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Abstract: This work provides a time-varying controller to improve the glycemic regulation in Type 1
Diabetes Mellitus (T1DM) patients. To this end, a Linear Parameter-Varying (LPV) control is designed
in order to minimize the risk of hypoglycemia (glucose concentrations < 60 mg/dl) and hyperglycemia
(glucose concentrations > 180 mg/dl). The controllers have been tested in the 10 in silico adults
from the distribution version of the UVA/Padova metabolic simulator (30 patients). All Continuous
Glucose Monitoring (CGM) and Continuous Subcutaneous Insulin Infusion (CSII) pump constraints are
considered during the simulations. Different meal scenarios have been tested showing very promising

results.
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1. INTRODUCTION

Type 1 diabetes is a disease characterized by the absolute de-
ficiency of endogenous insulin secretion. Cases of TIDM have
been increasing 3-4% per year in youths making diabetes one
of the most common childhood diseases (Kaufman [2012]).
Without insulin, the body is not able to preserve normal glucose
metabolism resulting in prolonged hyperglycemia. As a conse-
quence, some symptoms like polyuria and polydipsia emerge.
In absence of an appropriate treatment, the patient can de-
velop a state of ketoacidosis which generates coma and finally
death. Therefore, patients with TIDM are usually subjected
to multiple daily insulin injections or CSII (Peters and Laffel
[2013]). On the other hand, the excess of insulin may produce
hypoglycemia which can also result in diabetic coma or death.
Consequently, it is very important to reduce hyperglycemic and
hypoglycemic risks keeping the Blood Glucose (BG) concen-
tration between safe values.

In order to describe the glucose-insulin dynamics some models
and simulators have been developed (see Bondia et al. [2010],
Wilinska and Hovorka [2008] and Colmegna and Sanchez Pefia
[2014] for a survey). One of them is the UVa/Padova T1DM
simulator. This simulator has a cohort of 300 in silico patients,
and it is accepted by the Food and Drug Administration (FDA)
in lieu of animal trials in the development of an artificial
pancreas (Kovatchev et al. [2009]). In this work, its distribution
version, which has 30 in silico patients, has been selected to
perform the simulations.

Model uncertainty (intra- and inter-patient variability), nonlin-
ear phenomena, and sensor and actuator delays are issues that
should be attended at the controller design stage. Although, the
T1DM simulator does not include the intra-patient variability,
it solves the inter-patient variability through a large cohort of
in silico patients. In addition, it includes all other constraints
related to the CGM and CSII pump.
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Based on the later, nonlinear and/or time-varying controllers
seem to be a more suitable option than Linear Time Invari-
ant (LTI) ones. Despite of that, simplified PID (Steil et al.
[2006]) and Robust Control Theory (Ruiz-Veldzquez et al.
[2004], Parker et al. [2000] and Colmegna and Sénchez Pefia
[2012]) have been applied to this problem providing acceptable
performance. As regards more sophisticated techniques, non-
linear control design methods have been implemented (Kovécs
et al. [2008]), but with no clear robustness guarantees. LPV
solutions have also been tested, although in simplified models
(Sanchez Pena and Ghersin [2010], Sanchez Peia et al. [2011]
and Kovdcs et al. [2011]).

The objective of this work is to design an LPV controller to
manage unannounced meals without excess insulin overdosing.
Different scenarios are tested considering the 10 adults from
the distribution version of the TIDM simulator to analyse the
closed-loop performance.

The paper is organized as follows. A general model structure
appropriate for control purposes is presented in Section 2. The
controller design is performed in Section 3 and simulation re-
sults are depicted in Section 4. Final conclusions are introduced
in Section 5.

2. MODEL IDENTIFICATION & PATIENT TUNING

From previous results in this area it is clear that the inter-patient
uncertainty is large, even for a single class of patients, e.g.
adults. This induces the use of an adaptive scheme and/or a pa-
tient model tuning, previous to the controller design (Colmegna
and Sanchez Pefia [2013]). To avoid a preliminary identification
test on the patient in order to tune the model, a methodology
similar to the one used in van Heusden et al. [2012] is ap-
plied. Therefore, a control-relevant model is adjusted without
performing an identification, based solely on the a priori patient
data. The procedure is described next.

For every adult from the reduced T1DM simulator, a linear
model from the insulin delivery (pmol/min) to the deviation
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from a particular glucose concentration (mg/dl) is identified.
Three different interstitial glucose concentrations ® are consid-
ered here: 90, 120 and 150 mg/dl, hence three linear models are
obtained for each patient.

The identification process for a particular glucose concentration
is as follows. First, the basal insulin (I;) which produces the
particular glucose concentration at steady state is obtained.
Then, I, is added to a sinusoidal insulin sweep. During 12 h
and with a sampling time of 7 = 10 min, this signal is infused
through a CSII pump, and the glucose deviation is captured.
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Fig. 1. Bode diagram of G (z) and the 10 virtual adult patients
at three different glucose levels (thin lines).

