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Abstract: In this paper, we present a decentralized variable gain robust controller for a class
of large-scale serially connected systems with nonlinear perturbations via piecewise Lyapunov
functions. The nonlinear perturbation means the interconnections between the subsystems and
uncertainties, and the proposed decentralized variable gain robust controller is designed so as to
reduce the effect of uncertainties and interconnections. In this paper, on the basis of the concept
of piecewise Lyapunov functions, we show sufficient conditions for the existence of the proposed
decentralized variable gain robust controller. Finally, numerical examples are presented.

Keywords: decentralized control, variable gain robust controllers, large-scale serially connected
systems, nonlinear perturbations, piecewise Lyapunov functions

1. INTRODUCTION

It is well-known that robust control problems for uncertain
dynamical systems have received much attention for a long
time (e.g. Barmish [1983] and references therein). Addi-
tionally, with the rapid development of modern industry,
computer engineering, communication technique and so
on, many practical systems become complex, and can be
considered as large-scale interconnected systems composed
of lower dimensional subsystems. Thus a large number of
the existing results in decentralized robust control of un-
certain large-scale interconnected systems have also been
widely studied (e.g Davison [1978], Gong [1995]), because
when a large-scale interconnected system is concerned,
the centralized pattern often fails to hold due to either
lack of the overall information or lack of the centralized
computing capability. From this viewpoint, we have pro-
posed a decentralized robust controller with compensation
inputs for large-scale serially connected systems (Oya and
Hagino [2002]). From the practical point of view, large-
scale serially connected systems are also important class
of large-scale interconnected systems, since many actual
control plant such as production line, cold rolling processes
and so on, are composed of many similar subprocesses
placed after one another, in such a way that a subprocess
is influenced only by its neighbour subprocesses.

By the way, most of robust controllers of the existing
results have fixed structure and they are based on worst-
case design. Therefore, they become cautious when the
perturbation region of the uncertainties has been esti-
mated larger than the proper region. In contrast with
these, design problems of robust control systems with
adjustable parameters, i.e. variable gain robust controllers
have also been studied. Yamamoto and Yamauchi [1999]
have proposed a design method of a robust controller with
the ability to adjust control performances adaptively. In
the works of Maki and Hagino [1999] and Oya and Hagino
[2004], variable gain robust controllers which achieve not
only asymptotical stability but also good transient per-
formance in time response have been shown and these
variable gain robust controllers are tuned by on-line in-
formation about parameter uncertainties. In addition, for
both centralized robust control and decentralized one, the
concept of quadratic stabilization via fixed quadratic Lya-
punov functions plays an important role in dealing with
the controller design.

On the other hand, during the last two decades, piece-
wise Lyapunov functions and parameter-dependent Lya-
punov functions for robust stability analysis and/or robust
controller synthesis have been investigated (e.g. Gahinet
et al. [1996], Veselý [2002], Boyd et al. [1994], Xie et al.
[1997]), because the quadratic stability based on fixed
Lyapunov functions can be lead sometimes to very conser-
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d

dt
x1(t) = A11x1(t) +B1u1(t) + h1(x1, t)

d

dt
xi(t) = Aiixi(t) +Aijxj(t) +Biui(t) + hi(xi, xj , t) (i = 2, · · · ,N , j = i− 1)

(1)

hT
1 (x1, t)h1(x1, t) ≤ α2

1x
T
1 (t)Ψ1x1(t) and hT

i (xi, xj , t)hi(xi, xj , t) ≤ α2
ix

T
i (t)Ψixi(t) + α2

ijx
T
j (t)Ψijxj(t) (2)

vative results. For polytopic uncertain systems, parameter-
dependent Lyapunov functions are introduced and suffi-
cient conditions for affine quadratic stability are presented
(Gahinet et al. [1996], Veselý [2002]). In the work of
Boyd et al. [1994], Lyapunov functions constructed as the
maximum or the minimum of quadratic terms have been
adopted for analysis of robust stability for time-varying
uncertain linear systems, and by using S-procedure nec-
essary and sufficient conditions for the existence of these
piecewise Lyapunov functions have been obtained in terms
of LMIs. Furthermore, numerically efficient conditions for
robust stability of convex combinations of two matrices
have been studied (Xie et al. [1997]). Besides, Oya et al.
[2011] have also suggested a design method of variable gain
controllers based on piecewise Lyapunov functions for a
class of uncertain linear systems with state delays. How-
ever, so far the design problem of decentralized variable
gain robust controllers for large-scale serially connected
systems with uncertain nonlinear perturbations has not
been discussed.

