zk+1|ξk, zk). The robot model is written as

Fig. 1. The Lego Mindstorm differential-driven mobile
robot used in the experiments. The ultrasound sensor
is placed at the front end of the robot.

ξk+1 = f(ξk, uk, vk, wk), (1)

zk+1 = A(ξk)zk + ez,k, (2)

ymk (rk, ξk) = C(rk, ξk)zk + eym,k(rk, ξk), (3)

where ξ ∈ R
7x1. The state vector z ∈ R

n contains the cells
of the modified occupancy grid, where the size n depends
on the map dimension, resolution, and the number of
subcells used in every cell in the occupancy grid (for
details see [Nordh and Berntorp, 2012]). The measurement
function C(·) and measurement ym are parametrized in
the nonlinear state vector ξ and the ultrasound range
measurement r. The inputs enter in the nonlinear states,
and z is linear given ξ. The process noise v is independent
uniform with zero mean, and w is white Gaussian with zero
mean. Moreover, the process noise ez and measurement
noise eym are assumed to be white Gaussian with zero
mean.

3. MODELING

Here, we derive the robot kinematics and the conditionally
linear map model. Moreover, we describe how the measure-
ment equation is approximated as linear despite that the
ultrasound sensor measurements are highly nonlinear.

3.1 State-Space Model

The robot used is assumed to be a differential-driven
mobile robot, equipped with a sonar sensor. Since the
robot moves in a plane, only three states are needed to
describe the motion in continuous time. Using the position
variables x and y, as well as the heading θ as state
variables, the discretized kinematics (1) is, using a bilinear
transformation, written as

ξk+1 = f(ξk, uk, vk, wk). (4)

Here, ξk = [xk yk θk PR
k−1 PL

k−1 PR
k−2 PL

k−2]
T is

the state vector, with PR,L
k being the right and left

wheel encoder positions at time index k. The input uk

equals uk = [PR
k+1 PL

k+1]
T, and the wheel encoder noise

vector is assumed uniformly distributed according to
vk ∼ U(−α, α). The process noise wk only enters in θ with
variance Qw. After introducing

θ̄k = θk +

[

1

2l
− 1

2l

] [

PR
k−2

PL
k−2

]

+

[

1

2l
− 1

2l

]

(uk + vk),

where l is the wheel axis length, the kinematics vector
f(ξk, uk, vk, wk) becomes
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where a = cos θk − cos θ̄k, and b = sin θk − sin θ̄k.
This model is affected both by the wheel encoder noise
and the Gaussian distributed noise entering in θ. Wheel
encoders typically have backlash uncertainties, which may
be modeled as uniform noise. Moreover, the robot exhibits
wheel slip, which provides the physical justification for wk

being Gaussian distributed. As we will discuss later the
Gaussian noise can also be motivated with that it helps
both the smoothing and filtering to perform better, by
mitigating the issue of particle depletion.

The map is modeled as a slowly time-varying linear model;
that is, every cell in (2) is modeled as

zk+1 = zk + ez,k, (5)

where z contains the probability that a cell is occupied,
stored in log-odds format. The process noise ez,k is a
tuning parameter reflecting that the uncertainty of the cell
grows when no new measurements arrive.

3.2 Measurement Model

Assume that an ultrasound measurement returns a dis-
tance to an object, and that the opening angle of the
sensor is β degrees. The field of view is then a closed cone
with aperture 2β. The cells that are inside the field of
view can now be calculated, given that a position estimate
exists. Assuming that a method exists for converting a
single range measurement to an observation of the map
states inside the field of view, the measurement equation
would be linear. Further, the C-matrix in (3) would be
sparse with a single 1 per row and with the same number
of rows as the number of cells inside the field of view. A
typical C matrix in (3) could be

ymk (rk, ξk) =

[

1 0 0 0 · · · 0
0 0 1 0 · · · 0

]

zk + eym,k(rk, ξk). (6)

The cells not inside the field of view at time index k do
not generate any measurements at all for time index k.

