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Abstract: In time-series system modeling traditional criterions only consider current estimation error
while the past and global prediction errors are usually overlooked. By integrating both the estimation
error and the difference between neighbor prediction errors, a novel weighted identification criterion
was presented. Based on this criterion the alternations of the two-step algorithm is constructed through
separating the system parameters estimation and noise parameters estimation for the system disturbed by
colored noise, which could result in oscillation and instability. An extended one-step recursive algorithm
for the weighted identification criterion is introduced in this paper. For the input-output system disturbed
by colored noise, the prediction gradients and the gradient of the pseudo linear regression vector are
given. The gradient iterative algorithm and the direct adaptive method (DAM), the new one-step recursive
algorithm are proposed by a series of estimation process optimizations. Finally, a simulation example is
conducted to demonstrate the efficiency of this new method.

1. INTRODUCTION

With the rapid development of computer technology, the sys-
tems quantitative analysis of real-time processing has been
made possible. It has been used extensively to explore the
theories and methods for signal modeling, and many modeling
algorithms have been proposed. Combining the advantages of
time-domain estimates and frequency-domain estimates, the
classical frequency-domain optimal parameter (EFOP) method
was recently introduced (Luo and Kwon, 2002, 2003; Luo, et.
al. 2006; Luo and Huang, 2008). System updates are divided
into two parts: the current prediction error and the past estima-
tion error. The classical adaptive algorithms are time-invariant
and the adaptive systems that are updated only depend on the
prediction errors at the current time. Previous simulation results
have shown that if the disturbed system is identified by such an
adaptive algorithm, large estimation errors would be produced
(Luo and Kimura, 2003). An effective algorithm should be able
to deal with complex and comprehensive information, rather
than just relying on a single source of data. Extended recursive
algorithm (ERA), a new adaptive signal processing method
which integrates the current and past prediction errors, is given
by Luo, et al. (2006), Luo and Huang (2008), Luo and Kimura
(2003, 2008). The version of the algorithm introduced a weight-
ed matrix which updated in real-time (Luo and Huang, 2008;
Luo and Kimura, 2003; and Luo, et al., 2008). The recursive
algorithm was based on minimizing both the current and previ-
ous estimation errors. Compared to only considering recursive
processes in the current estimation error, it has an advantage
of anti-interference. The methods mentioned above consist of
a weighted matrix and result in different recursive algorithms.
However, how to choose the weighted matrix is a major is-
sue which affects the system estimation. Adaptive algorithms
are required to have certain guidelines to improve the weight
selection and a macro-controlled way to verify the selection.
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A novel criterion was proposed that considers both estimation
error and tuning for prediction errors of neighbor points (Zhao
and Luo, 2009). Based on this criterion, an adaptive algorithm
was presented to estimate the system parameters and noise
parameters for the ARMAX model disturbed by colored noise
(Zhao and Luo, 2008, 2009). A two-step adaptive algorithm was
constructed through separating the parameters in both system
parameters estimation and noise parameters estimation. In the
recursive process, the estimation of system parameters was
calculated through the previous moment, and the estimation of
noise parameters was calculated relative to the ERA algorith-
m, and vice versa. However, the alternations of the two-step
algorithm will result in oscillation and instability. There is a
vulnerability that the algorithm will fluctuate within the system
and result in convergence of the estimation of the two kinds
of parameters. An extended one-step adaptive algorithm for the
new criterion is introduced in this paper. By integrating system
parameters with noise parameters, the prediction gradients can
be given. For the model of a system disturbed by coloured
noise, the regression vector contains the system parameters
and noise parameters. Based on a series of estimation process
optimization, the gradient of the regression vector is determined
and a one-step adaptive algorithm is proposed. Finally, simula-
tion examples were conducted to demonstrate the efficiency and
accuracy of this new method.