From the above, this paper deals with a design problem of
decentralized variable gain robust controllers for a class
of large-scale serially connected systems with nonlinear
perturbations via piecewise Lyapunov functions. In this
paper, on the basis of the works of Oya and Hagino [2002]
and Oya et al. [2011], the proposed decentralized variable
gain robust controller consists of a fixed gain controller
and a variable gain one. The fixed gain controller is deter-
mined by using the nominal subsystem and the variable
gain controller is designed by using piecewise Lyapunov
functions in order to reduce the effect of uncertainties
and interactions. In this paper, we show that sufficient
conditions for the existence of the proposed decenralized
robust controller are given in terms of LMIs.

This paper is organized as follows. In Sec. 2, notation
and useful lemmas which are used in this paper are
shown, and in Sec. 3, we introduce the class of large-
scale serially connected systems under consideration. Sec.
4 contains the main results. The design method of the
proposed decentralized variable gain robust controller is
presented. Finally, a simple numerical example is included
to illustrate the results developed in this paper.

2. PRELIMINARIES

In this section, we show notations and useful and well-
known lemmas (Boyd et al. [1994], Gantmacher [1960])
which are used in this paper.

For a matrix A, the transpose of the matrix A and it’s
inverse are denoted by AT and A−1, respectively and
rank {A} represents the rank of the matrix A. Also,He{A}
and In represent A + AT and n-dimensional identity ma-
trix, respectively. The notation diag (A1, · · · ,AN ) denotes
a block diagonal matrix composed of matrices Ai for

i = 1, · · · , N . For real symmetric matrices A and B,
A > B (resp. A ≥ B) means that A − B is positive
(resp. nonnegative) definite matrix. For a vector α ∈ R

n,
||α|| denotes standard Euclidian norm and for a matrix A,
||A|| represents its induced norm. The intersection of sets

Υk (k = 1, · · · ,M) is denoted by
⋂M

k=1 Υk, and the symbols

“
4
=” and “?” mean equality by definition and symmetric

blocks in matrix inequalities, respectively. Besides, for a
symmetric matrix P, λmax {P} (resp. λmin {P}) represents
the maximal eigenvalue (resp. minimal eigenvalue).
Lemma 1. (Schur complement) For a given constant real
symmetric matrix Ξ, the following items are equivalent.

(i) Ξ =

(

Ξ11 Ξ12

ΞT
12 Ξ22

)

> 0

(ii) Ξ11 > 0 and Ξ22 − ΞT
12Ξ

−1
11 Ξ12 > 0

(iii) Ξ22 > 0 and Ξ11 − Ξ12Ξ
−1
22 ΞT

12 > 0

Lemma 2. (S-procedure) Let F(x) and G(x) be two
arbitrary quadratic forms over R

n. Then F(x) < 0 for
∀x ∈ R

n satisfying G(x) ≤ 0 if and only if there exists a
nonnegative scalar τ such that

F(x) − τG(x) ≤ 0 ∀x ∈ R
n

Lemma 3. (Barbalat’s lemma) Let φ : R → R be a
uniformly continuous function on [0,∞) . Suppose that

limt→∞

∫ t

0
φ(τ)dτ exists and is finite. Then

φ(t) → 0 as t→ ∞.

