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Abstract: For a flying military vehicle, avoiding detection can be a key objective. To achieve
this, flying the least-probability-of-detection path from A to B through a field of detectors is
a fundamental strategy. While most of the previous optimization models aim to minimize the
cumulative radar exposure, this paper derives a model that can directly minimize the probability
of being detected. Furthermore, a variational dynamic programming method is applied to this
model which allows one finding a precise local optimal path with low computational complexity.
In addition, a homotopy method is derived to adjust the optimal path with exceptionally
low computational complexity when the detection rate function changes due to the removal
of detectors, the addition of detectors or the changes of understanding of detectors.

1. INTRODUCTION

For flying military vehicles, avoiding detection is often
a key objective. There has been much prior research
leading to many different sophisticated strategies to avoid
detection. Maithripala et al. (2008) explained how to
deceive a ground radar network into seeing a spurious
phantom track in its radar space by intercepting the pulse,
introducing a time delay and re-transmitting the radars
pulses. Hai (1999) treats the use of radar stealth material
to absorb radar pulses.

For a detection minimizing problem, which is the focus
of this paper, it is an obvious strategy to fly the least-
probability-of-detection path from the source to the des-
tination through a field of detectors; this strategy has
been studied with increasing intensity as vehicles have
become increasingly intelligent. Much research emphasises
the modelling aspect of this problem. Examples of such
work are Zabarankin et al. (2006); Kim and Hespanha
(2003); Murphey and Pardalos (2002); Murphey et al.
(2003), in which risk functions are employed to represent
the cumulative radar exposure when flying through the
field of detectors. The objective of these models is to
minimize the cumulative radar exposure. Other research
focuses on the algorithms to solve this problem. Examples
of such research are Zabarankin et al. (2006); Royset
et al. (2009); Murphey and Pardalos (2002), in which the
problem is abstracted to be a weight constrained shortest
path problem (WCSPP) and then solved.

In the above papers, the overall objective is to minimise
the cumulative radar exposure instead of the probability of
being detected. These two objectives may intuitively seem
to be the same but they are not precisely equivalent. For
example, if a mobile vehicle enters the non-escape zone of a

radar, the model may still try to minimize the cumulative
radar exposure which will ultimately make no difference in
the probability of being detected (which always equals 1).
Again, if a mobile vehicle is very far away from the detector
and the signal to noise ratio is very low, the optimization
of radar exposure will also make no difference.

As an example of the model whose objective is to minimise
the probability of being detected, the paper Royset et al.
(2009) modelled radars using threat circles and solved the
problem using Lagrangian relaxation plus (near-shortest
path) enumeration (LRE). However, due to the idealized
detection model and the high complexity of the algorithm,
the method can only provide a very rough optimal path.

This paper considers the problem where the objective is
to minimize the probability of being detected rather than
cumulative radar exposure. While the majority of radars
work based on a pulse-by-pulse mechanism, we assume
that the radar refresh frequency is high enough so that
the detection event can be considered as a continuous
event. The derived cost function has the identical form
but different underlying meaning as those in cumulative
exposure models. Consequently, most of the numerical
algorithms are still applicable with a partial adjustment
on the typical detection rate function.

Considering the high computational complexity of previ-
ous numerical algorithms, this paper utilizes the varia-
tional dynamic programming approach which can obtain
accurate local optima. Furthermore, a homotopy method is
derived to adjust the optimal path when the detection rate
function changes due to the removal of detectors, the ad-
dition of detectors, the changes of understanding of detec-
tors, and so on. The underlying principle of this homotopy
method is to linearize the change of optimal path using the
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first order calculus of variations. The linearized model can
be found with several matrix operations; further because
the major coefficient matrix is a tridiagonal matrix, the
computational complexity of this approach is exceptionally
low. As a result, even miniature unmanned aerial vehicles
(UAVs) such as quadrotors can deploy this method using
on-board calculation.

The novel contributions of the paper are as follows (a)
adjusting detection rate function analogous to a Poisson
Process which is closer to reality, (b) applying variational
dynamic programming on this problem, which can obtain
local optima with low complexity, and (c) deriving a
homotopy method which can adjust the optimal path
with extremely low computational complexity when the
detection rate function changes.

