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Abstract: We study the problem of aggregator’s mechanism design for controlling the amount
of active, or reactive, power provided, or consumed, by a group of distributed energy resources
(DERs). The aggregator interacts with the wholesale electricity market and through some
market-clearing mechanism is incentivized to provide (or consume) a certain amount of active
(or reactive) power over some period of time, for which it will be compensated. The objective
is for the aggregator to design a pricing strategy for incentivizing DERs to modify their active
(or reactive) power consumptions (or productions) so that they collectively provide the amount
that the aggregator has agreed to provide. The aggregator and DERs’ strategic decision-making
process can be cast as a Stackelberg game, in which aggregator acts as the leader and the DERs
are the followers. In previous work [Gharesifard et al., 2013b,a], we have introduced a framework
in which each DER uses the pricing information provided by the aggregator and some estimate
of the average energy that neighboring DERs can provide to compute a Nash equilibrium
solution in a distributed manner. Here, we focus on the interplay between the aggregator’s
decision-making process and the DERs’ decision-making process. In particular, we propose a
simple feedback-based privacy-preserving pricing control strategy that allows the aggregator
to coordinate the DERs so that they collectively provide the amount of active (or reactive)
power agreed upon, provided that there is enough capacity available among the DERs. We
provide a formal analysis of the stability of the resulting closed-loop system. We also discuss
the shortcomings of the proposed pricing strategy, and propose some avenues of future work.
We illustrate the proposed strategy via numerical simulations.

Keywords: Power systems, distributed energy resources, energy market, distributed control,
game theory.

1. INTRODUCTION

Power distribution networks are undergoing radical trans-
formation in structure and functionality. These trans-
formations are enabled by the increased reliance on ad-
vanced communications and controls, as well as by the
increased penetration of renewable-based electricity gen-
eration resources (e.g., solar photovoltaics (PV) installa-
tions), controllable loads (e.g., thermostatically-controlled
loads (TCLs)), and storage-capable loads (e.g., plug-in
electric vehicles (PEVs)). These generation resources and
loads are commonly referred to as distributed energy
resources (DERs), and, if properly controlled, they can be
utilized to provide ancillary services. For example, PEVs
and TCLs can be utilized to provide frequency regulation
services [Guille and Gross, 2009, Callaway and Hiskens,
2012]. However, in order to enable the added function-
ality that DERs may provide, it is necessary to develop
appropriate control mechanisms. In this paper, we address
this problem and propose a framework for controlling the
power provided/consumed by DERs, and perhaps also the
reactive power if the objective is to regulate voltage.
⋆ This work was supported in part by a grant through the Informa-
tion Trust Institute of the University of Illinois; and by NSF under
grant ECCS-CPS-1135598.

Focusing on controllable loads, their control is currently
achieved through demand response programs in which
participants sign a contract with an aggregating entity—
the demand response provider—so that their electrical
energy consumption can be curtailed by the aggregator
in response to market prices or in order to ensure reliable
operation of the system, in exchange for lower electricity
prices. In this work, we also consider an aggregating
entity that will interact with the wholesale electricity
market and, through pricing, will incentivize DERs to
provide/consume active (or reactive) power in exchange
for monetary benefits. As an example, a household with a
PV system (with a reactive power capable power electron-
ics grid interface) and a TCL might choose to offer these
two resources to an aggregator so that the PV system
is utilized to provide reactive power for voltage control,
and the TCL is utilized to provide frequency regulation.
In this sense, the interplay between the DERs and the
aggregator can be modeled as a Stackelberg game, where
the aggregator acts as the leader and the DERs are the
followers.