3. PROBLEM FORMULATION

Consider the uncertain large-scale serially connected sys-
tem composed of subsystems described by (1). In (1),
xl(t) ∈ R

nl and ul(t) ∈ R
ml (l = 1, · · · ,N ) are the vectors

of the state and the control input for the l-th subsystem,
respectively. The matrices All, Aij and Bl represent the
nominal values of the system and the matrix Bl has full
column rank, i.e. rank{Bl} = ml. Furthermore the func-
tions h1 : R

1×R
n1 → R

n1 and hi : R
1×R

ni+nj → R
ni are

non-linear perturbation functions and satisfy the quadratic
constraint conditions of (2) where α1 ∈ R

1, αi ∈ R
1 and

αij ∈ R
1 and Ψ1 ∈ R

n1×n1 , Ψi ∈ R
ni×ni and Ψij ∈ R

nj×nj

are known positive scalars and known constant positive
definite matrices, respectively. Besides, we introduce the
integer Ml ∈ Z

+ (l = 1, 2, · · · ,N ) defined as

Ml
4
=arg min

Z∈Z+
{Z | (Zml − nl) ≥ 0} (3)

and we assume that there exist symmetric positive definite

matrices S
(l)
kl

∈ R
nl×nl which satisfy the following relation

(Oya et al. [2011]).

Ml
⋂

kl=1

Ω
S

(l)

kl

= {0} (4)
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d

dt
x1(t) = AK1

x1(t) + h1(x1, t) +B1ψ1(x, t)

d

dt
xi(t) = AKi

xi(t) +Aijxj(t) + hi(xi, xj , t) +Biψi(x, t) (i = 2, · · · ,N , j = i− 1)

(8)

He

{(

P
(1)
1 + P

(1)
2

)

AK1

}

+ γ
(1)
1 P

(1)
1 B1B

T
1 P

(1)
1 − γ

(1)
1 P

(1)
2 B1B

T
1 P

(1)
2 + Q

(1)
1 + W1 < 0

He

{(

P
(1)
1 + P

(1)
2

)

AK1

}

+ γ
(1)
2 P

(1)
2 B1B

T
1 P

(1)
2 − γ

(1)
2 P

(1)
1 B1B

T
1 P

(1)
1 + Q

(1)
2 + W1 < 0

(9)

(

He

{(

P
(2)
1 + P

(2)
2

)

AK2

}

+ γ
(2)
1 P

(2)
1 B2B

T
2 P

(2)
1 − γ

(2)
1 P

(2)
2 B2B

T
2 P

(2)
2 + Q

(2)
1 + W2 S

(2)
1 A21

? −W1 + ϑ2α
2
21Ψ21

)

< 0

(

He

{(

P
(2)
1 + P

(2)
2

)

AK2

}

+ γ
(2)
2 P

(2)
2 B2B

T
2 P

(2)
2 − γ

(2)
2 P

(2)
1 B2B

T
2 P

(2)
1 + Q

(2)
2 + W2 S

(2)
2 A21

? −W1 + ϑ2α
2
21Ψ21

)

< 0

(10)

ψ1 (x1, t)
4
=−

1

2

(

ξ1(x1, t) + 2xT
1 (t)P

(1)
k1
B1B

T
1 P

(1)
k1
AK1

x1(t)
)2

(

σ1(t) + ξ1(x1, t) + 2xT
1 (t)P

(1)
k1
B1B

T
1 P

(1)
k1
AK1

x1(t)
)∥

∥

∥BT
1 S

(1)
k1
x1(t)

∥

∥

∥

2B
T
1 S

(1)
k1
x1(t)

ψ2 (x2, t)
4
=−

1

2

(

ξ2(x2, t) + 2xT
2 (t)P

(2)
k2
B2B

T
2 P

(2)
k2
AK2

x2(t)
)2

(

σ2(t) + ξ2(x2, t) + 2xT
2 (t)P

(2)
k2
B2B

T
2 P

(2)
k2
AK2

x2(t)
)∥

∥

∥BT
2 S

(2)
k2
x2(t)

∥

∥

∥

2B
T
2 S

(2)
k2
x2(t)

(11)

V1(x1, t)
4
=xT

1 (t)S
(l)
k1
x1(t) for k1 = arg max

k1

{

xT
1 (t)P

(l)
k1
B1B

T
1 P

(l)
k1
x1(t)