2. PROBLEM STATEMENT USING PROBABILITY
OF DETECTION MEASURE

Consider a closed bounded region C in R2. Within this
region, it is understood that there is a moving agent
or target, and a set of detectors. The target wishes to
remain undetected, and the detectors are not perfect. The
target is assumed to be moving with constant (unit) speed
between two fixed points in C along a simple (i.e. non-self-
intersecting), piecewise smooth curve.

As the detectors are imperfect, associated with every
point (x, y) ∈ C is a nonnegative value p(x, y), with the
interpretation that the probability that a target located
at the point (x, y) would be detected in a time interval of
length ∆t is p(x, y)∆t+O(∆t). The function p is assumed
to be smooth. Detection events in non-overlapping time
intervals are independent. For a target stationary at (x, y),
the assumptions made so far mean that the probability
of first detection in a time interval of length T is 1 −
exp[−p(x, y)T ].

The problem of interest is then to determine, given two
fixed points in C and some function p(x, y), an optimal
trajectory for the target between these two points such
that the detection probability is minimised.

2.1 Computing the Probability of Detection for a Path

Consider a parameterised path (x(s), y(s)) of length L
from (x0, y0) to (xT , yT ). For a small positive ∆, determine
the points (xi, yi) = (x(i∆), y(i∆)) such that the unit
speed assumption implies a sequence of ∆ spaced points
(xi, yi) along the path.

The probability of non-detection for the target is the
probability that there is no detection in each interval with
end points (xi, yi) and (xi+1, yi+1), i = 0, 1, . . . , (L−1)/∆.
The probability that there is a detection in the i-th interval
is p(xi, yi)∆+o(∆) and so the probability that there is no
detection is simply [1− p(xi, yi)∆ + o(∆)]. Since detection
events are independent through time, the probability that
there is no detection along the whole path is

Pno(x(·), y(·)) = Π
(L−1)/∆
i=1 [1− p(xi, yi)∆ + o(∆)] (1)

Evidently,

lnPno(x(·), y(·)) =

(L−1)/∆∑
i=1

ln[1− p(xi, yi)∆ + o(∆)] (2)

Letting ∆ go to zero, we see that the probability of
detection, call it Pdet, obeys

ln(1− Pdet) = lnPno(x(·), y(·)) (3)

=− lim
∆→0

(L−1)/∆∑
i=1

p(xi, yi)∆

=−
∫
Q

p(x(s), y(s))ds

where Q is a path starting from the point (x0, y0) and ends
at the point (xT , yT ). Note the integration is effectively a
parameterised path integral. Equivalently, we thus have

Pdet = 1− exp[−
∫
Q

p(x(s), y(s))ds] (4)

It is straightforward to compute the probability of detec-
tion for a prescribed trajectory and knowledge of p(x, y).

The problem of interest requires the computation of a
trajectory that minimises the detection probability given
two fixed points (x0, y0), (xT , yT ) and knowledge of the
detection probability function p(x, y). This is a calculus of
variations problem which is equivalent to finding a given
trajectory that minimises the path integral∫

Q

p(x(s), y(s))ds (5)

If we view (5) in isolation then the problem formulation
resembles the widely considered risk function approach
to path planning where p(x, y) could be regarded as a
detection probability per unit time; see Zabarankin et al.
(2006); Kim and Hespanha (2003); Murphey and Pardalos
(2002); Murphey et al. (2003). However, the interpretation
as presented here is based on a derivation starting from an
infinitesimal detection rate p(x, y) where the probability of
detecting a target at (x, y) for one second is not p(x, y) but
rather 1−exp[−p(x, y)]. We believe the idea of defining an
infinitesimal detection rate in this sense is more natural.
Indeed, the function p(x, y) can be thought of as an
intensity function for a Poisson process defined at each
point (x, y) in the sense that for a stationary target at
(x, y) the time of first detection could be thought of as
a nonnegative random variable with distribution function
1− exp[−p(x, y)T ] over T . In addition to detection events
being independent across non-overlapping time intervals,
it also follows that detection events for fixed targets at
distinct points in R2 are also independent. Along any
constant velocity path the intensity p(x, y) as a function of
the path (and consequently time) essentially defines a non-
homogeneous Poisson process (Franceschetti and Meester,
2007, p. 9). The typical detection rate function is given in
Appendix and that model will be used in the rest of this
paper unless otherwise noted.

