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Abstract: This paper discusses a method for introducing frequency-domain robustness constraints in a
data-driven control design. The method is based on adaptive weighting filters used in a time-domain cost
function to be minimized. In an iterative way, violation of the frequency-domain robustness constraints is
checked by model prediction and accounted for by adapting the weighting filters. The method is applied
to the stage synchronization problem in wafer scanners, which involves synchronization of the outputs
of two motion systems, and will be discussed in view of both simulation results and experimental results.

1. INTRODUCTION

High-precision motion systems are electro-mechanical systems
that perform commanded (or reference) motion often within
nanometer accuracy. Examples include the pick-up units in
storage drives like blu-ray discs (BD) or hard-disk drives HDD
[Park et al., 1997], pick-and-place machinery in the component
mounting industry and robotics [Kostić et al., 2004], stages in
electron microscopes [Van Bree et al., 2010], and the high-
acceleration stages in wafer scanners used to produce integrated
circuits [Heertjes et al., 2010]. Most of these systems have two
or more subsystems that need to be coordinated or synchro-
nized. In this paper we focus in particular on the synchroniza-
tion between the wafer and the reticle stage of a wafer scanner
[Wang et al., 2009].

To deal with the stages synchronization a synchronization con-
troller is used [Butler, 2011]. In a feed-forward sense, the
synchronization controller aims at tracking the measured wafer
stage input signals such that the synchronization error between
the wafer and the reticle stage motion systems is minimized.
The synchronization controller suffers from a causality prob-
lem, however. The wafer stage input signals need to be mea-
sured before they can be compensated for by the synchroniza-
tion controller. As a result of this causality problem, proper
tracking of the wafer stage input signals at frequencies of in-
terest generally comes at the price of deteriorated tracking at
other frequencies, i.e. a waterbed effect which is formalized
using the so-called feed-forward sensitivity function [Heertjes
et al., 2013]; the latter being the transfer between wafer stage
error input and synchronized error output. This will be further
referred to as the stage synchronization problem.

Minimizing the synchronized error in view of the stage syn-
chronization problem will be done with a data-driven approach,
see also Mishra et al. [2008] for an approach based on iterative
learning control. In Hjalmarsson [2005] it is shown that many
of the data-driven approaches [Bazanella et al., 2012] can be
interpreted as being model-based, except for iterative feedback
tuning (often abbreviated with IFT); IFT is an iterative opti-
mization approach that aims at obtaining unbiased gradient es-
timates by conducting multiple experiments. IFT, however, suf-
fers from robustness issues as there are generally no guarantees
for closed-loop stability along the iterations, hence the develop-
ment of IFT algorithms that include robust stability measures
[Veres and Hjalmarsson, 2002, Prochazka et al., 2005]. For

the stage synchronization problem, robustness is of paramount
importance: (a) low-frequency disturbance suppression is re-
quired as to meet robust performance, and (b) high-frequency
amplification should be contained in view of robust stability. It
thus makes sense to reside to (non-parametric) plant modeling
as a means to impose robustness constraints on the feed-forward
sensitivity function, hence a model-based interpretation.

In a data-driven context, this paper describes a new approach
toward including robust stability measures. For a candidate
set of optimized synchronization controller parameters, which
will be of the finite impulse response (FIR)-type, each itera-
tion it will be checked if the feed-forward sensitivity function
satisfies the frequency-domain robustness constraints. This is
done by computing the feed-forward sensitivity function using
a non-parametric plant model. If satisfied, the candidate set is
accepted and the optimization algorithm proceeds to the next
iteration. If not satisfied, weighting filters will be derived that
aim at counteracting the feed-forward sensitivity function at
the specific frequency intervals of violation. The weighting
filters are based on notch filter design. By filtering the error
responses with the weighting filters in the indicated frequency
intervals of violation, solutions that would otherwise lead to
these violations will be penalized. With the weighting filters
a new candidate set is derived. In general, the weighting filters
are adapted until the robustness constraints are fully met. In this
way, local convexity properties of the constrained optimization
problem are preserved. See also Van der Velden et al. [2014]
where the constrained optimization problem in an IFT context
is transferred into an unconstrained optimization problem but at
the cost of convexity properties.

