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Abstract: In Simulink models with single-processor multitask implementation, time delays
and transaction buffers emerge when Rate Transition (RT) blocks are added. This paper
examines Simulink modeling and buffer optimization. The concept of laxity release is defined
for the priority assignment procedure. The algorithms of laxity prediction and laxity release
are proposed for the task scheduling problem. The laxity bounds and laxity release bounds are
obtained, and the response time based on laxity release is calculated. Some experimental results
are given to show that with our approach, total system buffer costs are reduced and system
performance is improved.
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1. INTRODUCTION

Embedded systems are developing very quickly in modern
industry. System resource cost and performance issues are
very import to the development of complex embedded
systems. Thus, reducing system cost and guaranteeing
schedulability under strict circumstances are important
issues to address. Previous work has analyzed preemptive
scheduling in modelized embedded systems (Scaife and
Caspi, 2004) and static-priority scheduling algorithms for
multitasking problems (Tripakis et al., 2005). A laxity
prediction and buffer optimization algorithm used to com-
plete the priority assignment was proposed in (Natale and
Pappalardo, 2008), but this algorithm did not consider the
different frequencies of functional blocks. Although Mixed
Integer Linear Programming (MILP) in (Di Natale et al.,
2010) can determine the feasible region for task mapping,
it still cannot solve the laxity problem for priority as-
signment. In this paper, we analyze the laxity prediction
problem in the priority assignment procedure of multitask
implementation. The laxity release method is discussed
in terms of improving system schedulability, as well as
reducing the buffer cost.

1.1 Modeling and Simulation in Simulink

Simulink can be used for the modeling and simulation of
control systems, and it is based on the synchronous reac-
tive model of computation. In Simulink, every functional
block has a fixed sample time, and the base-rate time is the
least common multiple of all sample times in the system.

There are two different code generation options in the
RTW/EC code generator: single-task and fixed-priority
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multitasking (Benveniste et al., 2003; Scaife and Caspi,
2004). For single-task implementation, the execution order
is computed by the code generation tool based on the
topology of the tasks and the partial order derived from
the Simulink semantic rules. All the functional block com-
putations form a task chain that represents the sequence of
task executions. Single-task implementation requires that
the longest task chain be finished in the base-rate time;
otherwise, the assumption of synchronous reactive model
semantics is not met.

For multitask implementation (Caspi et al., 2008), there
can be more than one task chain, and every functional
block is mapped into a task chain. The execution order
in each task is decided by the topology of the tasks
and the partial order derived from the Simulink semantic
rules (Agrawal et al., 2004). The same is true in single-task
implementation, but the difference here is that the task
may be interrupted and preempted by other tasks with
higher priorities, and will resume when the higher-priority
tasks finish computing. Every task may be preempted by
other tasks one or more times in one cycle time. Task
preemption results in a new problem. The situation can
be summarized as follows (Natale and Pappalardo, 2008):

• Type HL: high-rate (priority) blocks driving low-rate
(priority) blocks;

• Type LH: low-rate (priority) blocks driving high-rate
(priority) blocks.

Simulink uses Rate Transition (RT) buffers to solve the da-
ta consistency and time determination problems (Baleani
et al., 2005; Stuermer et al., 2007). The RT block acts like
a Zero-Order Hold block for the first situation, or a Unit
Delay block (Astrom and Wittenmark, 2011) plus a Hold-
back for the second situation. We will use type HL RT
blocks and type LH RT blocks to distinguish among the
different types of RT buffers.
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This paper is structured as follows: Section I provides
the necessary background related to the schedulability
and buffer optimization problems in Simulink models.
Section II will outline the implementation, including the
formulation, of Simulink models. The lower bound, upper
bound, and response time calculation of the laxity are
presented in this section. Next, in Section III, the laxity
release algorithms are introduced and demonstrated. In
Section IV, we benchmark our algorithm versus existing
methods, and Section V concludes the paper.

2. SIMULINK MODELING

A Simulink model can be represented by a graph G =
{V,E}, with points representing the blocks and edges
representing the links between the blocks.