Note that when deriving (5), the constant speed constraint
(throughout taken to be unity) has been taken into ac-
count. A more convenient form of (5) for our purposes is
given by

∫ 1

0

p(x(τ), y(τ))
»
x′τ

2 + y′τ
2dτ (6)
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where τ ∈ [0, 1] is a given parameterization obeying
(x(0), y(0)) = (x0, y0) and (x(1), y(1)) = (xT , yT ) and ′

denotes d
dτ . The objective is to find the function (x(·), y(·))

defined on [0, 1] that minimizes (6).

Throughout we assume that the target trajectory is piece-
wise smooth as requiring total smoothness rules out paths
with an isolated corner, and such paths may be optimal
when compared to a totally smooth path.

2.2 The Detection Probability with Multiple Detectors

Consider a collection p1(x, y), p2(x, y), . . . , pi(x, y) of de-
tection rate functions associated with, for example, multi-
ple detectors. Then the relevant value of p(x, y) is simply
the sum so long as the individual pi(x, y) allow one to de-
fine the probability of detection on an infinitesimal interval
δt and each detector operates independently (i.e. detection
events occur independently).

More formally, the probability that detector i does not
detect the target is 1 − piδt and the probability that all
detectors fail to detect the target is

∏
(1 − piδt) owing

to the independence assumption. Then the probability of
detection is 1−

∏
(1− piδt) = (

∑
pi)δt+ o(δt).

3. A VARIATIONAL DYNAMIC PROGRAMMING
ALGORITHM

Consider a continuously parameterised target trajectory
(x(s), y(s)) from (x0, y0) to (xT , yT ) in some compact set
C ⊂ R2. For a positive ∆, determine the points (xi, yi) =
(x(i∆), y(i∆)) such that the unit speed assumption implies
a sequence of ∆ spaced points (xi, yi) along (x(s), y(s)).
Suppose ∆ is chosen such that there are N +1 such points
starting at (x0, y0) and ending at (xN , yN ) = (xT , yT ).
If we approximate (x(s), y(s)) by a straight line on each
interval between (xi, yi) and (xi+1, yi+1) then the target
path will be a piecewise smooth polygonal curve. The
optimal trajectory that minimises the stated probability
of detection is given by finding a trajectory that minimises∫

Q

p(x(s), y(s))ds ≈
N∑
i=0

∆p(xi, yi)
»
x′i

2 + y′i
2 (7)

or more specifically, the optimal trajectory is determined
by a set of waypoints (xi, yi), i = 1, . . . , N − 1 that
minimise the sum. This simple approximation transforms a
calculus of variations problem into a classical optimisation
problem over the parameters (xi, yi). The approximation
of a line integral by a Riemann sum over straight line
segments and the convergence of this sum as N → ∞
justifies this approximation.

Denote the cost to move from (xa, ya) to (xb, yb) by Ja,b.
Then, under the discretisation assumptions thus far∫

Q

p(x(s), y(s))ds ≈
N∑
i=1

Ji−1,i (8)

and if we relax the approximation that each interval
between (xi, yi) and (xi+1, yi+1) is a straight line then the
incremental cost to move from (xn−1, yn−1) to (xn, yn) is

Jn−1,n =

∫ n
N

n−1
N

p(x, y)
»
x′τ

2 + y′τ
2dτ (9)

Going forward, the assumptions thus far allow us to define
Cn by a finite subset of R2 so (xi, yi) ∈ Cn. Suppose then
that J ∗0,n is the opimal cost when the target moves from
(x0, y0) to (xn, yn). Since the value of (x0, y0) is prescribed
it follows that J ∗0,n is only a function of (xn, yn) ∈ Cn. Then

J ∗0,n = min{J ∗0,n−1 + Jn−1,n}, 1 ≤ n ≤ N (10)

Now we have enough equations to state a variable dynamic
programming solution to the given optimisation problem.
The broad idea of the algorithm is to guess a path, then
consider variations to it based on local perturbations and
when a reduction in the cost function is achieved, select the
adjusted path. Let x∗1, x

∗
2, . . . , x

∗
N−1 and y∗1 , y

∗
2 , . . . , y

∗
N−1

denote the optimal waypoints. Then the algorithm is given
by Algorithm 1.