The remainder of the paper is organized as follows. In Section
2, the stage synchronization problem will be further expedited.
In Section 3 the data-driven optimization approach used to
obtain the synchronization controller parameters, i.e. the FIR
coefficients, will be discussed. This includes the main contribu-
tion of this paper: imposing frequency-domain robustness con-
straints via adaptive weighting filter design. Section 4 discusses
experimental results obtained from an industrial wafer scanner.
In Section 5, the main conclusions will be summarized.

2. STAGE SYNCHRONIZATION PROBLEM

In discussing the stage synchronization problem, consider the
schematics of a wafer scanner in Fig.1. (Extreme) ultraviolet
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Fig. 1. Schematics of a wafer scanner.

light containing an image of the integrated circuits to be pro-
cessed travels via a light path through an optical column to ex-
pose the light sensitive layers of a wafer. The image is obtained
from the reticle which is part of the reticle stage motion control
systems. Similarly, the wafer is part of the wafer stage motion
control systems. During wafer scanning both the reticle and the
wafer stage systems track a series of point-to-point motions in
(scanning) y-direction.

In terms of control, consider the simplified block diagram of
Fig.2, see also Mishra et al. [2008], Wang et al. [2009], Xiao &
Zhu [2006] for other configurations. In this figure, yws and yrs
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yrsỹws

∑

∑∑

Fig. 2. Simplified stage synchronization design.

represent the output signals of respectively the wafer and the
reticle stage. With the optical factor α these outputs define the
synchronization error via

e = αyrs − yws. (1)
The reticle stage plant is given by Prs whereas its feedback
controller is given by Crs. The error signal ers is defined by

ers = ỹws − yrs, (2)
with ỹws the shaped wafer stage output signal. The synchroniza-
tion controller consists of two parts: F1 and F2.

Let Prs be a continuous-time double integrator plant (stages
are of the double integrator type or extensions thereof):

Prs(s) =
1

ms2 , (3)

with m the reticle stage mass and s the Laplace variable. By
choosing the synchronization controller as

F1(s) =
1
α

and F2(s) =
ms2

α
, (4)

it follows from (2), (3), and (4) that

ers(s) = F1(s)yws(s)−Prs(s)F2(s)yws(s) = 0. (5)

Moreover, in combination with (1) it follows that:
e(s) = αF1(s)yws(s)− yws(s) = 0. (6)

Zero error tracking e = 0 is thus obtained with the synchro-
nization controller in (4), the latter being the solution to the
stage synchronization problem. In practice this solution is not
feasible, however. The reason is because of causality.

Consider Prs in (3) but sampled using a zero-order hold circuit.
In discrete-time, it follows that

Prs(z) = (1− z−1
)Z

{

Prs(s)
s

}

=

1
2

z−1
+

1
2

z−2

c0(1− 2z−1
+ z−2

)

, (7)

with constant c0 = mT−2, z−1 a unit time delay, and Z {·}
denoting the z-transform. It can be checked from Fig.2 that

F1(z) =
1

2α
z−1

+

1
2α

z−2 and F2(z) =
c0

α
(

1− 2z−1
+ z−2) ,

(8)

yields zero error tracking ers = 0 irrespective of the discrete-
time feedback controller Crs. The inverse dynamics problem
resulting from inverting the proper plant Prs in (3) is thus
circumvented by delaying the input signal yws to the reticle
stage system via F1 in (8). The synchronized error e follows
from (1), (2), (7), and (8) with ers = 0, and is given by

e(z) =

(

−1+
1
2

z−1
+

1
2

z−2
)

yws(z) = Sff(z)yws(z), (9)

with Sff the so-called feed-forward sensitivity function. Note
that e is non-zero for yws 6= 0. Due to time delay, the signal yrs
is generally too late in compensating for yws in (1) and therefore
zero synchronized error tracking is no longer achieved.