1.1 Literature Review

Game-theoretic models have been used recently for study-
ing energy markets (see, e.g., [Fan, 2012, Kiani and An-
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naswamy, 2012, Saad et al., 2012]). The game-theoretic
parts of our work are related to noncooperative resource
allocation problems in the literature, for example [Jo-
hari and Tsitsiklis, 2006, Maheswaran and Başar, 2006,
Kelly et al., 1998]), where under appropriate concavity
assumptions, the existence of Nash equilibrium in pure
strategies is guaranteed using the results in [Rosen, 1965].
In the context of our work, the process of DER power
consumption is related to the charging process in PEVs
that recently appeared in [Tushar et al., 2012], and [Ma
et al., 2012]; however, in our setting, we deal with a
scenario in which the DERs are individual decision makers
and compute the Nash equilibrium using the information
available from their neighboring DERs (along with the
price set by the aggregator). Additionally, in our setting,
we include more general pricing strategies and allow for
analysis of scenarios in which DERs are capable of both
providing and consuming power.

1.2 Statement of Contributions

The contributions of this paper are as follows. First,
building on the framework introduced in our recent
work [Gharesifard et al., 2013b,a], we consider a two-
layer decision-making structure. In the first layer—the
aggregator layer—there is a set of aggregators that in-
teract with the wholesale electricity market, and through
some market-clearing mechanism, will enter a contract to
provide a certain amount of active (or reactive) power over
some predetermined period of time, for which they will
be compensated. In the second layer—the retail market
layer—each aggregator offers prices for the active (or
reactive) power that DERs may provide or consume—
negative if provided and positive if consumed. Then, the
objective is for the aggregator to incentivize the DERs via
pricing to provide or consume active (or reactive) power so
that they collectively provide an amount equal to that the
aggregator has agreed to provide. We then focus on the
retail market layer; specifically, on the interplay between
an aggregator and a set of DERs.
We assume that each DER is a price-anticipating decision-
maker (i.e., it is aware of the aggregator pricing strategy),
and in order to make a decision, it exchanges some infor-
mation with neighboring DERs, with the objective of esti-
mating the average amount of resource (active or reactive
power) collectively available in its immediate neighbor-
hood. Then, each DER uses this estimate, together with
the aggregator’s pricing strategy information, to decide on
the amount of active (or reactive) power that it will sell
or buy; this strategic decision-making process is cast as a
game which, under appropriate assumptions is guaranteed
to have a unique Nash equilibrium solution. When the col-
lective active (or reactive) power consumed (or produced)
by the DERs does not match the amount that the aggre-
gator has been asked to provide, the aggregator will adjust
its pricing strategy so as to steer the DERs to collectively
provide the amount that the aggregator has contracted in
the wholesale electricity market. In particular, we provide
a feedback control mechanism that allows the aggregator
to change its pricing strategy to meet its objective, i.e., to
coordinate the DERs so that they collectively provide the
amount of active (or reactive) power that the aggregator
has agreed to provide. The upshot of this feedback control
mechanism described above is that it preserves privacy, in

the sense that it does not rely on the utility functions of
the individual DERs.

2. MATHEMATICAL PRELIMINARIES

We start with some notational conventions. Let R, R≥0, Z,
and Z≥1 denote the set of real, nonnegative real, integer,
and positive integer numbers, respectively. We denote by
B(X) the set of bounded real-valued functions on a set
X ⊂ R

d, d ∈ Z≥1; we use B
0(X) when the functions are,

additionally, continuous. We use the short-hand notation
1d = (1, . . . , 1)T ∈ R

d and 0d = (0, . . . , 0)T ∈ R
d. We

also denote by ei ∈ R
d the unit vector with 1 in its ith

coordinate and zeros elsewhere.

2.1 Graph Theory

Next, we introduce some basic notions from graph the-
ory [Biggs, 1994]. A graph G = (V , E) consists of a vertex
set V and an edge set E ⊆ [V ]2 := {(v, w) | v, w ∈
V}. The neighbors of v ∈ V belong to the set Nv :=
{w ∈ V | (v, w) ∈ E} and the degree of v is dv :=
|Nv|. A path in G is a sequence of edges of the form
(v1, v2), (v2, v3), . . . , (vk−1, vk). The graph G is connected
if there is a path between any pair of vertices. Henceforth,
when not explicitly stated, we fix an ordering on the
vertex set V so that we may write V = {v1, . . . , vn}, where
n is the order of G. The adjacency matrix of G is the
n × n matrix A defined as Ai,j = 1 if {vi, vj} ∈ E and
Ai,j = 0 otherwise. The weighted degree vi, i ∈ {1, . . . , n}
is d(vi) =