Algorithm 1. Variational Dynamic Programming

1: Select a check point number N
2: Select a recursive loop number M
3: Generate an initial path as near as possible to the

optimal path represented by check points (xn, yn)
where 0 ≤ n ≤ N

4: for i = 1; i ≤M ; i = i+ 1 do
5: for n = 1, n ≤ N,n = n+ 1 do
6: Generate a finite set of points Cn whose ele-

ments include (xn, yn) and a so-called set of neighbour
points surrounding (xn, yn).

7: end for
8: for n = 2, n ≤ N,n = n+ 1 do
9: For each (xn, yn) ∈ Cn, choose (xn−1, yn−1) ∈
Cn−1 to minimize the function J ∗0,n−1 + Jn−1,n.
Then every (xn, yn) is mapped with one or more
(xn−1, yn−1) and J ∗0,n can be expressed as a function
of (xn, yn) only.

10: end for
11: Use the destination coordinates (xN , yN ) to find

points (x∗N−1, y
∗
N−1), (x∗N−2, y

∗
N−2), . . . , (x∗1, y

∗
1).

12: Assign the value of (x∗1, y
∗
1), (x∗2, y

∗
2), . . . , (x∗N , y

∗
N )

to ordered pairs (x1, y1), (x2, y2), . . . , (xN , yN ) accord-
ingly.

13: end for

In the above algorithm, when generating the set Cn, a set
of neighbour points was introduced. This set of neighbour
points can be any arbitrary finite set of points within
a local neighbourhood of the point (xn, yn). A typical
example of a set of neighbour points, one which is used
in our own simulations later, is a set of points lying on
a rectangular grid centred on (xn, yn); e.g. the points
{(xn, yn ± δ), (xn ± δ, yn), (xn ± δ, yn ± δ), . . .}.
Suppose the total cost after m ∈ [0,M ] iterations is
ωm and the total cost of the global optimal path is
ωmin. Because the sequence ω0, ω1, ω2 . . . is monotonically
decreasing and

ωm ≥ ωmin, ∀m ∈ [0,M ]

we can conclude that the sequence ω0, ω1, ω2 . . . converges.

Now suppose the total cost converge to a value Ω. The
statement ∀ε > 0,∃N and ∆ such that Ω − ωmin ≤ ε
may not hold because the method can only ensure a local
optima is achieved. As a result, the generation of the
original path (i.e. the initial guess) has a critical impact
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on the final result. This could be even more critical when
there is more than one detector.

The above Variational Dynamic Programming algorithm
can be extended to high dimensional spaces, where its
advantage on computational complexity in comparison to
Weighted Shortest Path is more significant.

3.1 Illustrative Example

Given only one detector, the WSP algorithm proposed
in Murphey et al. (2003) provides a rough approximate
solution to (5) for a given p(x, y) within a reasonable
amount of time and the probability of being detected
cannot be improved upon much by the variational method
proposed in this section. When the number of detectors
increases however this is not necessarily true.