}

(15)

where Ω
S

(l)

kl

represents a subspace defined as

Ω
S

(l)

kl

4
=
{

xl ∈ R
nl | BT

l S
(l)
kl
xl = 0

}

. (5)

The nominal subsystem, ignoring the unknown parameters
and the interactions in (1), is given by

d

dt
xl(t) = Allxl(t) +Blul(t). (6)

In this paper, first of all, we adopt the standard LQ control
theory for the nominal subsystem of (6), i.e. the control
input is given by ul(t) = −R−1

l BT
l Xlx(t) (= Klx(t))

∗

Now on the basis of the works of Oya and Hagino [2002]
and Oya et al. [2011], by using the fixed gain matrix
Kl ∈ R

ml×nl for the l-th nominal system of (6) we consider
the following control input.

ul(t)
4
=Klxl(t) + ψl (xl, t) (7)

where ψl (xl, t) ∈ R
ml is a decentralized compensation

input for the l-th subsystem. From (1), (6) and (7), we
have the closed-loop system for the l-th subsystem of (8).
In (8), AKl

is the matrix given by AKl
= Al +BlKl.

From the above discussion, our control objective in this
paper is to design the decentralized variable gain robust
control of (7) such that the resultant closed-loop system
is robustly stable. That is to design the decentralized
compensation input ψl (xl, t) ∈ R

ml such that asymp-
totical stability of the overall system composed of the N
subsystems of (8) is guaranteed.

∗ Note that Xl ∈ R
nl×nl is the unique solution of the algebraic

Riccati equation He

{

AT

ll
Xl

}

− XlBlR
−1

l
BT

l
Xl + Ql = 0 where the

matrices Ql ∈ R
nl×nl and Rl ∈ R

ml×ml are design parameters and
Ql is selected such that the pair (Aii, Cl) is detectable where Cl is
any matrix satisfying Ql = ClC

T

l
.

4. MAIN RESULTS

In this section, we show a design method of the decentral-
ized variable gain robust controller via piecewise Lyapunov
functions such that the overall system is asymptotically
stable. In the sequel, we consider the case of Ml = 2 and
N = 2 for simplicity, because the results for the case of
Ml > 2 and N > 2 can easily be obtained by the following
result and the existing results (Oya and Hagino [2002] and
Oya et al. [2011]).

The following theorem gives sufficient conditions for the
existence of the proposed decentralized controller.

Theorem 1. Consider the closed-loop system with non-
linear perturbations of (8) and the control input of (7).

If there exist symmetric positive definite matrices S
(l)
kl

∈

R
nl×nl

(

S
(l)
kl

4
=P

(l)
1 + P

(l)
2 + P

(l)
kl
BlB

T
l P

(l)
kl

)

and P
(l)
kl

∈

R
nl×nl (kl = 1, 2, l = 1, 2) and positive constants γ

(l)
kl

and

ϑi which satisfy matrix inequalities of (9) and (10) and the

relation of (3), then by using the matrices P
(l)
kl

∈ R
nl×nl ,

the decentralized compensation input ψl (xl, t) ∈ R
ml is

determined as (11) ∗∗ where ξl(xi, t) ∈ R
1 is the function

given by

ξ1(x1, t)
4
=xT

1 (t)

(

1

ϑ1
S

(1)
k1

S
(1)
k1

+ α2
1ϑ1Ψ1

)

x1(t)

ξ2(x2, t)
4
=xT

2 (t)

(

1

ϑ2
S

(2)
k2

S
(2)
k2

+ α2
2ϑ2Ψ2

)

x2(t)
(12)

and σl(t) ∈ R
1 is any positive uniform continuous and

bounded function which satisfies
∫ t

t0

σl(τ)dτ ≤ σ∗
l <∞ (13)

∗∗We find that the decentralized compensation input ψl (xl, t) ∈ R
ml

can be calculated except for xl(t) ≡ 0 (Oya et al. [2011]).
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d

dt
V1(x1, t) = xT

1 (t)
[

He

{

S
(1)
k1
AK1

}]

x1(t) +He

{

xT
1 (t)S

(1)
k1
h1(x1, t) + xT

1 (t)S
(1)
k1
B1ψ1 (x1, t)