∑n

j=1 aij . The weighted degree matrix D is

the diagonal matrix defined by (D)ii = d(i), for all
i ∈ {1, . . . , n}. The Laplacian is L = D − A. For an
(undirected) graph, L1n = 1T

nL = 0, and L = L
T and

is positive semidefinite. When G is connected, the zero
eigenvalue is simple.

2.2 Game Theory

We recall the class of concave games in the absence of
shared constraints, see [Rosen, 1965, Başar and Olsder,
1999]. A concave game (with unshared constraints) is a
triplet G = (V, S, {fi}ni=1), where

• V is a group of n ∈ Z≥1 players,
• S = S1 × S2 × . . . × Sn is the product strategy set,
where Si ⊂ R

di with di ∈ Z≥1, is nonempty, convex
and compact, and

• fi : S → R, the payoff for player i ∈ {1, . . . , n}, is a
locally Lipschitz concave mapping.

A point x∗ ∈ S is called a Nash equilibrium of G if and
only if, for all i ∈ V ,

fi(x
∗) = max

yi

{fi(x
∗
1, . . . , x

∗
i−1, yi, x

∗
i+1, . . . , x

∗
n) | yi ∈ Si}.

In other words, when the game is at x∗, no player can
improve its payoff by unilaterally deviating from this
point. The existence of a (pure) Nash equilibrium for this
class of games is guaranteed [Rosen, 1965]. A uniqueness
result can also be obtained under the so-called diagonally
strict concavity assumption, along with differentiability
(see [Rosen, 1965, Theorem 4]), when one considers an-
other suitable notion of equilibrium (the so-called nor-
malized or variational equilibrium), see [Kulkarni and
Shanbhag, 2012]. When the constraints are not shared,
as it is the case in this paper, these notions of equilibria
match, yielding an applicable uniqueness result.
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3. PROBLEM STATEMENT

We first recall some of the notions that were introduced
in [Gharesifard et al., 2013b,a]. Consider a set of aggrega-
tors, denoted by {vagg1 , . . . , v

agg
N }, N ∈ Z≥1, who, through

some market-clearing mechanism, are asked to provide a
certain amount of resource (active or reactive power) over
some predetermined period of time. We assume that each
aggregator has a backup storage device that can be used
to provide (or consume) the difference. Alternatively, one
can assume that the aggregator contracts some insurance
with a third party that will provide the difference. Each
aggregator is responsible for controlling the amount of
resource provided or consumed by a group of DERs via
some pricing strategy. The collection of all DERs builds
a new layer, which we term the retail market layer. The
notions above are illustrated in Fig. 1, with the decision-
making process of one of the aggregators as the focus
of the paper; the decision-making of DERs in the retail
market layer was discussed in [Gharesifard et al., 2013b,a],
as we recall next.

DERs’ decision-making process

We denote by V = {v1, . . . , vn}, n ∈ Z≥1, the set of
DERs interacting with the aggregator, where the available
amount of resource of each vi, i ∈ {1, . . . , n}, at time
t ∈ R≥0 is denoted by xi(t) ∈ [0, 1]. Each DER is a
decision maker and can freely choose to participate after
receiving a request from its aggregator. The DERs can
remain idle, or provide/absorb active (or reactive) power.
The decision that each DER is faced with, among other
things, depends on its own utility function, along with the
pricing strategy designed by the aggregator. The DERs
considered in [Gharesifard et al., 2013b,a], and also here,
are price anticipating, in the sense that they are aware
of the fact that the pricing is designed by the aggregator
with respect to the average resource available. We also
assume that in order for each DER to make its decision,
it can collect information from neighboring DERs with
which it can exchange information. Let us formalize these
statements.
Without loss of generality, we assume that the DER is
willing to participate in the resource reallocation process
by setting the amount of resource that it is providing
in the range [0, 1]. The functions Pc : [0, 1] → R≥0 and
Pp : [0, 1] → R≥0 given by Pc(x(t)) and Pp(x(t)), x(t) =
1
n