2. GRADIENT ITERATIVE ALGORITHM

Consider the following time-series model ARMAX:
A(q)y(t) = B(q)u(t) + C(q)w(t) (1)

where y(t), u(t), and w(t) are system output, input, and inter-
ference noise, respectively. A(q), B(q), and C(q) are polyno-
mials in the backward operator q−1:

A(q) = 1 + a1q
−1 + a2q

−2 + · · ·+ ana
q−na

B(q) = b1q
−1 + b2q

−2 + · · ·+ bnb
q−nb

C(q) = 1 + c1q
−1 + c2q

−2 + · · ·+ cnc
q−nc

(2)
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Let θ be the vector of the system parameters and noise parame-
ters, and ϕ0(t) be the regression vector:

θ = (a1, a2, · · · , ana , b1, b2, · · · , bnb
, c1, c2, · · · , cnc)τ

φ0(t) = (−y(t− 1),−y(t− 2), · · · ,−y(t− na),
u(t− 1), u(t− 2), · · · , u(t− nb),
w(t− 1), w(t− 2), · · ·w(t− nc))τ

System (1) can then be rewritten as
y(t) = θτφ0(t) + w(t) (3)

If w(t) is a white noise, the prediction of system (1) is (Ljung,
2002)

ŷ(t|θ) =
B(q)

C(q)
u(t) +

(
1− A(q)

C(q)

)
y(t)

or
C(q)ŷ(t|θ) = B(q)u(t) + (C(q)−A(q)) y(t) (4)

Then, output prediction of system (1) is
ŷ(t|θ) = φ(t, θ)τθ (5)

where
φ(t, θ) = (−y(t− 1),−y(t− 2), · · · ,−y(t− na),

u(t− 1), u(t− 2), · · · , u(t− nb),
w̄(t− 1), w̄(t− 2), · · · , w̄(t− nc))τ

and w̄(t) is the estimation of the noise w(t). Therefore, system
(1) can be expressed as:

y(t) = θτφ(t, θ) + w(t) (6)

The prediction error ε(t, θ) is defined as
ε(t, θ) = y(t)− ŷ(t|θ) (7)

Consider the following performance index (Luo and Huang,
2008):

J(N) = λ

N∑
t=1

ε(t, θ)
2

+µ

(
ε(N, θ)

2
+

N−1∑
t=1

(ε(t+ 1, θ)− ε(t, θ))2
) (8)

Criterion (8) involves not only the current estimation error but
also the change rate of estimation error at each step. λ is the
weight for the current estimation error, while µ is the weight of
the difference of estimation errors. Their choices depend on the
specific requirements. Performance index (8) can be rewritten
as Zhao and Luo (2009),

J(N, θ) = (ε(1, θ), ε(2, θ), · · · ε(N, θ))
·Q(N) (ε(1, θ), ε(2, θ), · · · ε(N, θ))τ (9)

where the weighted matrix Q(N) is:

Q(N) =


q11 q12
q21 q22

· · · q1N
· · · q2N

...
...

qN1 qN2

. . .
...

· · · qNN

 ∈ N ×N
and 

qii = λ+ 2µ,
qi+1,i = −µ, i = 1, 2, · · · , N
qi,i+1 = −µ,
qjk = 0, others

(10)

From relationships (5) and (6), it is easy to see that the predic-
tion of system (1) is a pseudo linear regression rather than a

linear regression. It is hard to obtain the optimal system param-
eters estimate directly from a weighted quadratic performance
index. This is also the reason the two-step modeling method
was adopted in Zhao and Luo (2009),. Our goal is to derive a
reasonable direct adaptive algorithm. From (4)-(7), the gradient
of the prediction with respect to the parameter θ is given as
follows Ljung (2002):

ψ(t, θ) =
d

dθ
ŷ(t|θ) = − d

dθ
ε(t|θ) (11)

and

C(q)ψ(t, θ) = C(q)
d

dθ
ŷ(t|θ)

= φ(t, θ)
(12)

where ψ(t, θ) is the gradient of system (1) or (4). Let
Zt = {(u(k), y(k))|k ≤ t}

be a data set on input signals and output signals at time t. At
time t+ 1, the data set is defined as

Zt+1 = {Zt, (u(t+ 1), y(t+ 1))}
= {(u(k), y(k))|k ≤ t+ 1}

Using numerical minimizing criterion (8) or (9), we can update
the estimate of the optimal point iteratively. Then, parameter
identification corresponding to (1) and (8) is given by the sub-
stitution method in Ljung (2002) and Dennis Jr and Schnabel
(1983):