• V = {F1, ..., Fn} is the set of functional blocks. Each
block Fi represents a basic computing unit of the
system; it has one or more inputs and one output.
The basic sampling period of Fi is ti, and the worst-
case computing time is γi, which means that signals
will come into Fi at the rate of 1/ti for processing. It
will take block Fi the time of γi to finish the task and
generate the result signal.
• E = {l1, ..., lm} is the set of links. A link li =

(Fh, Fk) connects the output port of Fh to one of
the inputs of Fk. Fh is the source of li and Fk is
the destination, denoted by Fh = src(li) and Fk =
dst(li), respectively.

• There may be feed through semantics between Fh
and Fk, and Fh must be finished before Fk, which
is denoted by Fh ≺ Fk.

• τ = {τ1, ..., τl} is the set of tasks. Each task τi has
an activation period Ti, and all the tasks start at
the same time t = 0. The execution order of task
τi is decided by its priority πi; the tasks with higher
priority will have the privilege to execute first.

• map = (Fi, τj , k) is a task mapping relation between
functional block Fi and task τj . Each task has several
functional blocks assigned to it with the same period
time and priority. Functional blocks with different
periods or priorities from the task will not be able to
match into that task. The mapping map = (Fi, τj , k)
denotes that Fi is executed in task τj with an order
index of k.

• rj is the worst-case response time of task τj , denoting
the time of task τj that finishes all the functional
blocks mapped into it. With cj denoting the worst-
case computing time of τj , rj can be computed by the
following formula (Joseph and Pandya, 1986):rj =
cj +

∑
i d

rj
ti
eci, where the index i spans over higher-

priority tasks τi (πi ≥ πj).
• S(Fi) denotes the synchronous set of functional block
Fi. It represents the transitive closure of the immedi-
ate predecessor and successor relations of blocks with
the same rate. The set S(Fi) can be constructed as
follows:

First, S(Fi) = Fi. Then, at each step for each Fj in
S(Fi), if the immediate predecessors and successors
have the same rate as Fj , add it to S(Fi). The
procedure ends when no more functional blocks can
be added to the set. All the functional blocks in
one synchronous set share the same rate, and are

linked together by edges between the blocks in the
set. Thus, the entire graph can be denoted as S =
(S1, S2, ..., Sm). Si has a period time of Ti and Ci =∑
Fl∈Si

cl is the sum of the worst-case computation
times of all the functional blocks in Si.

For each set Si, succ(Si) defines the set of all its successor
sets. If Sj ∈ succ(Si), there ∃Fh ∈ Si, Fl ∈ Sj , and
li = (Fh, Fl) ∈ E. Furthermore, path(Si) is defined as
path(Si) = Si0 , Si1 , ..., Sik a set of synchronous sets with
the following properties: Si0 has no incoming link, Sik =
Si, and there exists (at least) a link sl connecting each
pair Sij , Sij+1

, where j = 0..k − 1. For each set Si, there
can be multiple path(Si) sets.

Laxity is a key concept in this paper. The idea of proposing
laxity is to give an evaluation of the schedulability of tasks.
The schedulability of one task has a close relationship
with the time remaining in the period time after the task
finishes computing.

As (Natale and Pappalardo, 2008) pointed out, the sum
of the computation times of all the members in each set
path(Si) is a lower bound for the worst-case computation
time of Si. The upper bound laxity of Si is defined as
follows:

luppero,i = minSk
(Tk −maxpath(Sk)

∑
Sl

Cl) (1)

where Sl ∈ path(Sk) and Sk ∈ {succ(Si)∪Si}. The o in the
luppero,i means that the laxity in Equation 1 is the original
formula from previous research. In this paper, other laxity
calculation methods will be proposed and compared with
the original.

From Equation 1, we can see that when calculating the
laxity of Si, the time remaining after execution for both
Si and all the tasks in succ(Si) will be considered.

The lower bound is not sufficient for calculating laxity.
Suppose there are only two function blocks with different
rates. Function block F1 has a period time of 1, and its
worst-case computing time is c1. Function block F2 is F1’s
successor, which has a period time of 2 and a worst-case
computing time c2. The premises here are that c1 ≤ 1 and
c2 ≤ 2. Since F2 is F1’s successor and has a greater period
time than F1, its processing may be preempted. There are
three main execution results for different c1 and c2.