To convert a range measurement to an observation of the
map states, we set ymk to a high probability (p = 0.99)
of occupancy for all the cells along the arc at the range
of the distance measurement. All the cells closer than the
measured distance are considered to be empty (p = 0.01).
The additive noise is also parametrized by the distance so
that when the detected object is far away the measurement

is considered more noisy, thus suppressing the influence on
the map. This reflects the high spatial uncertainty along
the arc.

4. FORWARD FILTERING

The particle smoothing needs a weighted particle estimate
as input. However, this estimate does not necessarily have
to be generated by the same model as the one used for
RBPS. In our case we use a slightly modified particle
filtering approach.

For an RBPF in our setup, (1)–(3), the particle weights
would be updated using the marginal density function of
the linear states for the measurement. Instead we use a
nonlinear function of the robot position and the map with
a more physically intuitive formulation, which has proved
effective in both simulations and on real data. Conditioned
on the robot position all the cells that are inside the
field of view are collected in a list and then sorted in
ascending order of the range to the robot. The list is then
traversed and the probability of each cell generating that
measurement is calculated and weighted by the probability
that all the earlier cells were empty, thus yielding

p(rk) =

n
∑

j=1

p(rk|zjk)pocc(z
j
k)

j−1
∏

i=1

(1− pocc(z
i
k)), (7)

where zjk is cell j at time index k. Each individual proba-
bility in (7) is evaluated against a flat probability density
centered around the center point of the cell with width
equal to the diagonal of a cell. Outside the flat region it
falls off linearly over another cell width. See Fig. 2 for
a visualization. This models the fact that a map with a
certain resolution cannot differentiate measurements with
higher precision than the resolution.

In a standard RBPF the weights of each of the N particles
is updated by multiplying it with the new weight provided
by the measurement. However, we have replaced this
multiplication by a first order low-pass filter. The resulting
algorithm is no longer a true RBPF, but from experience
using both simulations and experimental data we have
found that it works very well for our problem formulation.

5. RAO-BLACKWELLIZED PARTICLE SMOOTHING

In this section we only summarize the RBPS algorithm and
provide our extension. The reader is referred to [Lindsten
and Schön, 2011] for algorithm details.

5.1 Rao-Blackwellized Particle Smoother–Summary

The RBPS in [Lindsten and Schön, 2011] consists of three
main steps:

(1) A backward particle smoother
(2) A forward Kalman filter
(3) A Rauch-Tung-Striebel (RTS) smoother

Backward Particle Smoother The backward pass starts
with initializing j = 1, . . . ,M backward trajectories at
time T—that is, initializing {ξjT , z

j
T } using the filtered
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Pj

dd d

Fig. 2. The probability density function at time index k,
p(rk|zjk), for a single measurement conditioned on cell
j being the origin of that measurement. Pj is the
center point of cell j, and d is the diagonal width
of a cell

estimates at time T . Then, for the timespan of interest,
rejection sampling is performed to find an index I(j)
corresponding to the forward filter particle that is to be
appended to the j-th backward trajectory. This index is

exploited to set ξjk = ξ
I(j)
k and to draw linear samples from

the Gaussian density

p(zk|ξI(j)1:k , ξk+1, zk+1, y
m
1:k) ∝ p(ξk+1, zk+1|ξI(j)1:k , ym1:k)

×p(zk|ξI(j)1:k , ym1:k, ).
(8)

Finally, the backward trajectory vector is appended, yield-
ing {ξjk:T , z

j
k:T } = {ξjk, ξ

j
k+1:T , z

j
k, z

j
k+1:T }.

Kalman Filter After the backward smoothing step the
nonlinear states are assumed fixed, thus yielding a linear
model suitable for Kalman filtering [Anderson and Moore,
1979]. Hence, for each j = 1, . . . ,M a Kalman filter runs
for the whole timespan using (6).

RTS Smoother After the Kalman filter step both lin-
ear and nonlinear estimates are available. Then, an RTS
smoothing (backward pass) step is performed, concluding
the RBPS-algorithm. Note that steps 2 and 3 are needed
to find continuous, unsampled, conditional smoothing den-
sities.