θ̂
(i+1)
t = θ̂it + δf (i)(t, θ̂

(i)
t , Zt), i = 1, 2, 3, ... (13)

where the subscript t denotes that the estimate is based on
t data. The superscript (i) denotes the i-th iteration of the
minimization procedure. f (i) is a search direction based on
information about J(N, θ)) acquired at previous iterations, and
δ(0 < δ ≤ 1) is a positive constant determined so that an
appropriate decrease in the value of J(N, θ)) is obtained. The
function gradient and Hessian matrix are chosen in the Newton
direction:

f (i)(t, θ̂
(i)
t , Zt) = −

(
J ′′(t, θ̂

(i)
t )
)−1

J ′(t, θ̂
(i)
t ) (14)

Where J ′ stands for the gradient w.r.t θ.The gradient iterative
algorithm for system (1) based on criterion (8) consists of
relationships (13) and (14).

3. DIRECT ADAPTIVE METHOD

The model gradient and the gradient iterative algorithm for
system (1) based on performance index (8) have been given
in the previous section. The search direction f (i)(t, θ(i)) is
calculated by the numerical minimization, which is composed
of the following gradients:

J ′(t, θ̂
(i)
t ),

(
J ′′(t, θ̂

(i)
t )
)−1

, i = 1, 2, 3, · · ·

If we want to establish the direct adaptive algorithm, it is
necessary to compute the gradients for any estimation value
of θ. From (14), we can see that the calculation of the search
direction, especially the Hessian matrix calculation, is very
complicated and difficult to use in practical modeling (Walther
2008). Moreover, it is difficult to determine the step number
of the iterative algorithm. The accuracy of system modelling
cannot be guaranteed, either. In addition, the method of imple-
mentation is off-line, so the model cannot be updated in real-
time on a data set. The following examination establishes a
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direct adaptive algorithm for system (1) and performance index
(8). For iteration t+ 1, we introduce the following:

θ̂t+1
t+1 = θ(t+ 1), θ̂tt+1 = θ(t)

Then, gradient algorithms (13) and (14) can be approximately
expressed as follows:

θ(t+ 1) = θ(t)− δ(J ′′(t+ 1, θ(t)))
−1
J ′(t+ 1, θ(t)) (15)

From criterion (8), we have
J(t, θ)
= J(t− 1, θ) + (λ+ 2µ)ε(t, θ)2 − 2µε(t, θ)ε(t− 1, θ)

Then, from (11) and the above relationship, the gradient of
performance index J(t, θ) with respect to the parameter θ is

J ′(t, θ) =
dJ(t, θ)

dθ
= J ′(t− 1, θ)− 2(λ+ 2µ)ε(t, θ)ψ(t, θ)

+ 2µ (ε(t, θ)ψ(t− 1, θ)
+ ε(t− 1, θ)ψ(t, θ))

(16)

Since the parameter estimates of system (1) are obtained by
minimizing performance index J(t, θ), when θ = θ(t) it should
hold that

J ′(t, θ(t)) = 0

From (16), we have
J ′(t+ 1, θ(t))

=
dJ(t+ 1, θ)

dθ

∣∣∣∣
θ=θ(t)

= 2µ (ε(t+ 1, θ(t))ψ(t, θ(t))
− 2(λ+ 2µ)ε(t+ 1, θ(t))ψ(t+ 1, θ(t))
+ε(t, θ(t))ψ(t+ 1, θ(t)))

(17)

Combining (15) and (17), it follows that
θ(t+ 1) = θ(t)

− δ(J ′′(t+ 1, θ(t)))
−1

[2µ (ε(t+ 1, θ(t))ψ(t, θ(t)))
− 2(λ+ 2µ)ε(t+ 1, θ(t))ψ(t+ 1, θ(t))
+ ε(t, θ(t))ψ(t+ 1, θ(t))]

(18)

To estimate the system parameters, it is necessary to calculate
Hessian matrix J ′′(t + 1, θ(t)). First, we want to discuss the
gradient of ψ(t, θ) with respect to the parameter θ. Lemma 1.
For system (1), the gradient of the vector ψ(t, θ) with respect
to the parameter θ is

d

dθ
ψ(t, θ) = − 1

C(q)
2 (T + T τ )