• Case 1 (c2 ≤ c1): Start from t = 0; F1 starts to
execute, and at t = c1, F1 finishes computing. Then,
F2 starts its execution. At t = c1 + c2 ≤ 1, F2 finishes
its execution, but a new process request of F1 has not
yet arrived. The processer is idle until t = 1, when
a new process request of F1 arrives. At t = c1 + 1,
F1 finishes its execution, and both F1 and F2 have
therefore finished all their executions.
• Case 2 (c1 + c2 > 1 & 2c1 + c2 ≤ 2): Start from
t = 0; F1 starts to execute, and at t = c1, F1 finishes
computing. Then, F2 starts its execution. At t = 1, F2

does not finish its execution as a result of c1 + c2 > 1,
but a new task for F1 arrives, since it has a period
time of 1. The execution of F2 will be preempted. At
t = c1 + 1, F1 finishes its execution, and F2 continues
to execute until t = 2c1 + c2 <= 1.
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• Case 3 (1 < c1+c2 ≤ 2&2c1+c2 > 2): As c1+c2 > 1,
F2 will not finish its execution at t = 1. Thus, it
will be preempted by a new execution by F1. After
the second execution of F1, block 2 will continue to
execute and will finish at t = 2c1 + c2. As a result of
2c1 + c2 > 2, block 2 did not meet its deadline and
the system cannot be considered feasible.

If we use Equation 1 to calculate the laxity of the two
blocks, then l1 = c1 and l2 = c1 + c2. Let’s consider the
three cases above. F1 has the highest priority and will
preempt any other blocks when a new F1 execution arrives.
Therefore, any execution of F1 starting at ts will finish at
ts + c1. In case 1, the execution of block 2 may start at
t = 0 but is preempted by F1, so it will start at t = c1 and
finish at t = t1 + c2. The result is the same as that given
by Equation 1. But in case 2 and case 3, we have different
results. Both case 2 and case 3 give a result of l2 = 2c1+t2.
In case 2, 2c1 + c2 ≤ 2, which means block 2 meets its
deadline. In case 3, the execution of block 2 finishes at
t = 2c1 + c2 > 2 and exceeds its deadline, but Equation 1
gives a laxity prediction of luppero,2 = t2 − (c1 + c2) > 0.
Thus, it cannot represent the actual situation.

What we call a frequency-doubling (FD) situation is
defined as follows: for any two blocks in the system Si
and Sj with block period times of Ti and Tj , respectively,
if Ti < Tj , then Ti must be an integral division of Tj .
The above case shows how Equation 1 fails to calculate
the correct laxity in the FD situation. The situation is
more complicated when the period of one block is not
the integral multiple of other blocks, which we call a non-
frequency-doubling (NFD) situation.

We define the lower bound of laxity as

llower,i = minSk
(1−

∑
Sl∈Pre(Sk)

dTk

Tl
eCl

Tk
) (2)

pre(Sk) = {Sj |πj ≥ πk : πj is priority of Sj} contains all
the block sets with higher priority than Sk, Pre(Sk) =
{pre(Sk) ∪ Sk}, Sk ∈ {succ(Si) ∪ Si}.

dTk

Tl
e implies that

• Tk > Tl: Tl is a integral division of Tk, and as a result
block Sl will be computed Tk

Tl
times in one cycle time

of Sk;
• Tk = Tl: block Sl will be computed Tk

Tl
= 1 time in

one cycle of Sk;
• Tk < Tl: although Sk has a shorter period sample

time than Sl, block Sl has to finish computing for
one time in the cycle time of Sk, where dTk

Tl
e = 1 in

Equation 2

Here, we did not use path(Sk) because the laxity of Si
does not only depend on the block sets in path(Si), but
also other block sets in other paths. All the block sets with
a higher priority than Sk will contribute to the laxity of Si,
and should be considered when computing laxity. When we
have to calculate the laxity of Si, we suppose that there
are n synchronous sets in total, among which ni numbers
of the sets’ priorities have been decided, from priority n
as the highest to priority n − ni + 1 as the lowest. Then,
for Si, Rk should mean that we give priority n− ni to Si
and calculate its response time in all the ni + 1 sets. If Sj

is the successor of Si, then we will give priority n− ni to
Si and priority n − ni − 1 to Sj to compute the response
time of Sj .

As for different Sk, Tk will be different, which may bring
the system deviation toward laxity, so the laxity is nor-
malized by being divided by Tk.