∑n

i=1 xi(t), denote, respectively, the price per unit of
resource that the DERs pay when consuming and receive
when providing. Additionally, it is reasonable to assume
that the DERs are making their decisions on the amount
of resource they will provide or absorb for a certain a
priori fixed period of time that they are aware of. We
also need to define a set of utility functions Ui : [0, 1] →
R≥0, with values Ui(xi), for all i ∈ {1, . . . , n}. Although
our treatment allows for more general classes of utility
functions, it is assumed that each Ui is an increasing
function of the available resource. Let us next describe
the decision-making process that each DER is faced with.
Similar to other scenarios of resource allocation problems
(see, e.g., [Johari and Tsitsiklis, 2006]), each DER wishes
to maximize a payoff function fi : X ×Xagg → R, where
X = [0, 1]n and Xagg = B

0([0, 1])× B
0([0, 1]), given by

The grid

The aggregator layer

The retail market layer

Fig. 1. Networks of DERs and their corresponding aggregators; in
each network, each DER can communicate with some neigh-
bors. DERs can also communicate with their corresponding
aggregator.

fi(xi, x−i, Pc, Pp) =

{
Ui(xi)− (xi − x0

i )Pc(x), xi > x0
i ,

Ui(xi)− (xi − x0
i )Pp(x), xi ≤ x0

i ,

(1)

where (x0
i , x

0
−i) ∈ X denotes the initial resource profile of

all DERs.

Aggregator’s objective

Let X ∈ R be the amount of resource (active or reac-
tive power) that the aggregator has contracted to pro-
vide/consume over some predetermined period of time;
when X ∈ R<0, the aggregator needs to encourage the
DERs to provide active (or reactive) power. Conversely,
when X ∈ R>0, the aggregator needs to encourage the
DERs to consume active (or reactive) power. The ob-
jective of the aggregator is to ensure that the DERs
collectively provide X ∈ R units of resource; thus it wishes
to maximize the function fagg : X × Xagg → R≤0 given
by

fagg(x, Pc, Pp) = −|X −
n∑

i=1

αi(xi − x0
i )|,

where αi ∈ R>0, for all i ∈ {1, . . . , n}, over the choices of
Pc and Pp.
Based on the description given above, the aggregator and
the DERs define a game, called the retail market game,

GDERs-AGG = (V ∪{vagg},Rn×Xagg, f1× . . .×fn×fagg),

where players wish to maximize their objective functions.
For most part, we think of GDERs-AGG as a two-stage
Stackelberg game, where the aggregator sets the pricing
strategies first and the DERs act next.
We next raise some questions, where (a-c) were previously
introduced in [Gharesifard et al., 2013b,a].
(a) (Existence of equilibria): given the pricing strategies

of the aggregator Pc, Pp ∈ B
0([0, 1]), does there

exist a Nash equilibrium solution to the retail market
game? If so, is the equilibrium unique?
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(b) (Distributed equilibria seeking): if the answers to both
parts of (a) are positive, can the DERs use a strategy
which only relies on local information available to
each DER, to seek the Nash equilibrium, after the
pricing strategy is fixed?

(c) (Regulating pricing strategy): if the answer to the
existence part of (a) is positive, does there exist
pricing strategies Pc, Pp ∈ B

0([0, 1]) such that

x∗ ∈ {z ∈ X | z = argmaxxfagg(x, Pc, Pp)}

and x∗ is the retail market game Nash equilibrium?
(d) (Optimal regulating pricing strategy): What are the

pricing policies that enable the aggregator to incen-
tivize the DERs so that they collectively provide
the amount agreed upon, while minimizing the cost
function

fagg(x, Pc, Pp) =

∫ ∞

t=0

[x(t) − x∗)TQ(x(t)− x∗)

+RcP
2
c (x̄(t)) +RdP

2
d (x̄(t)]dt,

where Q ∈ R
n×n and Rc, Rd ∈ R>0?