5.2 RBPS with Uniform Noise

In the rejection sampling step in Sec. 5.1, [Lindsten
and Schön, 2011] exploits that the forward density

p(ξjk+1, z
j
k+1|ξi1:k, ym1:k), where j is the trajectory index and

i is the particle index, is Gaussian distributed. Also, cal-
culation of the maximum of the distribution is needed.
However, since we also have uniform noise in (4), some
modifications are required:

From the factorization and Markov properties of (4) we
have

p(ξk+1, zk+1|ξ1:k, ym1:k) = p(ξk+1|ξ1:k)p(zk+1|ξ1:k, ym1:k)
= p(ξk+1|ξk)p(zk+1|zk), (9)

where the input uk is suppressed for reasons of notation.
The second factor of (9) is the linear filtering density—that

is, the density resulting from a Kalman filter. However,
since the map is modeled as a slowly time-varying map,
we have assumed it to be constant in the implementation.
We can deduce the first factor in (9) as follows: Assume
that we have the estimate ξ∗k+1. Then the probability
p(ξk+1 = ξ∗k+1|ξk, uk) can be reformulated as

p(ξk+1 = ξ∗k+1|ξk, uk) = p(ξ∗k+1 = f(ξk, uk, vk, wk)|ξk, uk).
(10)

Due to the form of (4) we can solve f(.) for vk and wk.
Thus (10) transforms to

p((vk, wk) = g(ξk+1, ξk, uk)|ξk+1, ξk, uk). (11)

Using the noise independence properties yields that (11)
is equal to

p(vk|g1(ξk+1, ξk, uk))p(wk|g2(ξk+1, ξk, uk)). (12)

To find the solution to (12), we start by forming the
difference of (4) between two consecutive time steps (i.e.,
∆x = xk+1 − xk). After reshuffling the equations for the
translational coordinates we get

cos θk+1 =
4∆x− (PR

k − PR
k−1 + PL

k − PL
k−1) cos θk

PR
k+1 − PR

k + PL
k+1 − PL

k

(13)

sin θk+1 =
4∆y − (PR

k − PR
k−1 + PL

k − PL
k−1) sin θk

PR
k+1 − PR

k + PL
k+1 − PL

k

(14)

∆θ =
1

2l

(

PR
k+1 − PR

k−1 − (PL
k+1 − PL

k−1)
)

. (15)

Utilizing the trigonometric identity on (13) and (14) gives
that

(PR
k+1 + PL

k+1 − PR
k − PL

k )2 = γ1 (16)

for some constant γ1. Likewise, we get from (15) that

PR
k+1 − PL

k+1 = γ2, (17)

where γ2 = 2l∆θ + PR
k−1 − PL

k−1. Moreover, by dividing
(14) with (13) we can solve for the θk+1 congruent to
(xk+1, yk+1):

θ1,2k+1 = atan2(d1, d2) +mπ, m = 0, 1, (18)

where atan2(·, ·) is the four quadrant inverse tangent, and

d1 = 4∆x− (PR
k − PR

k−1 + PL
k − PL

k−1) cos θk,

d2 = 4∆y − (PR
k − PR

k−1 + PL
k − PL

k−1) sin θk.

From (16) we see that there are two input vectors that
give the same (x, y)-coordinates—that is,

PR
k+1 + PL

k+1 = PR
k + PL

k ±√
γ1. (19)

Also, from (15), (17), and (18), we find the two possible
input vectors coincident to the two solutions of (19) to be

PR
k+1 − PL

k+1 = 2l∆θ1,2 + PR
k−1 − PL

k−1. (20)

Using (19) and (20) we can calculate the (uniformly dis-

tributed) probability, p(PR,L
k+1 ), of the two possible com-

binations of input vectors that yield the coordinates ∆x,
∆y, and ∆θ1,2. The probability for the two possible solu-
tions θ1,2k+1 is Gaussian. Now (11) is formed by multiplying

the Gaussian probability for θ1,2k+1 with the two distribu-
tions for the wheel encoders and choosing the solution
with the largest probability. Further, the maximum of
p(ξk+1, zk+1|ξ1:k, ym1:k, uk) is found by setting θ1,2k+1 to be
in the middle of the distribution.