In the same way, the upper bound of laxity is defined as

lupper,i = minSk
(1−

∑
Sl∈Pre(Sk)

Cl

Tk
) (3)

Suppose F1 has a period time of 2 and execution time c1,
and its successor F2 has a period time of 3 and execution
time c2. The base rate is 1 and the lowest common multiple
of their periods is 6. If c1 = 1.2 and c2 = 0.7, from t = 0
to t = 6, F1 has executed 3 times, each taking c1 time
to compute, while F2 has executed 2 times. In the first
execution of F2, it is preempted by F1 one time and finishes
at t = 1.9 after it starts. In the second execution, F2

is preempted one time and finishes at t = 3.9, and the
laxity should be l2 = min{1− 1.9/3, 1− 0.9/3} = 0.3667.
But the laxity given by the lower bound is llower,2 = 1 −
(0.7− 1.2 ∗ 2)/3 = −0.0333 < 0, meaning that F2 did not
finish all the computing before its deadline, while in fact
it did. The upper bound of laxity failed to represent the
accurate laxity because F2 finished its computing before
the second occurrence of F1, while the upper bound of
laxity still counted in the computing time of the second
occurrence of F1.

Accurate laxity lies between the lower bound and upper
bound, and can be represented by the response time of the
tasks:

lresp,i = minSk
(1− Rk

Tk
) (4)

where Sk ∈ {succ(Si) ∪ Si} and Rk denotes the response
time of Sk in the current priority assignment system. The
laxity prediction algorithm is shown as Algorithm 1.

Algorithm 1 Laxity Prediction Algorithm

Input:
Set Si for laxity calculation

Output:
li as the laxity of Si and the corresponding tail set Sk

1: li ←∞
2: for all Sl in {succ(Si) ∪ Si} do
3: Rl ← CalcResponseT ime(Sl)
4: laxity ← 1−Rl/Tl
5: if laxity < li then
6: li ← laxity, Sk ← Sl
7: end if
8: end for

3. OPTIMIZATION PROCEDURE

The optimal solution mainly depends on the mapping of
the synchronous sets into tasks and the priority assignmen-
t. (Natale and Pappalardo, 2008) proposed a two-stage
optimization search procedure to reach the minimum type
LH buffers.

The task mapping procedure will use the rate monotonic
(RM) scheduling algorithm to map sets into blocks and
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decide the priority for each task. Every time the RM
procedure begins, the algorithm will receive all the sets
with no incoming links. The RM scheduling algorithm
requires that the set with the highest sampling rate should
have the highest priority. If there is only one set with the
highest sampling rate, it will get the highest rate; if there
is more than one set with the same high sampling rate,
laxity prediction method will be used to decide which set
should have the highest priority. As Equation 4 indicates,
laxity refers to the time remaining after completing the
task chain, so the smaller the laxity time is, the harder it
is for that task to be scheduled. Therefore, the task set
with the least laxity must have the highest priority. By
applying RM algorithm and laxity prediction algorithm,
the priorities of the task sets can be determined, and the
schedulability of the task mapping can be checked.

The first stage is to apply RTW solution to evaluate the
schedulability of the system by adding an RT block, and
possibly a delay, on every link. All the synchronous sets
with the same rate are mapped to the same task, and stan-
dard rate monotonic fixed-priority analysis is performed on
the task sets. If this solution is not schedulable, there is
no other fixed-priority assignment that can make the set
schedulable, and the scheduling problem on that graph
has no solution. If the solution is schedulable, its buffer
cost becomes an upper bound for the cost of the optimal
solution.

If RTW solution is schedulable, we can test the schedu-
lability of No Type LH mapping solution, with no type
LH transaction buffers in the graph. The minimum buffer
cost should be the cost of buffers in the No Type LH
mapping solution. If the task mapping under this solution
is schedulable, there is no room for optimization because
there is no type LH buffer to remove.

If the RTW solution is schedulable but the No Type
LH mapping solution is not, the search stage begins. A
branch-and-bound procedure starts from the RTW solu-
tion and the No Type LH mapping solution to search for
an optimized mapping solution. The breadth-first search
procedure is described in (Natale and Pappalardo, 2008).