This also follows from the feed-forward sensitivity function Sff
in (9), which is shown in Fig.3 in Bode representation. It can be
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Fig. 3. Bode diagram of the feed-forward sensitivity function.

seen that up to 1 kHz the synchronized error e is suppressed
with respect to the wafer stage signal yws. The zero cross-over
frequency is referred to as the bandwidth of the synchronization
controller. Beyond this bandwidth, yws is amplified in e. This
waterbed effect is described in Heertjes et al. [2013] and is
formalized by

∫ ∞

0
ln(|Sff( jω)|)dω = π

Nz

∑
i=1

ℜ{zi}, (10)

with Nz being the number of right-half plane zeros of Sff.
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In discrete-time, the stage synchronization problem thus in-
volves minimizing the synchronized error e, which often im-
plies maximizing the synchronization controller bandwidth, by
a proper choice of filters F1 and F2. Given the structure in (8),
it seems quite natural to choose these filters of the finite impulse
response (FIR)-type:

F1(z) = a0 + a1z−1
+ · · ·+ anz−n

F2(z) = b0 + b1z−1
+ · · ·+ bnz−n,

(11)

with ai,bi, i∈ {1 . . .n}, the FIR coefficients, see also Jouaneh &
Anderson [2006]. Furthermore, minimization should be done
in view of the waterbed effect in (10). That is, we want to
avoid undesired (high-frequency) amplifications that compro-
mise machine performance. We therefore seek the set of FIR
coefficients {ai,bi} in (11) through data-driven optimization
that minimize a cost function J(e) while satisfying frequency-
domain robustness constraints on Sff.

3. DATA-DRIVEN OPTIMIZATION APPROACH

In finding the FIR filter coefficients through data-driven opti-
mization, consider the H2 cost function

J = eTe, (12)
which represents the quadratic sum of the synchronized error
signals e = [e(1) . . .e(k)]T with k the number of data samples
within a relevant performance interval. Furthermore, let the FIR
filter parameters to-be-optimized be given by

p(κ) = [a0(κ) . . .an(κ) b0(κ) . . .bn(κ)]T , (13)
with κ the iteration number. Firstly, it should be remarked that
the FIR filter optimization procedure is considered to be part of
a machine calibration start-up sequence. As a result, machine
throughput is not compromised by the number of iterations even
in the case where κ is allowed to become large. Secondly, for
the simple example in (8), where the physical interpretation
of the FIR coefficients is straightforward, it follows that yws
generally leads to non-zero (and non-minimal) synchronization
errors e, hence the feedforward sensitivity function in (3).
Minimizing (12) therefore comes at the cost of the physical
interpretation of the FIR coefficients and strongly relates to the
frequency contents of yws which is generally unknown.

With the Gauss-Newton method [Bazanella et al., 2012], the
FIR coefficients p in (13) that minimize (12), or

p̃ = argmin
p(κ)

J, (14)

are generally found through

p(κ + 1) = p(κ)− ζ (∇Te∇e)−1
(∇Te)e, (15)

with p(0) = 0, damping coefficient 0 < ζ ≤ 1, and gradients

∇e =
[

∂e
∂a0

. . .
∂e
∂an

∂e
∂b0

. . .
∂e
∂bn

]

. (16)

In a data-driven context finding p̃ in (14) using (15) essentially
boils down to determining two gradient error signals: ∂e/∂a0
and ∂e/∂b0. For each iteration κ , e in (15) can be obtained
directly from measurement whereas the remaining gradient
error signals in (16) are obtained using the fact that within the
FIR filter structure, each FIR coefficient is delayed one sample
with respect to its predecessor, or