We have provided solutions to (a) and (b) in [Gharesifard
et al., 2013b,a]; here we provide an answer to (c), and
discuss possible approaches to (d).

4. DISTRIBUTED ALGORITHMS FOR SEEKING AN
EQUILIBRIUM OF THE RETAIL MARKET GAME

We start by stating some assumptions on the payoff
functions of the players.

Assumption 4.1. (Properties of the payoff func-
tions): We assume that
(i) Ui are concave, nondecreasing, and continuously dif-

ferentiable, for all i ∈ {1, . . . , n},
(ii) Pc is convex, twice differentiable, and nondecreasing,
(iii) Pp is concave, twice differentiable, nondecreasing,

and
(iv) Pc(x) ≥ Pp(x), for all x ∈ [0, 1].

Let us discuss some of the results obtained in [Gharesifard
et al., 2013b,a] about the retail market layer, after the
pricing strategy is chosen by the aggregator. First, by
imposing Assumption 4.1, the retail market game is a
concave game and hence has at least one pure Nash equi-
librium. Moreover, when this Nash equilibrium is unique
(diagonally strict concavity), it can be found using a
distributed update scheme, implemented by DERs only
using their local information. Note that the function fi, al-
though locally Lipschitz, is not necessarily differentiable.
In spite of this, as we have shown in [Gharesifard et al.,
2013b,a], the DERs can still follow a set-valued gradient
dynamical system to arrive at a Nash equilibrium of the
retail market game, when this equilibrium is unique.
Let us briefly recall this scheme, here in continuous-time.
In order to make the presentation simpler, and given that
a precise version of this algorithm is discussed elsewhere,
we write this scheme for differentiable points of the action
space. In fact, for the special case where Pc and Pp are
the same (hence linear, by Assumption 4.1(ii) and (iii)),
differentiability holds everywhere.
Let C = (Xn × R

n) and consider the dynamics Ξ : C ×
(Rn × R

n) → C × (Rn × R
n) given by

ẋ(t) = ΠC(−Lx(t)− Lz(t) + sx),

ż(t) = Lx(t), (2)

where

sx = (∇x1
f1(x

1), 0, . . . , 0
︸ ︷︷ ︸

computed by v1

, . . . , 0, . . . , 0,∇xn
fn(x

n))T
︸ ︷︷ ︸

computed by vn

}},

L = L ⊗ In ∈ R
n2

×n2

, and L is the Laplacian of GDERs.
Here, ΠC is the projection map on C × (Rn×R

n). We will
occasionally refer to these dynamics as the concave Nash-
seeking dynamics. Note that (2) is clearly distributed
over the network GDERs and each player only uses the
information about its own payoff function. The following
result was proved in [Gharesifard et al., 2013a]. Here,
and also throughout the paper, we assume that the
pricing strategies and the utility functions are such that
diagonally strict concavity assumption holds.

Theorem 4.2. (Asymptotic convergence of (2)):Given
a pricing strategy for the aggregator, when GDERs is undi-
rected and connected, the dynamics in (2) are asymptot-
ically convergent. Moreover, the projection onto the first
component of its trajectory converges to x

∗ = 1n ⊗ x∗,
where x∗ ∈ R

n is the Nash equilibrium of GDERs-AGG.

5. PRICING STRATEGY DESIGN FOR THE
AGGREGATOR

In this section, we discuss a simple strategy that allows the
aggregator to regulate the consumption (or provision) of
active (or reactive) power. It is important to note that, in
general, the aggregator does not have any access to DERs’
private information. As we will see, this assumption places
a restriction on the class of pricing strategies that can be
designed; in particular, the pricing offered might be far
from “optimal” (see problem statement (d)). In this sense,
the pricing strategy designed below is only implementable
when there exist enough resources within the retail market
so that providing the request from the grid is feasible, c.f.
Remark 5.3.
Throughout this section, for simplicity and also for ensur-
ing differentiability, we assume that the pricing functions
Pc and Pp are the same, and hence linear; we denote this
pricing strategy by P . The aggregator designs the price
of consumption (or provision) P : [0, 1] → R≥0 as