Here, T is the matrix

T =

0, · · · , 0︸ ︷︷ ︸
na+nb

, φ(t− 1, θ), φ(t− 2, θ), · · · , φ(t− nc, θ)


Proof: From (12):

ψ(t, θ)T = −y(t− 1)

C(q)
,−y(t− 2)

C(q)
, · · · ,

−y(t− na)

C(q)
,
u(t− 1)

C(q)
,
u(t− 2)

C(q)
, · · · ,

u(t− nb)
C(q)

,
ε(t− 1, θ)

C(q)
,
ε(t− 2, θ)

C(q)
, · · · ,

ε(t− nc, θ)
C(q)

(19)

When i = 1, 2, 3, · · · , na, it follows that
∂

∂ai

(
y(t−m)

C(q)

)
= 0, m = 1, 2, · · · , na

∂

∂ai

(
u(t− r)
C(q)

)
= 0, r = 1, 2, · · · , nb

∂

∂ai

(
ε(t− s, θ)
C(q)

)
=

1

C(q)

∂ε(t− s, θ)
∂ai

= − 1

C(q)

∂

∂ai
ŷ(t− s|θ),

s = 1, 2, · · · , nc

When j = 1, 2, 3, · · · , nb , it follows that
∂

∂bj

(
y(t−m)

C(q)

)
= 0, m = 1, 2, · · · , na

∂

∂bj

(
u(t− r)
C(q)

)
= 0, r = 1, 2, · · · , nb

∂

∂bj

(
ε(t− s, θ)
C(q)

)
=

1

C(q)

∂ε(t− s, θ)
∂bj

= − 1

C(q)

∂

∂bj
ŷ(t− s|θ),

s = 1, 2, · · · , nc
If k = 1, 2, 3, · · · , nc, it follows that

∂

∂ck

(
y(t−m)

C(q)

)
= −q

−ky(t−m)

C(q)
2 ,

m = 1, 2, · · · , na
∂

∂ck

(
u(t− r)
C(q)

)
= −q

−ku(t− r)
C(q)

2 ,

r = 1, 2, · · · , nb
∂

∂ck

(
ε(t− s, θ)
C(q)

)
= − 1

C(q)

∂

∂ck
ŷ(t− s|θ)− q−kε(t− s, θ)

C(q)
2 ,

s = 1, 2, · · · , nc

Combining the above derivation, for m = 1, 2, 3, · · · , na,
r = 1, 2, 3, · · · , nb, and s = 1, 2, 3, · · · , nc we have

d

dθ

T(y(t−m)

C(q)

)

=

0, · · · , 0︸ ︷︷ ︸
na+nb

,−q
−1y(t−m)

C(q)
2 ,−q

−2y(t−m)

C(q)
2 ,

· · · −q
−ncy(t−m)

C(q)
2

]τ
(20)

d

dθ

T(u(t− r)
C(q)

)

=

0, · · · , 0︸ ︷︷ ︸
na+nb

,−q
−1u(t− r)
C(q)

2 ,−q
−2u(t− r)
C(q)

2 ,

· · · −q
−ncu(t− r)
C(q)

2

]τ
(21)
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d

dθ

(
ε(t− s, θ)
C(q)

)
=

[
− 1

C(q)

∂ŷ(t− s|θ)
∂a1

,− 1

C(q)

∂ŷ(t− s|θ)
∂a2

, · · · ,

− 1

C(q)

∂ŷ(t− s|θ)
∂ana

,− 1

C(q)

∂ŷ(t− s|θ)
∂b1

,

− 1

C(q)

∂ŷ(t− s|θ)
∂b2

, · · · ,− 1

C(q)

∂ŷ(t− s|θ)
∂bnb

,

· · · ,− 1

C(q)

∂ŷ(t− s|θ)
∂c1

− q−1ε(t− s, θ)
C(q)

2 ,

− 1

C(q)

∂ŷ(t− s|θ)
∂c2

− q−2ε(t− s, θ)
C(q)

2 , · · · ,

− 1

C(q)

∂ŷ(t− s|θ)
∂cnc

− q−ncε(t− s, θ)
C(q)