}

(16)

d

dt
V1(x1, t) ≤ xT

1 (t)
[

He

{(

P
(1)
1 + P

(1)
2

)

AK1

}]

x1(t) + 2xT
1 (t)P

(1)
k1
B1B

T
1 P

(1)
k1
AK1

x1(t)

+xT
1 (t)

(

1

ϑ1
S

(1)
k1

S
(1)
k1

+ α2
1ϑ1Ψ1

)

x1(t) +He

{

xT
1 (t)S

(1)
k1
B1ψ1 (x1, t)

}

for k1 = arg max
k1

{

xT
1 (t)P

(1)
k1
B1B

T
1 P

(1)
k1
x1(t)

}

(18)

d

dt
V1(x1, t) ≤ xT

1 (t)
[

He

{(

P
(1)
1 + P

(1)
2

)

AK1

}]

x1(t) + σ1(t) for k1 = arg max
k1

{

xT
1 (t)P

(1)
k1
B1B

T
1 P

(1)
k1
x1(t)

}

(20)

xT
1 (t)

[

He

{(

P
(1)
1 + P

(1)
2

)

AK1

}]

x1(t) < 0 for k1 = arg max
k1

{

xT
1 (t)P

(1)
k1
B1B

T
1 P

(1)
k1
x1(t)

}

(21)

V2(x2, x1, t)
4
=xT

2 (t)S
(2)
k2
x2(t) + V1(x1, t)

for k2 = arg max
k2

{

xT
2 (t)P

(l)
k2
B2B

T
2 P

(l)
k2
x2(t)

}

and k1 = arg max
k1

{

xT
1 (t)P

(1)
k1
B1B

T
1 P

(1)
k1
x1(t)

}

(24)

d

dt
V2(x2, x1, t) ≤ xT

2 (t)
[

He

{(

P
(2)
1 + P

(2)
2

)

AK2

}]

x2(t) +He

{

xT
2 (t)S

(2)
k2
A21x1(t)

}

+
d

dt
V1(x1, t)

+ϑ2α
2
21x

T
1 (t)Ψ21x1(t) + σ2(t)

for k2 = arg max
k2

{

xT
2 (t)P

(l)
k2
B2B

T
2 P

(l)
k2
x2(t)

}

and k1 = arg max
k1

{

xT
1 (t)P

(1)
k1
B1B

T
1 P

(1)
k1
x1(t)

}

(25)

d

dt
V2(x2, x1, t) ≤

(

x2(t)
x1(t)

)T
(

He

{(

P
(2)
1 + P

(2)
2

)

AK2

}

S
(2)
k2
A21

? −W1 + ϑ2α
2
21Ψ21

)

(

x2(t)
x1(t)

)

+ σ1(t) + σ2(t)

for k2 = arg max
k2

{

xT
2 (t)P

(2)
k2
B2B

T
2 P

(2)
k2
x2(t)

}

(26)

d

dt
V2(x2, x1, t) ≤ −xT

2 (t) (Qk2
+ W2)x2(t) + σ1(t) + σ2(t) (27)

where σ∗
l is any positive constant and t0 denotes an initial

time. In (9) and (10), Q
(l)
kl

and Wl are design parameters.
Then the overall system composed of 2 subsystems is
bounded and the following relation holds.

lim
t→∞

x(t; t0, x(t0)) = 0 (14)

where x(t)
4
=
(

xT
1 (t) xT

2 (t)
)T

. Namely, asymptotical sta-
bility of the resultant closed-loop system is ensured.

Proof: Firstly, let us define the piecewise quadratic
functions V1(x1, t) of (15) ∗∗∗ at the top of the previous
page. The time derivative of the piecewise quadratic
functions V1(x, t) of (15) along the trajectory of the l-th
subsystem (l = 1, · · · , 3) can be written as (16). By using
the well-known relation

2aT b ≤
1

µ
aTa+ µbT b (17)

for arbitrary vectors a and b with appropriate dimensions
and a positive constant µ, we can obtain the relation of
(18). Furthermore we see from the decentralized compen-
sation input of (10) and the well-known inequality

0 ≤
αβ

α+ β
≤ α ∀α, β > 0 (19)

that some trivial manipulations give the inequality of (20)
for the time derivative of the piecewise quadratic function
V1(xl, t) of (15).