P (x(t)) = ax(t) + u(t), (3)

where a ∈ R≥0 and u(t) ∈ R≥0 is the aggregator’s control
input, for all t ∈ R≥0. For example, the aggregator may
wish to use u to prevent the DERs from overconsumption,
when they have high utility functions. Using (1), one can
write (2) as

ẋ(t) = F (x(t), z(t)) +Gu(t),

ż(t) = Lx(t), (4)

where G = (e1, . . . , en)
T ∈ R

n2

and

F (x(t), z(t)) = ΠC(−Lx(t)− Lz(t) + sx)−Gu(t).

Our main result is stated next.

Theorem 5.1. (Stabilizing to the aggregator’s total
request): Suppose that the aggregator’s policy is given
by (3), where a ∈ R≥0, and there exists a constant con-
troller u(t) = kd, kd ∈ R≥0, under which the system (4)
stabilizes to (x∗, z∗), where x

∗ = 1n ⊗ x∗, x∗ ∈ R
n, and

1T
n (x

∗
i − x0

i ) = X . Then the projection onto the first and
second components of any trajectory of
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ẋ(t) = F (x(t), z(t)) +Gξ(t),

ż(t) = Lx(t),

ξ̇(t) = −(

n∑

i=1

(xi(t)− x0
i )−X ), (5)

asymptotically converges to (x∗, z∗).

Proof. For simplicity of notation, let us introduce

η(t) = −(

n∑

i=1

(xi(t)− x0
i )−X ),

where (x1, . . . , xn) ∈ R
n is the resource profile of the

DERs. For an initial condition (x0, z0, ξ0), consider the
candidate Lyapunov function V1 : Xn × R

n × R → R≥0

given by

V1(x, z, ξ) = V0(x, z) +
1

2
(ξ − kd)

2,

where V0 is a quadratic control Lyapunov function for (2)
given by

V0(x, z) =
1

2
(x− x

∗)T (x− x
∗) +

1

2
(z − z

∗)T (z − z
∗),

with the stabilizing feedback P (x(t)) = ax(t) + kd. The
function V1 is clearly a smooth mapping. Let us examine
its set-valued Lie derivative.

LΨV1(x, z, ξ) =
∂V0

∂x

T

(F (x(t), z(t)) +Gξ(t))+

+
∂V0

∂z

T

Lx(t) + (ξ(t) − kd)η(t)

=
∂V0

∂x

T

(F (x(t), z(t)) +Gkd) +
∂V0

∂z

T

Lx(t)

+ (ξ(t)− kd)η(t) +
∂V0

∂x

T

G(ξ(t) − kd)

= LΦV0(x, z) + (ξ(t)− kd)(η(t) +
∂V0

∂x

T

G).

By definition of G, we have that η(t)+ ∂V0

∂x

T
G = 0. Given

that LΦV0(x, z) ≤ 0, we conclude that

LΨV1(x, z, ξ) ≤ 0,

and hence (5) is stable and has bounded trajectories. The
application of the LaSalle invariance principle leads to
the conclusion that, from a given initial condition, the
evolution of (5) approaches a set M of the form V −1

1 (c)∩
S, c ∈ R, where S is the largest invariant set contained in

{(x, z, ξ) ∈ V −1
1 (≤ V1(x

0, z0, ξ0)) | LΨV1(x, z, ξ) = 0}.