∂e
∂an

=

∂e
∂a0

z−n and
∂e
∂bn

=

∂e
∂b0

z−n. (17)

To derive the gradient error signals: ∂e/∂a0 and ∂e/∂b0, it can
be derived using Fig.2 that

yrs(z) = Srs(z)(Prs(z)Crs(z)F1(z)+Prs(z)F2(z))yws(z),
(18)

where Srs is the reticle stage sensitivity function, or

Srs(z) = (1+Crs(z)Prs(z))
−1, (19)

with Prs(z) a non-parametric model of the reticle stage plant
that can be obtained both quickly and accurately from closed-
loop frequency response function measurements. From (1),
(11), and (18) it follows that

∂e(z)
∂a0

= αSrs(z)Prs(z)Crs(z)yws(z) := αS
c

rs(z)yws(z)

∂e(z)
∂b0

= αSrs(z)Prs(z)yws(z) := αS
p

rs (z)yws(z),
(20)

with S c
rs the complementary sensitivity function of the reticle

stage system and S
p

rs the corresponding process sensitivity
function. In time-domain, the impulse responses corresponding
to S c

rs and S
p

rs can be used to construct the corresponding
Toeplitz matrices Sc

rs and Sp
rs as to obtain the following lifted

system representation [Bamieh et al., 1991]:
∂e
∂a0

= Sc
rsyws and

∂e
∂b0

= Sp
rsyws, (21)

with yws = [yws(1) . . .yws(k)]T.

It should be remarked that stability and convergence of (15)
strongly relates to: (a) the FIR coefficients being affine in the
synchronized error signal e, and (b) plant Prs being stabilized
by controller Crs, both of which are linear time-invariant. In
view of these properties, minimizing (12) renders the optimiza-
tion problem convex which in combination with (15) yields
global asymptotic convergence, see Heertjes et al. [2013].

To find the optimized set of FIR coefficients p̃ in (14) but at the
same time to constrain the feed-forward sensitivity function to-
ward undesired amplifications, hence the stage synchronization
problem from Section 2, we adopt the optimization algorithm
as shown in Fig.4, which includes the following steps:

1

2

3

4

5 6

7

8

obtain e

compute J,∇e

compute p

compute Sff(p)

|Sff(p)| ≤ B

compute W

design N

specify violationyes no

time domain
frequency domain

start

Fig. 4. Overview of the optimization algorithm.

(1) Obtain the synchronized error signals e and (re)set the
optimization parameters/filters.

(2) Compute the (possibly weighted) cost function J with (12)
and the gradient error signals with (16).

(3) Compute the candidate set of FIR coefficients in (13) with
the Gauss-Newton update law in (15).

(4) Compute the feed-forward sensitivity function:
Sff(z) = αS

p
rs (z)(Crs(z)F1(z)+F2(z))− 1, (22)

using (11); (22) results from substitution of (18) in (1).
(5) Check if |Sff( jω)| from (22) does not violate the user-

defined magnitude characteristics B( jω). If no violation
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occurs accept the candidate set from step (3) and return
to step (1) for a possible next iteration κ + 1. If violation
occurs, reject the candidate set and proceed with step (6).

(6) Specify the frequency intervals where violation occurs.
(7) Design a set of notch filters N needed to account for the

violation in each of the intervals found in step (6).
(8) Translate the notch filters N into a weighting filter W

to penalize the (gradient) error signals in the direction of
increased feed-forward sensitivity and return to step (2).

In the adaptive weighting filter design of steps (6)-(8) we dis-
tinguish three parts: violation specification, notch filter design,
and weighting filter design. The former two are performed in
frequency-domain, whereas the latter is done in time-domain.