Let us consider the condition of (21). By applying Lemma
2 (S-procedure) to the inequalities of (21) one can see
∗∗∗ Note that the function V1(x1, t) of (15) is continuous and its level
set is closed.

from the definition of the matrices Sk that the inequalities

of (21) are satisfied if there exist P
(1)
k1

> 0 and γ
(1)
k1

≥ 0

satisfying inequalities of (9). Therefore if the condition of
(9) holds then we have the inequality

d

dt
V1(x1, t) ≤ −xT

1 (t) (Qk1
+ W1)x1(t) + σ1(t). (22)

Besides, the inequality of (22) can be reduced to

d

dt
V1(x1, t) ≤ −ζ∗1 ‖x1(t)‖

2
+ σ1(t) (23)

where ζ∗1
4
=min

k1

{Qk1
+ W1}. Thus, it is proved by same

procedure as the proof of Theorem 1 in Oya et al. [2011]
that x1(t) is uniformly continuous, and by using Lemma
3 (Barbalat’s lemma) the relation ‖x(t)‖ → 0 (t→ ∞)
holds. Namely, asymptotical stability of the 1st subsystem
is ensured.

Next, we introduce the piecewise quadratic function
V2(x, t) for the 2nd subsystem given by (24). Then by using
the similar manipulations for the 1st subsystem, we have
the relation of (25) for the piecewise quadratic function
V2(x, t). Since the function V1(x1, t) for the 1st subsystem
satisfies the inequality of (22), one can see that the relation
of (25) can be transformed into the inequality of (26).
Moreover, one can see from the inequlaities of (10) that
by applying Lemma 2 (S-procedure) to the inequalities
of (26), the relation of (27) holds. Thus, we see robust
stability of the 2nd subsystem can also be shown by using
Lemma 3 (Barbalat’s lemma).
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He {P1AK1
} + γ

(1)
1 P

(1)
1 B1B

T
1 P

(1)
1 ≤ 0 and He

{

P
(1)
2 AK1

}

− γ1P
(1)
2 B1B

T
1 P

(1)
2 + Q

(1)
1 + W1 < 0

He {P2AK1
} + γ

(1)
2 P

(1)
2 B1B

T
1 P

(1)
2 ≤ 0 and He

{

P
(1)
1 AK1

}

− γ2P
(1)
1 B1B

T
1 P

(1)
1 + Q

(1)
2 + W1 < 0

(28)

(

Ω1 (P1, γ1) P
(2)
1 A21 + P

(2)
1 BBTP

(2)
1 A21

? −Z1

)

< 0 and

(

Π1 (P2, γ1) P
(2)
1 A21

? −Z1 + ϑ2α
2
21Ψ21

)

< 0
(

Ω2 (P2, γ2) P
(2)
2 A21 + P

(2)
2 BBTP

(2)
2 A21

? −Z1

)

< 0 and

(

Π2 (P1, γ2) P
(2)
1 A21

? −Z1 + ϑ2α
2
21Ψ21

)

< 0

(29)

Ωk2
(Pk2

, γk2
) = He

{

P
(2)
k2
AK2

}

+ γ
(2)
k2

P
(2)
1 B2B

T
2 P

(2)
1

Πk2
(Pζk

, γk2
) = He

{

P
(2)
ζk
AK2

}

− γ
(2)
k2

P
(2)
ζk
B2B

T
2 P

(2)
ζk

+ Q
(2)
k2

+ W2

(30)

(

Ω (P1, γ1) + P
(2)
1 BBTP

(2)
1 BBTP

(2)
1 P

(2)
1 A21

? −Z1 +AT
21P

(2)
1 A21

)

< 0 and

(

Π1 (P2, γ1) P
(2)
2 A21

? −Z1 + ϑ2α
2
21Ψ21

)