We consider a simple illustration of the variational method
in Figure 1. The circles represent radar arrays, the dash
line is the optimal path generated by the WSP algorithm
from Murphey et al. (2003), the solid line is the path mod-
ified from this using the variational algorithm proposed in
this section. The probability of being detected along the
blue path is 31% while the probability of being detected
along the green path is 27%. Furthermore, as real vehicles
cannot have instantaneous changes in velocity, the new
path is more feasible.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

 

 
radar positions
the path obtained by WSP algorithm
the path obtained by VDP algorithm

Fig. 1. Simulation result using Variational Dynamic Pro-
gramming

4. A HOMOTOPY METHOD FOR FAST
TRAJECTORY COMPUTATION

The main contribution of this paper is a computationally
fast homotopy method for deriving a modified optimal
path given a change in the total detection probability
rate p(x, y) and the previously derived optimal path.
This method is practically important as the environment
in which the target moves may be dynamic; e.g. the
number of detectors may change as new detectors are
added/discovered, detectors may be removed or switched
off or the detector function at particular detectors may
evolve, etc. in all such cases it would be very time consum-
ing to re-run the optimal trajectory planning algorithm
and obtain the complete path from the beginning.

More formally, we suppose one already has an optimal
solution to (6) (or (5)), for some p(x, y), expressed by x(τ)
and y(τ). Given the addition/removal of detectors or an
otherwise change in detection rate at some detectors, we
suppose the detection rate is changed to p(x, y) + q(x, y).
The homotopy method introduced in this section allows
one to modify the optimal path to the updated detection
rate with rapid modification if the change is small. The
computation of the updated path can be accomplished
by iteratively performing certain matrix operations and
the computational complexity is considerably less than
variational dynamic programming algorithm introduced
previously and even the rough approximation of the WSP
algorithm proposed in Murphey et al. (2003).

4.1 The Homotopy Approach: A Special Case

A special case will be considered first due to its analytic
solvability. Furthermore, it can also serve as introduction
to more complicated general cases. The special case is
when probability rate of detection is constant on any circle
whose centre is the detector and there is only one such
detector. Now set up a polar coordinates whose origin on
the detector. Suppose ρ is the radial coordinate and θ is
the angle. The probability of detection is only a function
of ρ.

If the desired initial and terminal points for the trajectory
are on the same radial line then the optimal path is just a
straight line. Otherwise, suppose θ0 and θT define the polar
angles of the desired initial and terminal points. Then (5)
becomes ∫ θT

θ0

p(ρ(θ))

 
ρ2(θ) + (

dρ(θ)

dθ
)2dθ (11)

from which, using the Beltrami identity by Fox (1950), we
find

p(ρ(θ))ρ2(θ)»
ρ2(θ) + (dρ(θ)dθ )2

= C (12)

where C is some constant.

Now if the first detector is changed but remains unmoved,
one can use homotopy method to fast modify its path.
Suppose for a certain detection rate p(ρ) we know the
optimal path ρ(θ), θ ∈ [θ0, θT ]. Then consider a small
variation and let the detection rate function be

p(ρ) + λq(ρ)

where q(ρ) is a bounded function and λ is a sufficiently
small number. Correspondingly, a small variation to the
optimal path is expected and we model this as

ρ(θ) + λσ(θ)

where σ(θ) is also bounded. Furthermore, the constant on
the right hand side of the Beltrami identity will become
C + λγ where γ is a finite number.

Now we have
[p(ρ) + λq(ρ)] · [ρ(θ) + λσ(θ)]2»

[ρ(θ) + λσ(θ)]2 + [dρ(θ)dθ + λdσ(θ)
dθ ]2

= C + λγ (13)

Therefore, on subtracting (12) from (13) and eliminating
the terms in higher order of λ we have

2pρσ + ρ2q = C
ρσ + (dρdθ )(dσdθ )»

ρ2 + (dρdθ )2
+ γ

…
ρ2 + (

dρ

dθ
)2 (14)
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where p(ρ), q(ρ) and ρ(θ) are known functions and C is a
known constant which can be obtained from (12). Now we
have a linear differential equation in σ(θ)

a1(θ)σ(θ) + a2(θ)σ′(θ) + a3(θ)γ + a4(θ) = 0 (15)

where a1 = ρp(2 − ρ2

ρ2+ρ′2 ), a2(θ) = − pρ2ρ′

ρ2+ρ′2 , a3(θ) =

−
√
ρ2 + ρ′2 and a3(θ) = ρ2q. The solution to this first

order linear differential equation is

σ(θ) =exp(

∫ θ

θ0

ρ2 + 2ρ′2

ρρ′
dθ)

· [
∫ θ

θ0

exp(

∫ θ

θ0

−ρ
2 + 2ρ′2

ρρ′
dθ)g(θ)dθ]

(16)

where

g(θ) = − (γ
√
ρ2 + ρ′2 − ρ2q)(ρ2 + ρ′2)

pρ2ρ′
(17)

where ′ denotes d
dθ . The initial condition is σ(θ0) = 0 while

σ(θT ) = 0 from which the constant γ can be obtained.