Step (6). Violation specification starts by defining the amplitude
constraints B on Sff. Let ωs

= {ω0,ω0 + ∆ω , . . . ,ωN} with
ω0 the lowest frequency in the frequency response of Sff and
ωN = ω0 +N∆ω the Nyquist frequency. For the subset ωb

=

{ω0, . . . ,ωN−i,ωN} ⊂ ωs define b as
b = [b0 . . . bN−i bN ] , (23)

where each frequency in ωb associates with a gain b0, . . . ,
,bN−i,bN > 0. Given (23) let B = B(ω) on the frequency
interval ω = [ω0,ωN) be defined as

B(ω) =

k−1

∑
i=0

(

b(ωi)+
ωi+1 −ω
ωi+1 −ωi

b(ωi+1)

)

φi(ω), (24)

with B(ωN) = bN and

φi(ω) =

{

1, if ωi ≤ ω < ωi+1

0, otherwise.
(25)

For (22) and (24) we seek the subset ωv ⊂ ωs (see step (5) in
Fig.4) that satisfies

|Sff( jωv
i )|> B(ωv

i ), (26)
with ωv

i indicating an arbitrary element taken from the set
ωv. If ωv 6= /0, i.e. the bounds on the feed-forward sensitivity
function are being violated, then ωv

= {ωv,1, . . . ,ωv,p} with
p ≥ 1 and each subset ωv,i

= {ωv,i
1 , . . . ,ωv,i

1 + mi∆ω} ⊂ ωv

containing a sequence of consecutive frequencies with mi ≥ 1
and i ∈ {1, . . . , p}. Note that each subset ωv,i thus defines a
closed frequency interval of violation.

Step (7). The notch filter design aims at finding the series con-
nection of notch filters Nk = N1N2 . . .Np where each notch
filter Ni relates to the violation of the amplitude constraints in
(24) corresponding to subset ωv,i. For this purpose, define the
center frequency ωc,i and the magnitude of violation γi as

ωc,i = ωv,i
1 +

mi∆ω
2

γi = max{ϕ(ωv,i
1 ), . . . ,ϕ(ωv,i

1 +mi∆ω)},
(27)

with

ϕ(ω) =















B(ω)

|Sff( jω)|
, if |Sff( jω)| ≥ 1

|Sff( jω)|

B(ω)

, otherwise.
(28)

The set of notch filters is then given by

Nk( jω) =

p

∏
i=1

−ω2
+ 2 jζ i

1ωc,iω +ω2
c,i

−ω2
+ 2 jζ i

2ωc,iω +ω2
c,i

, (29)

with damping coefficients ζ i
1,ζ

i
2 that are related via

ζ i
2 = γiζ i

1. (30)
With (30), the height of the notch filter is determined by the
maximum amount of violation that is encountered in each

subset ωv,i. The values for the damping coefficients ζ i
1 and ζ i

2
are subject to manual tuning. In this paper, we scale these values
to the different sizes of the p subsets in ωv, i.e. the frequency
intervals of violation. Let ∆ωv,i

= mi∆ω , then a typical scaling
ηi ∈ η = {η1, . . . ,ηp} is found by:

ηi =
∆ωv,i

min{∆ωv,1, . . . ,∆ωv,p}
=

mi

min{m1, . . . ,mp}
, (31)

This scaling is used to set ζ i
1 = 0.01ηi, which in combination

with (30) gives ζ i
2 = 0.01γiηi.

Step (8). The weighting filter design aims at penalizing the
(gradient) error signals in the direction of increased feed-
forward sensitivity. Given the notch filters in (29), an adaptive
weighting filter W is constructed:

Wk+1(z) = Wk(z)Nk(z), W1(z) = 1, k ∈ {1, . . . ,q}, (32)
with k the number of sub-iterations required for the feed-
forward sensitivity function in (22) to satisfy the constraints
B in (24) and q the maximum number of iterations. For each
iteration k, a weighted error signal ẽ is derived via

ẽ = We, (33)
with W a Toeplitz matrix of appropriate dimensions and derived
from W in (32). By using the weighted error signal ẽ from
(33) instead of e in (12), (15), and (16), we effectively penalize
violation of the frequency-domain constraints B in (24) in the
choice of the candidate set of FIR coefficients.