2

]τ
= − 1

C(q)
2φ(t− s, θ)− 1

C(q)
2

·

0, · · · , 0︸ ︷︷ ︸
na+nb

, q−1ε(t− s, θ), · · · , q−ncε(t− s, θ)

τ

(22)

and [
q−sy(t− 1)

C(q)
2 ,

q−sy(t− 2)

C(q)
2 , · · · ,

q−sy(t− na)

C(q)
2 ,−q

−su(t− 1)

C(q)
2 ,

−q
−su(t− 2)

C(q)
2 · · · ,−q

−su(t− nb)
C(q)

2 ,

−q
−sε(t− 1, θ)

C(q)
2 ,−q

−sε(t− 2, θ)

C(q)
2 , · · · ,

−q
−sε(t− nc, θ)

C(q)
2

]τ
= − q−s

C(q)
2φ(t, θ)

(23)

From (19)-(23), we have

C(q)2
d

dθ
ψ(t, θ)

= −

0, · · · , 0︸ ︷︷ ︸
na+nb

, φ(t− 1, θ), φ(t− 2, θ), · · · , φ(t− nc, θ)



−



0
...
0

na + nb

φ(t− 1, θ)
τ

φ(t− 2, θ)
τ

...
φ(t− nc, θ)τ


(24)

The result of Lemma 1is followed. Denote Fn as σ -algebra
generated by the data {wi, uj‖i, j ≤ n} . From (3)-(6), it is
easy to see that the pseudo linear regression vector φ(t, θ) and
prediction ŷ(t, θ) are Fn−1 measurable, so the gradient ψ(t, θ)

is also Fn−1 measurable. According to Lemma 1, the gradient
of ψ′(t, θ) is Fn−2 measurable. From (16):

J ′′(t, θ) = J ′′(t− 1, θ)−

2(λ+ 2µ)

(
dε(t, θ)

dθ
ψ(t, θ)

τ
+ ε(t, θ)

dψ(t, θ)

dθ

)
+ 2µ

dε(t, θ)

dθ
ψ(t− 1, θ)τ + 2µε(t, θ)

dψ(t− 1, θ)

dθ

+ 2µ
dε(t− 1, θ)

dθ
ψ(t, θ)τ + 2µε(t− 1, θ)

dψ(t, θ)

dθ

(25)

Using (5) and (7) again:

ψ(t, θ) =
d

dθ
ŷ(t|θ) = − d

dθ
ε(t|θ)

Then, by (25) and the above relationship, for k = 1, 2, · · · , r:
J ′′(k, θ) = J ′′(k − 1, θ) + 2(λ+ 2µ)ψ(k, θ)ψ(k, θ)τ

− 2µ (ψ(k, θ)ψ(k − 1, θ)
τ

+ ψ(k − 1, θ)ψ(k, θ)
τ
)

+ (2µε(k − 1, θ)− 2(λ+ 2µ)ε(k, θ))
dψ(k, θ)

dθ

+ 2µε(k, θ)
dψ(k − 1, θ)

dθ

Summing up with respect to k on both sides of the above
relation, we get

J ′′(t, θ) = 2(λ+ 2µ)

τ∑
k=1

ψ(k, θ)ψ(k, θ)
τ

− 2µ

t∑
k=1

(ψ(k, θ)ψ(k − 1, θ)
τ

+ ψ(k − 1, θ)ψ(k, θ)
τ
)

−
t∑

k=1

(2(λ+ 2µ)ε(k, θ)− 2µε(k − 1, θ))
dψ(k, θ)

dθ

+ 2µ

t∑
k=1

ε(k, θ)
dψ(k − 1, θ)

dθ

where we denote that J ′′(0, θ) = 0. Then

1

t
J ′′(t, θ) =

2(λ+ 2µ)

t

t∑
k=1

ψ(k, θ)ψ(k, θ)
τ

− 2µ

t

t∑
k=1

(ψ(k, θ)ψ(k − 1, θ)
τ

+ ψ(k − 1, θ)ψ(k, θ)
τ
)