We now transform (8), which for our model yields
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p(zk|ξ1:k+1, zk+1, y
m
1:k)

= p(zk|ξ1:k, zk+1, y
m
1:k)

∝ p(zk+1|zk, ξ1:k, ym1:k)p(zk|ξ1:k, ym1:k)
= p(zk+1|zk)p(zk|ξ1:k, ym1:k). (21)

Here, the first equality follows from that there is no new
measurement at time index k + 1, whereas the second
and third steps follow from Bayes’ rule and the Markov
property, respectively. Now, (21) may be estimated using
a Kalman filter.

Remark 1. We do not use an RBPF for finding the density
(9), see Sec. 4. However, this is not a restriction since for
the RBPS there is no assumption on how the density was
produced.

Remark 2. The addition of the Gaussian state noise for θ
can be motivated from that it can be used to model wheel
slip. However, it also improves smoothing performance.
Assume that we at time index k have the robot position
estimate (x0, y0, θ0), and that the estimate at time index
k+1 is (x1, y1, θ1). Then θ1 is uniquely determined by the
initial conditions and x1 and y1, since there are not enough
degrees of freedom in the motion model, see Fig. 3 for
an illustration. This means that the smoother will never
switch between trajectories, caused by only having two
degrees-of-freedom noise. This leads to that the smoother
(and filter) will be unable to recover from spurious errors.
However, if noise (i.e., an additional degree of freedom)
is added to θ we remedy this, which is essential for the
smoothing to give any impact, and for the forward filter
to avoid particle depletion.

(x0, y0, θ0)

(x1, y1, θ1)

θ0

Fig. 3. The bilinear transformation (the arc) is a second
order approximation of the robot motion. Thus, the
end point is uniquely determined from the initial
conditions and (x1, y1). This implies that when evalu-
ating (9) for all j trajectories conditioned on particle
i, the probabilities will equal zero when j 6= i. By
adding noise for θ this uniqueness disappears, which
implies that the smoother will be able to recover from
errors caused by, for example, wheel slip.

5.3 Implementation Aspects

The computational demands when using smoothing are
greater than for filtering. Not only the amount of compu-
tations needed increases, but there is also a need for storing

the filtered estimate for each time instant over which the
smoothing will be performed. For the problem described in
this paper each particle contains an estimate of the entire
map, thus it is of significant size. This means that for larger
maps the memory requirements will be problematic unless
some representation of the map which takes advantage of
the similarities between particles at time instances is used.
However, this is not an issue we investigated further in this
work.

When implementing the RBPS for SLAM some parameter
considerations have to be made. For example, the perfor-
mance depends both on the time window used for the
smoothing and the number of trajectories. Also, we will
have to decide when to trigger the smoothing. Further,
when the smoothing is finished it is not obvious from
where we should reinitialize the forward filter. Since we
are primarily interested in real-time estimation, it is not
feasible to perform smoothing over the entire data set.
We therefore use smoothing over a subset of the data. We
then reinitialize the filtering at a point within the subset
and restart from there. This provides the filtering with a
”future” estimate of the map, which in theory should make
it possible to perform better: Assume that the smoothing
was triggered at time index k, and that we have a time
window of length t. Thus, we suspend the forward filtering
at time index k. Also assume that we initialize an addi-
tional forward filter halfway through the smoothing time
window—that is, at time index k − t/2. Then we use the
smoothed estimates at time index k− t/2 to initialize this
additional forward filter, and executes it up to time index
k. At time index k we may then attach these estimates
and resume the original forward filter. Overlapping the
filtering and smoothing in this way means that we can
improve the future filtering with the smoothing. However,
it increases the total amount of computations needed since
we recompute the same time step several times.

The implementation as presented in this paper is available
as open source software, see [Nordh and Berntorp, 2013b].
It is built on top of the open source framework pyParti-
cleEst, see [Nordh and Berntorp, 2013a].