It should be remarked that global convexity properties in the
constrained optimization problem underlying Fig.4 are gener-
ally lost such that global stability and convergence properties
are no longer guaranteed. A poor choice of B, e.g. one that
conflicts with the waterbed effect in (10), may lead to no
convergence whatsoever. Furthermore, upon acceptance of a
candidate set, the (sub-)iteration parameter k of the adaptive
weighting filter design will be reset to k = 1 this to ensure that
W1 = 1 at the next iteration of the optimization scheme κ + 1,
i.e. each iteration κ starts under unconstrained conditions.

4. WAFER SCANNING RESULTS

In this section we will discuss the results obtained from several
experiments taken from an industrial wafer scanner. The dis-
cussion is started with the derivation of non-parametric models
for the controlled reticle stage. These models are used to derive
the gradient error signals in (16) and (20), which form the basis
of the Gauss-Newton optimization scheme in (15).

To model the plant Prs consider the Bode diagrams in Fig.5.
The figure shows frequency response functions (FRFs) either
reflecting measured plant data or a 12-th order (non-parametric)
model fit obtained from these data; note that the measured
plant data are not obtained from direct measurement but from
reconstruction using closed-loop measurement data. Between
40 and 1 kHz both FRFs show double integrator behavior
apart from a time delay, see (7). Below 40 Hz, deviation from
this behavior is the result of poor closed-loop identification.
Beyond 1kHz, resonances determine the frequency response.
The 12th-order model is expected to be sufficiently accurate to
derive the gradient error signals in (20). To derive the gradient
error signals, we also need the characteristics of the feedback
controller Crs, which in principle are known.

Fig. 6 shows the Bode diagram of the 13-th-order PID-based
controller Crs, which was designed by manual loop shaping. Crs
includes five notch filters to deal with the plant resonances and
a second-order low-pass filter to limit high-frequency amplifi-
cation. The controller in Fig.6 with the plants in Fig.5 typically
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Fig. 5. Bode diagrams of the frequency response functions of
Prs either by measurement data (black) or by a 12-th order
(non-parametric) model fit (red).
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Fig. 6. Bode diagram of the frequency response function of the
reticle stage controller Crs.

induce a controller bandwidth of 412 Hz with a phase margin
of 20.5 degrees and a gain margin of 5.8 dB.

With the optimization algorithm as discussed in Fig.4 and the
reticle stage models for plant Prs in Fig.5 and controller Crs
in Fig.6, a series of optimization experiments have been con-
ducted. In terms of the feed-forward sensitivity function Sff,
recall (9) and (22), Fig.7 shows the effect of three different
experiments. In the first experiment, see the top part of Fig.7,
the case is considered where no frequency-domain constraints
are used in the optimization algorithm, i.e. steps (5)-(8) of Fig.4
are skipped. For this case, the optimal set of FIR coefficients
in F1 and F2 in (11) is basically found in one iteration. The
resulting feed-forward sensitivity function Sff = Sff(F1,F2)
shows that a synchronization controller bandwidth is obtained
of 588.2 Hz. Also the resemblance is shown with Sff from (9)
which is merely the result of time delay, recall the discussion
in Section 2. At the high-frequencies, Sff from (22) shows
a significant amplification according to the waterbed effect in
(10). For example, almost 17 dB amplification is induced at
1.5 kHz. To limit these amplifications two bounds B1 and
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Fig. 7. Bode magnitude plots of the reconstructed feed-forward
sensitivity functions Sff( jω) for different experiments: no
constraints, moderate constraints, and tight constraints.