It is not clear a priori whether (16) is bounded. Simulation
result shows that (16) is bounded for many choices of q(θ)
but unbounded for others. Often (16) is unbounded when
the detection rate falls off so fast that the optimal path is
at infinity.

To this point we made use of a linearization approximation
after (13). As a consequence, (13) will typically not hold
exactly with the computed σ(θ). In this case, one can solve
for an error function of σ(θ) to make further adjustments.

4.2 The Homotopy Method: The General Case

Recall the equation∫ 1

0

p(x(τ), y(τ))
»
x′τ

2 + y′τ
2dτ (18)

from (6), in which ′ denotes d
dτ . Recall we are seeking that

path (x(τ), y(τ)) such that (18) is minimised given an ini-
tial and terminal point for the trajectory and p(x(τ), y(τ)).

The Euler Lagrange equations applied to (18) are

p(x, y)x′′τ −
∂p

∂x
y′τ

2
+
∂p

∂y
x′τy

′
τ = 0 (19)

and

p(x, y)y′′τ −
∂p

∂y
x′τ

2
+
∂p

∂x
x′τy

′
τ = 0 (20)

where ′ denotes d
dτ . Now suppose for a certain detection

rate p(x, y), we already know the optimal path expressed
by x(τ) and y(τ) (e.g. from the variational method derived
previously), and consider a small variation to the detection
rate function given by

p(x, y) + λq(x, y)

where q(x, y) is a bounded function and λ is a sufficiently
small number. Correspondingly, a small variation to the
optimal path is expected

x(τ) + λσx(τ)

and
y(τ) + λσy(τ)

where σx(τ) and σy(τ) are also bounded.

By following the same operations as with the special case
we obtain the linear differential equations regarding σx(τ)
and σy(τ) which are

pσx
′′+qx′′ − 2

∂p

∂x
y′σy

′

− ∂q

∂x
y′

2
+
∂q

∂y
x′y′ +

∂p

∂y
x′σy

′ +
∂p

∂y
σx
′y′ = 0

(21)

and

pσy
′′+qy′′ − 2

∂p

∂y
x′σx

′

− ∂q

∂y
x′

2
+
∂q

∂x
x′y′ +

∂p

∂x
x′σy

′ +
∂p

∂x
σx
′y′ = 0

(22)

in which ′ denotes d
dτ . In the above equations, p(x, y),

q(x, y), x(τ) and y(τ) are known functions. Consequently,
we have a system of second order linear differential equa-
tions with two unknown functions

a1(τ)σx
′′(τ) + b11(τ)σx

′(τ) + b12(τ)σy
′(τ) + c1(τ) = 0

a2(τ)σy
′′(τ) + b21(τ)σx

′(τ) + b22(τ)σy
′(τ) + c2(τ) = 0

(23)

Because the above equations are second order differential
equations, there are two constants of integration in the
solution for σx(τ) and σy(τ). Correspondingly, σx(τ) has
two boundary conditions σx(0) = σx(1) = 0 while σy(τ)
also has two boundary conditions σy(0) = σy(1) = 0.
Now the numerical solutions of σx(τ) and σy(τ) can be
obtained. The detail will be discussed in Section 4.4.