6. EXPERIMENTAL RESULTS

For the experiments we used a differential-driven mobile
robot built using Lego Mindstorms, see Fig. 1. One of
the aims of the present work is to use low-cost sensors,
with rather poor performance. The sensor chosen was
an ultrasonic range finder XL-Maxsonar EZ4 [MaxBotix
Inc., 2012], with a resolution of 1 cm at 10 Hz. The
maximum target range is 7.65 m, but because of voltage
division in the building process the range was limited
to approximately 3.8 m. Further, the maximum angle of
incidence was measured to be approximately 10 deg. The
sensor was mounted on a motor, enabling it to sweep back
and forth. The motor used for this was of the same type
as those used for driving the robot, which are part of the
standard Lego Mindstorms toolkit. The backlash of the
motors was estimated to roughly 5 deg. When it comes to
precision in odometry, we believe that this setup represents
a worst-case scenario.

The ground truth, only used for evaluation, was gathered
using a VICON real-time positioning system, see Fig. 4,
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Fig. 4. The experimental setup. The cameras in the upper
part are part of the VICON system.

installed at Linköping University, Sweden. The VICON
system uses 10 infrared cameras and infrared lamps to
track markers attached to the robot. The positioning
precision provided by the system is about 1 mm.

The results were generated by effectuating the algorithm
40 times on the same data set. We set the number of back-
ward trajectories to M = 25 and the number of forward
particles to N = 100. The maximum smoothing length
was set to 400. The reinitialization overlap was set to be
half of the smoothing time window. Further, we chose to
trigger the smoothing every fifth resample of the forward
filter. These parameter choices were quite arbitrary, and
most likely a better trade-off between complexity and
performance can be found by tweaking the parameters.

We chose the mean of the norm of the position error
at each time instance as performance measure. Figure 5
shows the results for smoothing-based SLAM, forward-
filter SLAM, and dead reckoning. Included in the figure
is the standard deviation for all three methods. It is clear
that although the smoothing-based SLAM does not have
much smaller mean error, it is more robust than only using
the forward filter. The dead reckoning is deterministic
since each execution was performed on the same data
set. At about t = 120 the SLAM estimates seem to have
converged to an error of about 0.4 m, which is of the same
order of magnitude as the map resolution (0.2 m). The
error in the odometry is clearly increasing with time, and
gives substantially larger error than the SLAM algorithms
in the position estimate for t > 140. Note that the SLAM
algorithms start with no knowledge about its environment,
and, hence, they do not outperform the odometry until
sufficient map knowledge has been built up. The data set
used was challenging in that during the last seconds the
dead reckoning diverged quickly, with an angle error of
about 180 deg and a position error of approximately 3
m. This was caused by severe wheel slip. The two SLAM
algorithms managed to handle this in about 2/3 of the
realizations.

Figure 5 is truncated in order to more clearly visualize
the differences between the filtering and smoothing. In
Fig. 6 we show results from a successful execution of
the whole data set, where the smoothing-based SLAM
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Fig. 5. Mean error and standard deviation for 40 real-
izations. The red curve shows the smoothing-based
SLAM estimate, the blue curve shows the filtered
SLAM estimate, and the green curve is the dead-
reckoning estimate. The smoothing-based SLAM es-
timate is more consistent than both forward-filter
SLAM and dead reckoning. Notice that initially nei-
ther the filtered nor the smoothed SLAM estimate
outperforms the odometry, which is natural since ini-
tially there is no map estimate that can correct for
the error in odometry. At around t = 210 a wheel
slip occured that caused large odometry divergence.
Therefore the data set is truncated at t = 200 in order
to more clearly visualize the differences between the
filtering and smoothing.

has a mean error that is roughly the same as the map
resolution throughout the realization. Further, it manages
to converge to the ground truth at the execution end
time. Although the error of the forward-filter SLAM in
Fig. 6 is from an unfortunate realization, it still shows
that the smoothing-based SLAM is more robust and
consistent. Results as inadequate as the forward-filter
SLAM in Fig. 6 is not something we have observed when
using the smoothing-based SLAM.