B2 are introduced according to (24); the solid red curves in
respectively the center and bottom parts of the figure. Bound
B1 is a moderate constraint that is mainly designed to limit
the high-frequency amplifications. In doing so, also a low-
frequency constraint of -12 dB is used as to avoid significant
low-frequency deterioration. It is clear from the center part of
the figure that the frequency-domain constraints are nicely met
whereas performance is hardly compromised; the synchroniza-
tion controller bandwidth drops from 588.2 Hz to 543.7 Hz.
For the more tight bound B2 in the bottom part of the figure,
it can be seen that the synchronization controller bandwidth is
significantly reduced, however, to 397.7 Hz; both constrained
optimizations were done with κ ≤ 5 and k ≤ 10.

In time-domain, the effect of a reduced synchronization band-
width is shown in Fig.8 in terms of filtered error responses. In
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Fig. 8. Measured synchronized error responses for different
experiments: without synchronization controller or with
synchronization controller and no constraints, moderate
constraints, and tight constraints.

the top part of the figure, a first-order low-pass filter operation
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(which has resemblance to a moving average filter operation as
used in the wafer scanning industry) is used according to:

FLP(s) =
ωLP

s+ωLP
, (34)

with ωLP = 2π · 70 rad · s−1 the cross-over frequency. In the
bottom part of the figure a first-order high-pass filter operation
is used which is defined as FHP(s) = 1−FLP(s); this filter op-
eration has some of the features encountered with a commonly-
used moving standard deviation filter operation [Butler, 2011].
For a representative point-to-point motion, see the scaled accel-
eration set-point, the experimental data of four experiments are
shown. By taking the mean of four repeats, these data give a fair
representation of the recurring parts of the synchronized error
signals for the given set-point. The four experiments involve:
(a) no synchronization controller, i.e. F1 = F2 = 0, (b) an
optimized synchronization controller, but without frequency-
domain constraints, (c) an optimized synchronization controller
under moderate constraints B1, and (d) under tight constraints
B2. In the top part of Fig.8, it can be seen that all optimized
sets perform significantly better than the case with no synchro-
nization controller. In the bottom part of Fig.8, it is shown that
higher bandwidths induce better disturbance rejection proper-
ties in the region t ∈ [0.017 0.05] seconds, i.e. the indicated
region of constant velocity where wafer scanning takes place.

In frequency-domain, Fig.9 in terms of cumulative power spec-
tral density (CPSD) analysis confirms the correlation between
improved disturbance rejection properties and increased band-
widths. The RMS values for e of 2.08 nm, 2.10 nm, 2.33 nm,
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Fig. 9. Measured cumulative power spectral densities of the
synchronized error responses for different experiments:
without synchronization controller or with synchroniza-
tion controller and no constraints, moderate constraints,
and tight constraints.

and 3.48 nm are obtained with synchronization controller band-
widths of respectively 588.2 Hz, 543.7 Hz, 397.7 Hz, and 0 Hz.

5. CONCLUSIONS

In this paper, data-driven control is applied to the stage syn-
chronization problem. By imposing frequency-domain robust-
ness constraints on the feed-forward sensitivity function, it is
demonstrated that synchronization performance can roughly
be maintained while meeting frequency-domain specifications.
Too tight constraints, however, induce a significant reduction
of the synchronization controller bandwidth in view of the
waterbed effect and thus compromise performance. Introducing
frequency-domain constraints clearly renders the constrained
optimization problem, which includes both time-domain and
frequency-domain aspects, globally non-convex. As a result,
global stability and convergence properties corresponding to
the unconstrained (and convex) optimization problem are gen-
erally lost. The adaptive weighting filter design as a means
to impose frequency-domain constraints provides a heuristic
approach with similarities to manual loop shaping. For specific

frequency contributions that cause violation of the constraints
fairly good results have been demonstrated with this approach.
For broad-band violations one may want to reside to more rigor-
ous approaches like the one considered in the companion paper
Van der Velden et al. [2014] where the constrained optimiza-
tion problem is transformed into an unconstrained optimization
problem but at the cost of convexity properties.
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