As with the special case we have applied a linearization
approximation and thus an error could occur in the form

(p+ λq)(x′′ + σ′′x)− ∂(p+ λq)

∂x
(y′ + σ′y)2

+
∂(p+ λq)

∂y
(x′ + σ′x)(y′ + σ′y) = ε1(τ)

(24)

and

(p+ λq)(y′′ + σ′′y )− ∂(p+ λq)

∂y
(x′ + σ′x)2

+
∂(p+ λq)

∂x
(x′ + σ′x)(y′ + σ′y) = ε2(τ)

(25)

from which one can calculate the error ε1(τ) and ε2(τ). In
order to adjust the obtained σx and σy and diminish ε1(τ)
and ε2(τ), let

x(τ) + λσx(τ)→ x(τ) + λσx(τ) + ξx(τ)

and

y(τ) + λσy(τ)→ y(τ) + λσy(τ) + ξy(τ)

Again following the same line of reasoning as with the
special case we can derive now two differential equations
regarding ξx(τ) and ξy(τ)

−ε1(τ) = (p+ λq)ξ′′x − 2
∂(p+ λq)

∂x
(y′ + σ′y)ξ′y

+
∂(p+ λq)

∂y
(x′ + σ′x)ξ′y +

∂(p+ λq)

∂y
(y′ + σ′y)ξ′x

(26)
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and

−ε2(τ) = (p+ λq)ξ′′y − 2
∂(p+ λq)

∂y
(x′ + σ′x)ξ′x

+
∂(p+ λq)

∂x
(yy′ + σ′y)ξ′x +

∂(p+ λq)

∂x
(x′ + σ′x)ξ′y

(27)

These equations have a similar form to (21) and (22) and
one can then obtain ξx(τ) and ξy(τ) following the same
operations used to find σx(τ) and σy(τ).

4.3 An Iterative Algorithm for Trajectory Updating

The discussion thus far in this section allows us to compute
the variation of the optimal path λσx(τ) and λσy(τ) corre-
sponding to a small variation of the detection rate function
λq(x, y). Suppose now there is a bounded variation q(x, y)
occurring on the detection rate function p(x, y) and we
want to find the optimal path when detection rate function
is p(x, y) + q(x, y). We construct a parameterised function

H(x, y,Λ) = p(x, y) + Λq(x, y) (28)

where Λ ∈ [0, 1]. Note the optimal path corresponding to
H(x, y, 0) is known to us while the optimal path corre-
sponding to H(x, y, 1) is desired. We then discretize the
interval according to 0 = Λ0 < Λ1 < Λ2 < · · · < Λn = 1
where each increment Λi+1 − Λi (i = 0, 1, 2, · · · , n − 1) is
a sufficient small number that can be thought of as corre-
sponding to λ in the previous subsections. Consequently,
the original problem is equivalent to solving this sequence
of differential equations just previously derived. During
each iteration, the objective is to find the optimal path
with the detection rate H(x, y,Λi+1) and knowledge of the
optimal path corresponding to the case H(x, y,Λi).

Remark 1. Suppose a vehicle has already obtained curve

ÃB as the optimal path from A to B, and then after the
vehicle has travelled from A to an intermediate point C, it
finds an additional detector. Now it can use the homotopy
method to modify the optimal path. Note that it should

modify C̃B rather than ÃB as a whole because the vehicle
is not at A now; C should be considered as its new origin.

4.4 Numeric Solution

During each iteration the problem boils down to solving
a system of second order linear differential equations with
two unknown functions. When analytic solutions are not
available, numeric methods can be used. The work in
Keller (1992) shows a general approach for numerically
solving second order ordinary linear differential equations
with time complexity O(N) where N is the dimension
of the unknown vector. In our particular case, N is the
number of waypoints.

4.5 Caution with Discontinuities

The change in the optimal path is unfortunately not always
continuous in Λ which means a small variation on the
detection rate may result in an abruptly large change to
the optimal path. In such cases the homotopy method will
fail to provide a good result.

Example Suppose there are two detectors in R2 located
symmetrically with respect to the line segment between
the desired initial and terminal points for the trajectory;
e.g. as shown by Figure 2. At first, the target knows p(x, y)
corresponding just to Detector 1 and computes an optimal
path shown by Line 1. Then Detector 2 with detection rate
q(x, y) is introduced. Further suppose that the detectors
are of the same type but that Detector 2 has a much higher
sensitivity than Detector 1.