3.1 Laxity Release Optimization

As we can see from the above analysis, the laxity of
one functional block indicates the schedulability of the
task associated with that functional block in the system.
The lower the laxity is, the more time that task has
in which to finish before its deadline. As the response
time calculation of laxity indicates, if one block has a
laxity less than zero, that task will not be able to finish
before its deadline, thus the system is not schedulable.
We call task τi a Dangerous Task if the laxity of that
functional block meets the condition li < laxityGuard,
laxityGuard ∈ R and laxityGuard ∈ (0, 1). laxityGuard
is a user-defined real number acting as a threshold value.
If the laxity of one block is in the dangerous zone, we can
use the Laxity Release method to increase the laxity, thus
improving the schedulability of the tasks. If the worst-
case computing time is fixed as an practical experimental
parameter for the tasks, only the frequency time can be
adjusted.

3.2 Calculation of Laxity Release Bound

For lupper,i = minSk
(1−

∑
Sl∈Pre(Sk)

Cl

Tk
), changing Tk will

directly change the laxity. For the lower bound of laxity

llower,i = minSk
(1−

∑
Sl∈Pre(Sk)

dTk
Tl
eCl

Tk
), considering the

ceiling function dTk

Tl
e, there are two kinds of laxity release

methods.

Tail Release For all the Sl ∈ pre(Sk), if Tk < Tl,

llower,i = minSk
(1−

∑
Sl∈Pre(Sk)

Cl

Tk
), laxity has no relation

with Tl. Increasing Tl for Sl ∈ pre(Sk) will not change the
laxity, so the only way to release the laxity is to increase
Tk.

• Case 1: if Tk is doubled to T
′

k = 2Tk and still meets

the condition T
′

k < Tl for every Sl ∈ pre(Sk), then∑
Sl∈Pre(Sk)

Cl

T
′
k

<

∑
Sl∈Pre(Sk)

Cl

Tk
, and the laxity of Si

is released.
More generally, if T

′

k = mTk, m ∈ {2N} and still

T
′

k < Tl for every Sl ∈ pre(Sk),

∑
Sl∈Pre(Sk)

Cl

T
′
k

<∑
Sl∈Pre(Sk)

Cl

Tk
, and the laxity of Si is enlarged, or

Released.
Notice that here, we make m ∈ {2N} so that the

system still meets the FD situation requirement after
the laxity release process.

• Case 2: if T
′

k = mTk ≥ Tl for every Sl ∈ pre(Sk), m ∈
{2N}. Notice that Tk < Tl for all the Sl ∈ pre(Sk),
in the FD situation, the only possibility is that Tl =
m
′
Tk,m

′ ∈ {2N},m′ < m for every Tl ∈ pre(Sk).

dT
′
k

Tl
e = d mTk

m′Tk
e = m

m′
> 1 for Sl ∈ pre(Sk),∑

Sl∈Pre(Sk)
d
T
′
k

Tl
eCl

T
′
k

=

∑
Sl∈pre(Sk)

m

m
′ Cl+Ck

mTk
=∑

Sl∈pre(Sk)

1

m
′ Cl+

Ck
m

Tk
<

∑
Sl∈Pre(Sk)

Cl

Tk
, and the laxity

of Si is released.
• Case 3: if for some but not all Sl ∈ pre(Sk), T

′

k =
mTk ≥ Tl, m ∈ {2N}. Let Tk = Tl − δk, δk ≥ 0,

dT
′
k

Tl
e = dmTl−mδk

Tl
e ≤ m,

∑
Sl∈Pre(Sk)

d
T
′
k

Tl
eCl

T
′
k

≤∑
Sl∈A

mCl+
∑

Sl∈B
Cl

mTk
=

∑
Sl∈A

mCl+
∑

Sl∈B
Cl
m

mTk
=∑

Sl∈Pre(Sk)
Cl−

∑
Sl∈B

(m−1)Cl
m

Tk
<

∑
Sl∈Pre(Sk)

Cl

Tk
, and

the laxity of Si is released.

In the above three cases, all the laxity of Si can be released
by increasing the period time of Sk from Tk to mTk,
m ∈ {2N}. As Sk has the smallest priority in Pre(Sk),
this laxity release method is called Tail Release. The tail
release algorithm is shown as Algorithm 2.

Internal Release If Tk ≥ Tl for all the Sl ∈ Pre(Sk), then
llower,i = minSk

(1−
∑
Sl∈Pre(Sk)

Cl

Tl
). We can see that

laxity will be released if we use the Tail Release method to
increase Tk. In addition to Tail Release, there is another
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Algorithm 2 Tail Release Algorithm for Laxity Release

Input:
Set Si for release, laxity safe guard value laxityGuard

Output:
li as the laxity of Si after laxity release

1: laxityi, Sk ← LaxityPrediction(Si)
2: while laxityi < laxityGuard do
3: Tk ← 2Tk;
4: UpdateGraph(Sk);
5: laxityi, Sk ← LaxityPrediction(Si)
6: end while

way to adjust the laxity. For any Sp ∈ pre(Sk), Tp ≤ Tk,

increase Tp to T
′

p = mTp and see how the laxity changes.