Third-order models have been obtained in all 30 cases us-
ing subspace identification algorithms (Overschee and Moor
[1994], Cescon et al. [2009]). Considering these models, the
following discrete transfer function is defined:
132 x 1073273
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where the poles are: p; = 0.965, p2 = 0.95 and p3 = 0.93. The
Bode diagrams of G(z) and all identified models are depicted
in Fig. 1. As can be seen from this figure, G (2) is conservative
in gain and phase to cover all possible cases. In order to limit
this conservatism, G, (%) is defined:

cK;z73
Gop(2) =— . )]
0p(2) (I —2z7tp1)(1 =27 pa)(1 — 2~ 1p3)
Here as in van Heusden et al. [2012], K; = 1800/TDI is based
on the 71800 rule (see Walsh and Roberts [2006]) and represents

the gain which adapts to the patient’s Total Daily Insulin (TDI),
and

1
= ﬁ(l—pg)(l—m)(l—m)ﬁOTs (3)

is a constant which scales units.

Cc

3. CONTROLLER DESIGN

Gop(z) is converted to G, (s) using a Zero Order Hold (ZOH),
because the design is performed in continuous time. Figure 2
depicts the augmented model for controller design, where:

0 1
P(s) = [ 1 —Gop(s) )

1 —Gop(s)

3 The simulator has access to that particular variable without the CGM mea-
surement noise.
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Fig. 2. Augmented model for controller design.

and the performance and actuator weights in order to design the
LPV controller are:
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with Ty = 103/6, Ty = 10°/7, Ry = 2, and Ry = 10%/9 in all
cases.

Two real-time measurable (and estimated) parameters have
been included in the augmented model in order to adapt the
controller during closed-loop implementation. Note that due to
this LPV nature, the weight 1V, is presented in a state-space
fashion. The time varying parameters are 6, = 110/G; and
0 = 1.5I,./Ip. The first one depends on the glucose level
G5 measured by the CGM. The second parameter depends on
(Ipe, lpy), which are the estimated current and basal plasma in-
sulin levels, respectively. The estimation is performed through
the model proposed in Man et al. [2007] considering its mean
population values. In the case of I, the input to the model
is the current injected insulin, and in the case of I, the basal
insulin dosage. The latter is performed off-line, before the sim-
ulation.

The parameters (6;,62) may move in the rectangular set
[0.2, 5] x [0, 8] according to the expected values of G and Ip..
The time-varying model is used to replace the hypoglycemia
Safety Mechanism (SM) and the Insulin on Board (IOB) feed-
back loop, which appear for example in Herrero et al. [2012].
In particular an increase in #; due to a low glucose level will
reduce the insulin injection thus minimizing the risk of hypo-
glycemia. In addition, an increase in €2 due to a high level of
IOB also reduces the controller action in a way similar to the
IOB feedback loop.

Therefore, there are two important aspects of this augmented
model:

e The LTI part of the model Go,(z), can be tuned off-line
to a particular patient using a priori history data based
on his clinical history. This takes care of the inter-patient
variability and replaces an initial patient-model tuning.

e The LPV part can be tuned on-line by direct measurement
and estimation of two parameters [0;(¢), 02(¢)] in order

9254



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

to replace the hypoglycemia safety mechanism and the
Insulin On Board (IOB) feedback loop.

Finally, to solve numerical issues in the implementation and/or
simulation, the following Linear Matrix Inequality (LMI) re-
gion is adopted so that the (continuous time) poles are con-
strained to a particular zone of the complex plane:

D={peC: fp(p) <0} )
with
0 0
O P R Y R P
100

This corresponds to the closed loop poles located in the com-
plex region —27/100 < p < 0, i.e. ten times slower than
the sampling time 7. Before implementation, the vertex con-
trollers are discretized and transformed to an LPV affine model
structure.

4. RESULTS

Two different protocols have been proposed to analyse the
closed loop performance.

Protocol #1:

e Ist day: 50 g of CHO is given at 7 AM and 50 g at § PM.

e 2nd day: 60 g of CHO is given at 2 PM and 40 g at 9 PM.

e 3rd day: 40 g of CHO is given at 7 AM, 50 g at 2 PM and
50 g at 8 PM.

Protocol #2:

e Istday: 50 g of CHO is given at 7 AM, 70 g at 2 PM and
60 g at 8 PM.

e 2nd day: 50 g of CHO is given at 6 AM, 60 g at 1 PM and
65 g at 7 PM.

e 3rd day: 40 g of CHO is given at 7 AM, 70 g at 1 PM and
50 g at 9 PM.

Both protocols consider

e an initial glucose concentration of 90 mg/dl;
e unannounced meals of 15 minute duration;

e a setpoint of 110 mg/dl;

e all CSII pump and CGM constraints;

o the 10 adults of the reduced T1DM simulator.