Detector 1 

Detector 2 

Line 1 

Line 2 

Line 3 

Source Destination 

Fig. 2. Potential discontinuity in the homotopy method

Now the optimal path corresponding to H(x, y, 0) is
Line 1. When Λ increases from zero, the optimal path will
be pushed down as shown by Line 2. However, because
q(x, y) will ultimately dominate H(x, y, 1), the optimal
path corresponding to H(x, y, 1) should be Line 3. This
analysis leads to us to the conclusion that the optimal
path will have to jump at some value of Λ.

4.6 Illustrative Examples and Computational Comparison

We suppose there is a target in R2 that needs to travel from
(−5, 5) to (5, 5) and there is a radar placed at the origin.
The flying vehicle has knowledge about that detector and
has previously computed an optimal path accordingly. The
probability rate function in this section is as Appendix A.

Now a new active radar is added to the origin and the
target then intends to quickly adjust its optimal path. As
shown in Figure 3, the blue line is the original optimal path
with only one detector; the red line is the path found after
adjusting the original path using the homotopy method
and the green line is the optimal path with both detectors
found using variational dynamic programming.

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

 

 

Optimal path without addition of detector
Optimal path after addition of detector obtained by VDP
Optimal path after addition of detector obtained by homotopy method
Radar positions

Fig. 3. Simulation result of Section 4.2

Now a new passive sensor is added to the point (6, 6) and
the vehicle intends to quickly adjust its optimal path. As
shown in Figure 4, the blue line is the optimal path before
adjustment; the red line is the path after adjustment using
the homotopy method and the green line is the optimal
path generated using variational dynamic programming.
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Optimal path without addition of detector
Optimal path after addition of detector obtained by VDP
Optimal path after addition of detector obtained by homotopy method
Original radar position
Additional radar position

Fig. 4. Simulation result of Section 4.2

In the above simulation, no adjustment using (26) and
(27) is made in any steps of the homotopy method. Figure
5 shows the result when adjustments are made.
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Optimal path without addition of detector
Optimal path after addition of detector obtained by VDP
Optimal path after addition of detector obtained by adjusted homotopy method
Original radar position
Additional radar position

Fig. 5. Simulation result of Section 4.2

Suppose kn is the element numbers in Cn in Variational
Dynamic programming (VDP), N and M are the check-
point numbers and iteration numbers respectively in the
VDP and homotopy methods. The operation count in
variational dynamic programming is O(M ·

∑N
0 kn) and

the operation count in homotopy method is O(M · N).
Furthermore, in each operation, VDP has to evaluate the
numerical integral of the cost function while the homotopy
method only requires simple arithmetic. Thus the time
consumed in each step of VDP is generally 103 times
that for the homotopy method without adjustment; this
number can vary depend on how accurate one needs to
evaluate the numerical integral.

5. CONCLUSION

In this paper, we proposed an optimization model where
the objective is to minimize the probability of being de-
tected rather than cumulative radar exposure. Further-
more, the variational dynamic programming approach is
utilized to obtain accurate local optima of a dedicated
original path. In addition, the homotopy method is pro-
posed to adjust the optimal path when the detection rate
function changes.

In further research, we are studying the use of convex
optimization for selection of detectors when a target vehi-
cle can plan its path to avoid detection. In addition, the

detection rate function for radars with Doppler capability
will also be discussed.

Appendix A. A TYPICAL DETECTION RATE

We briefly outline the relationship of our infinitesimal
detection rate p(x, y) to a common signal detection prob-
ability function used in radar design. Target detection in
practice is based on thresholding and depends naturally
on the signal-to-noise ratio of the receiver.

For a pulsed radar, let fr denote the pulse frequency (al-
ternatively 1/fr could correspond to some time period in a
continuous-wave radar). Then the probability of detection
during one pulse is 1 − exp[−p(x, y)/fr]. Suppose SNR
is the signal-to-noise ratio. The probability of detection
in one pulse can then be approximated by the Marcum
q-function

1− exp[−p(x, y)/fr] = Q[
√

2SNR,
√
−2 lnPfa]

, which appears often in such detection problems; see
Simon (1998); Mahafza (2013).
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