• Case 1: T
′

p = mTp ≤ Tk, m ∈ {2N}, then l
′

FD,i =

minSk
(1−

∑
Sl∈Pre(Sk)

Cl

Tl
+

Cp

Tp
− Cp

mTp
) > lFD,i, and

the laxity is released.
• Case 2: T

′

p = mTp > Tk, m ∈ {2N}, then l
′

FD,i =

minSk
(1−

∑
Sl∈Pre(Sk)

Tk
) =

minSk
(1−

∑
Sl∈Pre(Sk)

Tk
Tl
Cl−

Tk
Tp
Cp+Cp

Tk
) =

minSk
(1−

∑
Sl∈Pre(Sk)

Cl

Tk
+

Tk−Tp

TpTk
Cp) > lFD,i, and

the laxity is released.

This method is called Internal Release. For task set Sk,
we define the tense Tensek = Ck

Tk
. Internal Release is

performed by finding the most tight working task set Sp
and increasing Tp to release the laxity. If there is more than
one task set with the same tense, select the task set Sp with
the greatest worst-case computing time and increase Tp to
release the laxity. The internal release algorithm is shown
as Algorithms 3 and 4.

Algorithm 3 Internal Release Algorithm for Laxity Re-
lease
Input:

Set Si for release, laxity safe guard value laxityGuard
Output:

li as the laxity of Si after laxity release
1: laxityi, Sk ← LaxityPrediction(Si)
2: PreSk

← {Sj |πj ≥ Sk}
3: while laxityi < laxityGuard do
4: Sp ← FindMostT ightWorkingSet(PreSk

)
5: Tp ← 2Tp;
6: UpdateGraph(Sk);
7: laxityi, Sk ← LaxityPrediction(Si)
8: end while

If there ∃Sl ∈ Pre(Sk) so that Tk ≥ Tl, and ∃S′l ∈ Pre(Sk)

so that Tk < T
′

l , both the tail release and the internal
release methods can be used to release the laxity.

3.3 Response Time of Laxity Release

In the response time calculation of laxity lresp,i =

minSk
(1− Rk

Tk
), Sk ∈ succ{{Si} ∪ Si}. If Rk ≤ Tk,

task set Sk can finish computing before its deadline. For
Rk =

∑
Sl∈pre(Sk)

dRk

Tl
eCl + Ck, the tail release method

can always be applied for laxity release. We will now show
how internal release can be applied to lresp,i.

Algorithm 4 Find Most Tight Working Set

Input:
Set Pre{Sk} for search

Output:
Sp as the least period time set in PreSk

1: minT =∞, collection SP = ∅
2: for all Si in PreSk

do
3: SP ← FindMostT ightWorkingSets(PreSk

)
4: end for
5: if Count(SP ) = 1 then
6: return RandomPick(SP )
7: else
8: collection SC = ∅
9: SC ← FindMaxComputingT imeSets(SP )

10: Sp ← RandomPick(SC)
11: return Sp
12: end if

(a) R2-T1-C1 relation graph (b) R2-T1 relation graph

Fig. 1. R-T-C relation graph

S1

T1 = 2,C1 = 0.4

S2

T2 = 3,C2 = 0.8

S3

T3 = 4,C3 = 1.2

Fig. 2. Laxity Release Example

For block S1 with T1, C1 and its successor S2 with T2, C2,
R2 = dR2

T1
eC1 + C2. C2 is a constant number and the

numerical value relationship between R2, T2, and C2

is shown in Fig. 1(a). Response time is defined as the
minimum nonnegative number that fulfills the equation.
As shown in Fig. 1(b), for different C1 and C2, R2 tends
to decrease as T1 increases. This result can be extended
to the general condition Rk =

∑
Si∈{pre(Sk)−Sl} d

Rk

Ti
e +

dRk

Tl
eCl +Ck. In general, the increase of Tl will lead to the

decrease of Sk. Thus, internal release can be applied to the
response time calculation of laxity.