In addition, each protocol is run three times for each subject in
order to test the repeatability of the results.

Protocol #1 is used to evaluate the safety of the algorithm
when long fasting periods appear. The closed loop response
for adult #2 is presented in Fig. 3, and average, minimum and
maximum responses for the 10 adults to protocol #1, in Fig.
4. As shown in Fig. 4, insulin peaks occur at meal times such
as in an optimal bolus treatment. The Control Variability Grid
Analysis (CVGA), which is presented in Magni et al. [2008]
and depicted in Fig. 5, shows the 95% confidence bounds of
the maximal and minimal blood glucose values for the 30
closed loop responses. Average results are presented in Table
1. Due to the limited closed loop bandwidth and the initial
absence of insulin, larger glucose peaks appear during the first
day. Therefore, both CVGA and average results are performed
considering the data from the 2nd day.
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Fig. 3. Closed loop response for adult #002 to protocol #1.
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Fig. 4. Average closed loop response for the 10 in silico adults
to protocol #1. The minimum and maximum values at
each time are represented by the thin lines.
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Fig. 5. CVGA of the 30 closed loop responses to protocol #1.

The closed loop response for adult #2 to protocol #2 is
depicted in Fig. 6. Average, minimum and maximum responses
for the 10 adults to protocol #2, and the corresponding CVGA
are presented in Fig. 7 and 8, respectively.

The time variation of (61,62) is illustrated in Fig. 9. Note
that these parameters evolve in regions that avoid dangerous
scenarios. For example, situations where (61, 62) are both low
or both high do not occur. This means that when the BG level
decreases or increases, so does the plasma insulin level. As a
consequence, unsafe conditions like low BG and high plasma
insulin levels or vice versa are avoided with this approach.
Also it should be mentioned that for the design stage, both pa-
rameters are included in a rectangular region, which according
to this figure is not fully covered by the actual time-varying
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Mean BG [mg/dl] Max BG [mg/dl] Min BG [mg/dl]
151.92 + 21.79 22347 £32.23 109.0 £ 10.14
% of time in [80 140] % of time in [70 180] # <170
40.15 £ 12.92 84.62 £ 10.59 0
TDI [U] LBGI HBGI
26.97 £ 4.26 ~0 395+ 1.61

Table 1. Average results for the 10 adults to protocol #1.
Standard deviations are given in parentheses.

parameters. Nevertheless, this conservative choice is necessary
in order to have stability and performance guarantees if this is
not the case.

Despite protocol #2 contains larger meals than protocol #1,
the results presented in Table 2 are similar to the ones given
in Table 1. In both protocols, no hypoglycemia occurs for any
patient, and a low hyperglycemic risk is obtained (see Clarke
and Kovatchev [2009] for a survey about tools to analyse
glucose data). Results are comparable to the ones obtained in
Colmegna and Sanchez Pefia [2013], where a protocol similar
to protocol #2 is applied with an H., controller closing the
loop. However, here the controller design is the same for
every patient, while in Colmegna and Séanchez Pefia [2013]
it is adapted for each one. In order to compare with other
control techniques, it is worth mentioning that in van Heusden
et al. [2012] a Model Predictive Control (MPC) is applied with
similar results, but considering the complete version of the
T1DM simulator that contains 100 adults.

The authors and members of the Doyle’s group at the University
of California, Santa Barbara (UCSB) have also some ongoing
research using H., control combined with an IOB feedback
loop and a hypoglycemia SM, which in turn has been compared
with an Optimal Bolus Treatment (OBT). The LPV controller
presented here provides similar results, with the advantage of a
simpler design procedure.
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Fig. 6. Closed loop response for adult #002 to protocol #2.
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Fig. 7. Average closed loop response for the 10 in silico adults
to protocol #2. The minimum and maximum values at
each time are represented by the thin lines.
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Fig. 8. CVGA of the 30 closed loop responses to protocol #2.

Mean BG [mg/dl] Max BG [mg/dl] Min BG [mg/dl]
151.31 £ 27.28 225.12 £ 34.02 98.48 + 10.92
% of time in [80 140] % of time in [70 180] # <70
42.70 £ 10.56 80.74 + 12.02 0
TDI [U] LBGI HBGI
29.61 £ 4.94 ~0 4.30 £ 1.66

Table 2. Average results for the 10 adults to protocol #2.
Standard deviations are given in parentheses.

5. CONCLUSIONS

Here, an LPV control procedure has been applied to the BG
regulation in TIDM in silico adult patients. The advantage
of this controller is that it has proven stability and robustness
guarantees based on Lyapunov theory. It has an on-line tuning
which takes care of inter-patient variability, and hypoglycemic
and hyperglycemic situations, thus resulting in an elegant and
efficient way of minimizing patient’s risks.
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Fig. 9. Variation of parameters to protocol #2.
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