< 0

(

Ω (P2, γ2) + P
(2)
2 BBTP

(2)
2 BBTP

(2)
2 P

(2)
2 A21

? −Z1 +AT
21P

(2)
2 A21

)

< 0 and

(

Π2 (P1, γ2) P
(2)
1 A21

? −Z1 + ϑ2α
2
21Ψ21

)

< 0

(31)

He

{

AK1
Y

(1)
1

}

+ γ
(1)
1 B1B

T
1 ≤ 0 and





He

{

AK1
Y

(1)
2

}

− γ
(1)
1 B1B

T
1 Y

(1)
2

? −
(

Q
(1)
1 + W1

)−1



 < 0

He

{

AK1
Y

(1)
2

}

+ γ
(1)
2 B1B

T
1 ≤ 0 and





He

{

AK1
Y

(1)
1

}

− γ
(1)
2 B1B

T
1 Y

(1)
1

? −
(

Q
(1)
2 + W1

)−1



 < 0

(32)











Ω∗
1

(

Y
(2)
1 , γ

(2)
1

)

A21 BT
2 B2 0

? −Z1 0 AT
21

? ? −Y
(2)
1 0

? ? ? −Y
(2)
1











< 0 and







Π∗
1

(

Y
(2)
2 , γ

(2)
1

)

A21 Y
(2)
2

? −Z1 + ϑ2α
2
21Ψ21 0

? ? −T
(2)
1






< 0











Ω∗
2

(

Y
(2)
2 , γ

(2)
2

)

A21 BT
2 B2 0

? −Z1 0 AT
21

? ? −Y
(2)
2 0

? ? ? −Y
(2)
2











< 0 and







Π∗
2

(

Y
(2)
1 , γ

(2)
2

)

A21 Y
(2)
1

? −Z1 + ϑ2α
2
21Ψ21 0

? ? −T
(2)
2






< 0

(33)

Ω∗
k2

(

Y
(2)
k2
, γ

(2)
k2

)

= He

{

AK2
Y

(2)
k2

}

+ γ
(2)
k2
BBT , Π∗

k2

(

Y
(2)
ζk
, γ

(2)
k2

)

= He

{

AK2
Y

(2)
ζk

}

− γ
(2)
k2
B2B

T
2 ,

T1 =
(

Q
(2)
1 + W1

)−1

and T2 =
(

Q
(2)
2 + W1

)−1 (34)

From the above, asymptotical stability of the resultant
closed-loop system of (8) is guaranteed. Therefore the
proof of Theorem 1 is completed.

Theorem1 gives a sufficient condition for the existence of
the proposed decentralized variable gain robust controller.
Next, we consider the inequality conditions of (9) and (10)
in Theorem 1.

The inequality conditions of (9) and (10) require positive

definite matrices P
(1)
kl

∈ R
nl×nl and positive scalars γkl

and ϑl for stability. Therefore, we consider the conditions
of (28) and (29) instead of that of (9) and (10). In (29),
Z1 = 1

2W1 and Ωk2
(Pk2

, γk2
) and Πk2

(PS , γk2
) are the

matrices given by (30). Note that in (28), ζk is the integer
defined as ζk = 1 if k2 = 2 or ζk = 2 if k2 = 1. By
using the well-known relation of (17) again, we see that
the inequality of (29) can be transformed into (31). Thus

by introducing the matrices Y
(1)
kl

4
=(P

(1)
kl

)−1 and using

Lemma 4 (Schur complement), one can obtain (32) and
(33) as sufficient conditions for inequalities of (28) and

(29). In (33), the matrices Ω∗
1(Y

(2)
k2
, γ

(2)
k2

), Π∗
k2

(Y
(2)
S
, γ

(2)
k2

)

and T
(2)

k2
are given by (34). Namely, we can obtain the

proposed decentralized variable gain robust controller by
solving LMIs of (32) and (33). As a result, we have the
following theorem.

Theorem 2. Consider the closed-loop system with non-
linear perturbations of (8) and the control input (7).