In Fig. 7 we visualize a map generated using the ground
truth robot positions from the VICON system. In Fig. 8
we show the map obtained by the SLAM algorithm pre-
sented in this paper. For both cases each grid cell in the
map actually consists of eight sub-cells corresponding to
different directions in the environment according to the
occupancy-grid extension mentioned in Sec. 1, see [Nordh
and Berntorp, 2012]; what is visualized is the direction
from which it is most likely to observe something, for
each cell. In the maps presented the color blue represents
areas that are unexplored by the sensor. The red color
scale, starting from black, indicates the probability of a
cell being occupied, starting from probability zero. The
green color scale corresponds to the uncertainty (variance)
of the probability estimate, with black implying large
uncertainty and green corresponding to low uncertainty.
Thus a yellow cell corresponds to that it is likely to be
occupied, and there is low uncertainty associated with it.
A green cell is believed to be empty with low uncertainty.
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Fig. 6. Mean error for a single realization with same nota-
tion as in Fig. 5. The poor performance of the filtered
estimates can be explained by that the map has con-
verged with a bias compared to the real world, an issue
which is largely corrected for by using smoothing in-
stead. This data set is slightly longer than the one pre-
sented in Fig. 5 to clearly demonstrate the presented
methods’ abilities to handle severe odometry errors.
Note the large error also for the filtering SLAM es-
timate (blue), something which the smoothing-based
SLAM managed to correct for.

A red cell is believed to be occupied, but because of a lack
of good measurements of that area the uncertainty is large.
Similarly, black corresponds to areas believed to be empty,
but with large uncertainty.

In Fig. 7 the position estimates for both the SLAM and
dead reckoning are overlaid on the map, corresponding tho
the last time step in Fig. 6. Also shown is the reference
position from the VICON system. As seen the SLAM
algorithm nearly coincides perfectly with the reference
position at the end time, whereas the dead reckoning
is several meters of, mainly due to the large wheel slip
around t = 210. By visual inspection only, the map
appears quite poor, and indeed it is of quite low resolution
(each cell is 0.2 m wide) and rather noisy. But as can be
seen from the SLAM position estimate it contains enough
information to correct for the severe deficiencies in the
dead reckoning. Looking for correspondences between the
map and Fig. 4, we note that there is a concentration of
yellow pixels roughly corresponding to the L-shaped wall
in the upper right part of Fig. 4. There is also a blob
of red pixels corresponding to the box in front of the L-
shaped wall. The red arcs along the edges of the map
are a result of the wide opening angle of the sensor; we
simply have no other information other than that there
somewhere along this arc exists an object. It is not possible
to locate the object more precisely from the observations
made. Note that the grids in the map are rarely yellow
(occupied with low/zero uncertainty) or light green (empty
with low/zero uncertainty), which is a major difference to
regular occupancy grids.

Fig. 7. The map corresponding to the last time step
in Fig. 6, generated using the measurement model
described in Sec. 3 but with the known positions
from the VICON system. Since the position is known,
this corresponds to the mapping part of the problem.
Overlaid on this map is the position estimates; the
white dot is the VICON reference, the blue dot close
to the white is the SLAM estimate, and the pink
dot is the dead reckoning. As can be seen the SLAM
estimate has converged to the VICON ground-truth.

7. CONCLUSIONS AND FUTURE WORK

We presented a novel approach to the SLAM problem us-
ing an ultrasound sensor. A general method for differential-
drive robots was developed, which uses a particle-filter
inspired technique paired with a Rao-Blackwellized par-
ticle smoother. A more effective map model than the
standard occupancy-grid formulation was used. The model
incorporates the uncertainty of the measurements into the
map. The experimental results show that the smoothing
gives a substantial robustness improvement and increased
predictability of the algorithm. Further, the results show
that the algorithm is able to converge to the true position
even for scenarios with extreme odometry uncertainty.

Possible future work is to incorporate initial estimates to
improve the transient behavior of the method. Moreover,
to implement path-finding algorithms that utilize the
variance to explore the map is a natural extension of this
paper.
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