− 2

t

t∑
k=1

((λ+ 2µ)ε(k, θ)− µε(k − 1, θ))
dψ(k, θ)

dθ

+
2µ

t

t∑
k=1

ε(k, θ)
dψ(k − 1, θ)

dθ

≈ 2(λ+ 2µ)

t

t∑
k=1

ψ(k, θ)ψ(k, θ)
τ

− 2µ

t

t∑
k=1

(ψ(k, θ)ψ(k − 1, θ)
τ

+ ψ(k − 1, θ)ψ(k, θ)
τ
)

− E
(

2 ((λ+ 2µ)ε(t, θ)− µε(t− 1, θ))
dψ(t, θ)

dθ

)
+ 2µE

(
ε(t, θ)

dψ(t− 1, θ)

dθ

)
(26)

From (5)-(7) it can be seen that the prediction error vector
ε(t, θ) is consistent with noise w(t). According to Lemma 1,
the gradient ψ′(t, θ) is Fn−2-measurable and ψ′(t − 1, θ) is
Fn−3-measurable. If the error sequences are white noises, then
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E

(
ε(t)

∂ψ(t, θ)

∂θ

)
= 0,

E

(
ε(t− 1)

∂ψ(t, θ)

∂θ

)
= 0,

E

(
ε(t)

∂ψ(t− 1, θ)

∂θ

)
= 0.

If t is large enough, from (26) and the above relationships, we
have the following:

1

t
J ′′(t, θ) ≈ 2(λ+ 2µ)

t

t∑
k=1

ψ(k, θ)ψ(k, θ)
τ

− 2µ

t

t∑
k=1

(ψ(k, θ)ψ(k − 1, θ)
τ

+ ψ(k − 1, θ)ψ(k, θ)
τ
)

(27)

Combining (18) and (27), it follows that
θ(t+ 1) = θ(t)−

δ(2(λ+ 2µ)

t+1∑
k=1

ψ(k, θ(t))ψ(k, θ(t))
τ

−2µ

t+1∑
k=1

(ψ(k, θ(t))ψ(k − 1, θ(t))τ

+ψ(k − 1, θ(t))ψ(k, θ(t))τ ))−1

[2µ (ε(t+ 1, θ(t))ψ(t, θ(t))
+ ε(t, θ(t))ψ(t+ 1, θ(t)))
−2 (λ+ 2µ)ε(t+ 1, θ(t))ψ(t+ 1, θ(t))]

(28)

In algorithm (28), the parameter θ in ψ(t, θ) and ŷ(t|θ) is
replaced by the recursively computed quantity θ(t), which is
estimated on the data Zt. Thus, we can denote that
ψ(t, θ(t)) = φ(t), ŷ(t, θ(t)) = ŷ(t), ε(t, θ(t− 1)) = ε(t)

Then, algorithm (28) can be expressed as

θ(t+ 1) = θ(t)− δ

(
2(λ+ 2µ)

t+1∑
k=1

φ(k)φ(k)
τ

− 2µ
t+1∑
k=1

(φ(k)φ(k − 1)
τ

+ φ(k − 1)φ(k)
τ
)

)−1
[2µ (ε(t+ 1)φ(t) + ε(t, θ(t))φ(t+ 1))
− 2(λ+ 2µ)ε(t+ 1)φ(t+ 1)]

= θ(t)− δP−1(t+ 1)E(t+ 1)

(29)

where 0 < δ 6 1 , and

P (t) =

t∑
k=1

((λ+ 2µ)φ(k)φ(k)τ

−µ(φ(k)φ(k − 1)τ + φ(k − 1)φ(k)τ ))
E(t) = µ (ε(t)φ(t− 1) + ε(t− 1)φ(t))

−(λ+ 2µ)ε(t)φ(t)

Lemma 2. If A ∈ Rn×n, C,D ∈ Rn×1, q ∈ R, and matrix A
is nonsingular, then (Luo and Kimura, 2003)

(A+ CDτ +DCτ + qDDτ )
−1

= A−1 + (ab)−1A−1
(
DτA−1DCCτ − σDDτ

)
A−1

−b−1A−1 (CDτ +DCτ )A−1

where
a = 1 +DτA−1C

b = a+ a−1σDτA−1D

σ = q − CτA−1C
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Fig. 1. Estimate for Parameters a1
Since

P (t) = P (t− 1) + (λ+ 2µ)φ(t)φ(t)τ

−µ (φ(t)φ(t− 1)
τ

+ φ(t− 1)φ(t)
τ
)

we can denote that P (t − 1) = A, D = φ(t), C = µφ(t −
1), and q = λ + 2µ . By Lemma 1 and 2, the matrix P (t)
and parameter estimation can be calculated. Then the following
algorithm can be obtained.