If the LMIs of (32) and (33) are feasible, by using the
solution of LMIs of (32) and (33) the decentralized com-
pensation input ψl(xl, t) ∈ R

ml is determined as (11).
Then the overall system composed of N subsystems is
bounded and the relation of (14) holds.

5. ILLUSTRATIVE EXAMPLES

Consider the large-scale interconnected systems composed
of three two-dimensional subsystems, i.e. N = 3. The
nominal values of system parameters are given as (35) at
the top of the next page. Besides, αl, αij , Ψl and Ψij are
selected as αl = αij = 1.0 and Ψl = Ψij = diag (5.0, 4.0),
respectively.
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A11 =

(

−1.0 1.0
0.0 1.0

)

, A21 =

(

5.0 × 10−1 1.0
0.0 −5.0 × 10−1

)

, A22 =

(

5.0 × 10−1 −1.0
0.0 2.0

)

,

A33 =

(

2.0 1.0
1.0 −1.0

)

, A32 =

(

5.0 × 10−1 0.0
2.5 × 10−1 −1.0

)

, B1 =

(

0.0
4.0

)

, B2 =

(

1.0
1.0

)

, B3 =

(

3.0
0.0

) (35)

K1 =
(

−8.04556 × 10−1 −3.32649
)

, K2 = ( 1.50606 −7.07401 ) , K3 = (−3.22466 −1.64832 ) (36)

Y
(1)
1 =

(

1.7290744 × 10−1 −1.2342716 × 10−1

? 2.45060

)

, Y
(1)
2 =

(

1.74903 × 10−1 −1.30699 × 10−1

? 2.41107

)

,

Y
(2)
1 =

(

2.27376 1.54445
? 1.61528

)

, Y
(2)
2 =

(

2.68200 1.97840
? 2.09495

)

,

Y
(3)
1 =

(

7.8344613 −5.29204 × 10−1

? 7.21506

)

, Y
(3)
2 =

(

1.168031 × 101 −9.99192 × 10−1

? 1.19941 × 101

)

,

γ
(1)
1 = 1.55376, γ

(1)
2 = 1.15821, γ

(2)
1 = 8.57891, γ

(2)
2 = 9.14068, γ

(3)
1 = 5.10568, γ

(3)
2 = 6.13331

ϑ2 = 7.51474 × 10−3, ϑ3 = 9.09547 × 10−1

(37)

Now, we select the weighting matrices Ql ∈ R
2×2 and

Rl ∈ R
1×1 (i = 1, · · · , 3) for the nominal subsystems

such as Q1 = diag (6.0, 9.0), Q2 = diag (3.0, 9.0), Q3 =
diag (5.0, 9.0), R1 = 1.0, R2 = 1.0 × 101 and R3 = 1.0.
Then, we have the fixed gain matrices Kl ∈ R

1×2 of (36).

Next selecting the matrices W1, W2, Q
(l)
1 and Q

(l)
2 in

(32) and (33) as W1 = 5.0 × I2, W2 = 1.5 × I2, Q
(l)
1 =

diag
(

1.0 × 10−1, 2.0
)

and Q
(l)
2 = diag

(

3.0, 2.0 × 10−1
)

respectively, and solving the LMIs of (32) and (33), we
have the solution of (37). From the solution of (37), one
can easily see that the relation of (4) is satisfied. Thus the
proposed decentralized variable gain robust controller can
be obtained.

6. CONCLUSIONS

In this paper on the basis of the concept of the piecewise
Lyapunov functions, we have proposed a decentralized
variable gain robust controller for a class of uncertain
large-scale serially connected systems with nonlinear per-
turbations. Besides, by numerical simulations, the effec-
tiveness of the proposed decentralized variable gain robust
controller has been presented.

For a class of large-scale serially connected systems with
nonlinear perturbations, by using the concept of piecewise
Lyapunov functions, we have shown that the proposed
decentralized variable gain robust controller can be ob-
tained by using the solutions of LMIs. One can see that
the result presented in this paper is an extention of the
existing results (e.g. Oya and Hagino [2009], Oya et al.
[2011]).
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