The Laxity Release Procedure is defined as follows: in
the priority assignment procedure, compute the laxity of
every candidate task. If task Sk has a lk so that lk <
laxityGuard, search in the tasks with priority greater than
Sk with the maximum tense and increase the frequency
time of that task. Repeat this procedure until every
candidate task Sk fulfills lk ≥ laxityGuard, and assign
priority using a root mean squares (RMS) calculation.

Here, we take the system in Fig. 2 as an example. Func-
tional block 1 has a period time of T1 = 2 and worst-
case execution time C1 = 0.4. For block 2 and 3, T2 = 3,
T3 = 4, C2 = 0.8, and C3 = 1.2. The utilization factor is
U = 0.4/2 + 0.8/3 + 1.2/4 = 0.767. By using the laxity
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prediction algorithm, we can find out the laxity of the
three blocks, where l1 = 0.8, l2 = 0.6, and l3 = 0.3.
Then, functional block 3 needs to be optimized because
1 − l3 > U . We searched in blocks with higher priority
than block 3, and we found block 1 with the minimum
frequency time. T1 = 1 will increase to T1 = 2. Thus,
l1 = 0.9, l2 = 0.65, and l3 = 0.833. We can see that after
laxity release optimization, no laxity is less than the total
utilization of the system, which means the schedulability
of the system is improved.

4. EXPERIMENTAL EXAMPLES

Table 1. Experimental Results for different util

Utilization 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

luppero buf 0 0 4 14 14 28 36 64

lresp buf 0 0 4 10 12 20 26 46

release buf 0 0 4 10 12 20 22 40

Table 2. Experimental Results for util=0.85

Test Cases sum

luppero buf 0 4 12 8 6 2 2 8 4 6 6 6 64

lresp buf 0 4 4 6 2 2 2 8 4 6 4 4 46

release buf 0 2 4 4 2 2 2 8 4 6 2 4 40

To evaluate the algorithms performance, we will compare
the buffer cost by using different laxity prediction algo-
rithms and the laxity release algorithm. The experimental
results were performed by generating random graphs with
characterized rules. As the RT buffer only exists between
functional blocks with different rates, we only generate
random synchronous set graphs, which means every two
vertexes directly connected by one edge have two different
rates. Each graph has 2 source blocks with 15 synchronous
sets each. The utilization factor ranges from 0.5 to 0.85.
The possible sampling rates of the graphs are the base rate
×2, the base rate ×3, and the base rate ×5. Each graph
set contains 12 randomly generated graphs, and the buffer
optimization procedure is performed on the graphs. The
type LH RT-transaction buffer cost is fixed at 2.

The parameter laxityGuard is a threshold value and
can be adjusted to meet different practical needs. As
laxity and system utilization factors both characterize the
schedulability of the system from different points of view,
we set laxityGuard = 1 − U in the experiments, with
U =

∑
i
ci
Ti

indicating the system utilization.

Table 1 shows the results of adding all the buffer costs
in each graph set for different utilizations. The original
laxity upper bound luppero,i from Equation 1, the response
time calculation lresp,i algorithms, and the laxity release
algorithm were used. We can see that for low CPU utiliza-
tions, all three methods generate a very low buffer cost.
As the utilization grows, buffer cost grows significantly,
and the algorithms proposed in this paper can generate a
better result, i.e., lower buffer cost, than luppero,i. When
the utilization reaches 0.8 and system laxity is relatively
low, the laxity release methods come into effect. Table 2
shows the detailed results of the 12 test cases in the graph
set with utilization = 0.85. The lresp,i algorithm generates
a better result than luppero,i, and the laxity release method
can result in an even lower buffer cost.

5. CONCLUSIONS

This paper analyzed the laxity prediction and release prob-
lem in the buffer optimization procedure of Simulink multi-
tasking models. Our research demonstrates the possibility
of improving the performance of laxity prediction in order
to reduce the system cost of Simulink multitask implemen-
tation. Experiments were carried out with our approach of
laxity prediction based on response time, and the results
showed that the performance of priority assignment is
improved and buffer cost is reduced. Also, we discussed the
laxity release problem in the priority assignment procedure
for high utilization systems. Experiments show how the
laxity prediction algorithm can find dangerous tasks and
release the laxity to improve the system schedulability and
reduce the system buffer cost.
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