DAM Algorithm: The direct adaptive method (DAM) algorith-
m of system (1) with respect criterion (8) yields

P−1(N) = P−1(N − 1)

+
µ

b(N)
P−1(N − 1) (φ(N)φτ (N − 1)

+ φ(N − 1)φτ (N))P−1(N − 1)

+
P−1(N − 1)

a(N)b(N)

(
µ2φτ (N)

P−1(N − 1)φ(N)φ(N − 1)φτ (N − 1)
− σ(N)φ(N)φτ (N))P−1(N − 1)

θ(N) = θ(N − 1)−
δ [µ (φ(N − 1)(y(N)− φ(N)θ(N − 1))
+φ(N)(y(N − 1)− φ(N − 1)θ(N − 2)))
− (λ+ 2µ)φ(N)(y(N)− φ(N)θ(N − 1))]

(30)

where
a(N) = 1− µφτ (N)P−1(N − 1)φ(N − 1)

b(N) = a(N) + a−1(N)σ(N)φτ (N)P−1(N − 1)φ(N)

σ(N) = λ+ 2µ− µ2φτ (N − 1)P−1(N − 1)φ(N − 1)

4. SIMULATIONS

Consider the following system:
(1 + a1q

−1)y(t) = b1q
−1u(t) + (1 + c1q

−1)w(t) (31)

The real parameters are: a1 = 0.8, b1 = 1.2, c1 = 0.1.
The input signal u(t) was generated by a random number with
variance σ = 1. The disturbed noise w(t) was also a random
number with variance σ = 0.6573. Both random numbers are
not white noises. The sample number is 10000. The parameters
were estimated according to both the ELS algorithm and the
DAM algorithm (30), where the values of λ , µ in (30) are
chosen as λ = 0.2, µ = 0.8. The simulation results are shown
in Figs. 1- 3.

The DAM can be intuitively compared with the ELS method in
Fig 1 - Fig 3, which clearly shows that the DAM algorithm
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identifies real system (31) more efficiently than do the ELS
method. These are also validated by the following calculated
values:

θ̄ELS =

(
0.4132 ±0.0030
1.5052 ±0.0029
0.5471 ±0.0045

)

θ̄DAM =

(
0.8544 ±0.0031
1.1453 ±0.0174
0.1278 ±0.0014

)

θ̄ELS denotes the average estimate from the first LS estimate
value to the 10000th LS estimate, while θ̄DAM denotes the
average estimate from the first DAM estimate value to the
10000th DAM estimate, respectively. The calculational error is
defined by the standard deviation. The accumulated estimate
error in the DAM algorithm is 0.082, while the accumulated
estimate error of the ELS method is 0.6653.

5. CONCLUSIONS

Estimation errors can significantly increase when systems are
disturbed by complex noise. The two-step adaptive algorithm
may be a divergence in the risk identification process because
of the identification of the estimation error signal instead of
the noise, and also because of the substitution of the noise

parameters into the system parameter vector recursive algorith-
m. Identification for input-output systems disturbed by colored
noise is the main focus of this paper. Based on integrating both
the estimation error and the difference between neighbor pre-
diction errors, a weighted identification criterion was recently
introduced. An extended one-step adaptive algorithm based on
this novel criterion was examined. Several prediction gradients
were obtained for the pseudo linear regression vector. The gra-
dient iterative algorithm and the direct adaptive algorithm, a
new one-step algorithm for the time-series model based on the
weighted criterion, were established. This new algorithm has
the advantages of reducing operation costs, avoiding the risk
of divergence of the parameters estimation, and strengthening
the anti-interference properties of delivery systems with colored
noise. In the end, several simulations demonstrated the efficien-
cy and accuracy of this new method.
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