Note, however, that when LΨV1(x, z, ξ) = 0, we have that
LΦV0(x, z) = 0, which implies that (x, z) = (x∗, z∗). �

Remark 5.2. (Implementation of the continuous-
time controller): Although we have designed the pricing
inputs as a continuous-time controller, it can potentially
be implemented in a discrete-time manner; this is a rea-
sonable assumption as the change in pricing happens
much slower than the Nash seeking dynamics in the retail
market. A real-time scheduling can also be achieved us-
ing an event-triggered implementation [Tabuada, 2007].
Finally, it is worth mentioning that the procedure pro-
posed is robust, a property of the saddle-point dynamical
systems, and can regulate slow time-varying requests. •

Remark 5.3. (Optimal regulating pricing strategy):
The shortcoming of the pricing strategy provided here
is that it does not take into account the revenue that

v5 v3

v6 v2

v4

v1

Fig. 2. The network of DERs of the simulations is shown. The
adjacency matrix associated with this network has 1 in the
entries corresponding to edges and zeros elsewhere.

DER 1 DER 2 DER 3 DER 4 DER 5 DER 6

u
1 0.4021 0.7126 0.5502 0.6002 0.8216 0.7984

u
2 0.1000 0.1000 0.1000 0.1000 0.1162 0.1000

Table 1. The utility properties of each DER in Fig. 2.

the aggregator obtains. This is because the aggregator
typically receives a fixed price through the contract in the
wholesale market, but this price might be lower than the
one that the aggregator needs to pay the DERs. Problem
statement (d) takes this into account, by modeling the
aggregators’ decision-making process as the leader of a
Stackelberg game. The difficulty, however, is in designing
an implementable optimal solution for the aggregator
which does not rely on the private information about the
utility functions of the DERs. The approach developed
in [Shen and Başar, 2007] provides promising avenues for
addressing this. •

6. SIMULATIONS

Consider a group of DERs connected to an aggregator;
for illustration purposes, we have only selected six DERs
{v1, . . . , v6}. The DERs are price anticipating and can
obtain information from each other via a communication
network shown in Fig. 2.
Each DER’s utility function Ui : [0, 1] → R≥0, i ∈
{1, . . . , 6}, is given by

Ui(x) = u1
i log(1 + x) + u2

ix,

where Ui is normalized so that u1
i , u

2
i ∈ (0, 1]. The

values of these parameters for each DER are given in
Table 1. Note that Ui is increasing and strictly concave,
and thus satisfies Assumption 4.1(i). The pricing strategy
for the aggregator is given by (3) and is thus linear. The
parameter a is chosen to be 0.1 here. It can be shown that
with the given parameters, the diagonally strict concavity
assumption holds.
Fig. 3 demonstrates the evolutions of the dynamics (5)
from the initial condition x0 = (0.2, 0.3, 0.3, 0.4, 0.1, 0.2)T .
In the first scenario, see (a) and (b), the aggregator is
requested to encourage the DERs to consume resource
such that 50% of their total capacity is full. The pricing
input of the aggregator is shown in Fig. 4(a). In contrast,
in Fig. 3(c) and (d), the aggregator encourages the DERs
to provide one-third of their available resource back to the
grid. Fig. 4(b) shows the pricing input of the aggregator
for this case. The pricing control inputs of this example
can be implemented in discrete-time, where the aggrega-
tor implements changes in its pricing scheme in a longer
period of time, using its information about the average
available resource within the DERs.
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Fig. 3. (a) and (b) correspond to the scenario where the grid
has requested that the aggregator encourages the DERs to
consume resource such that 50% of their total capacity is used.
The DERs’ initial charge is x0 = (0.2, 0.3, 0.3, 0.4, 0.1, 0.2)T ,
i.e., 25% of their total capacity is used. Panel (a) shows
each DERs’ consumption, and Panel (b) shows their total
capacity, regulated by the aggregator. In contrast, (c) and (d)
correspond to the scenario where the grid has requested that
the aggregator encourages the DERs to return one-third of
their available resource (active or reactive power) to the grid.
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Fig. 4. (a) and (b) show the pricing control input of the aggregator,
asymptotically converging to 0.3704 and 0.6396, respectively.

7. CONCLUSIONS AND FUTURE WORK

We have studied the problem of incentivizing a group of
DERs to provide/consume active or reactive power in ex-
change for monetary benefits. Building on the framework
previously introduced in [Gharesifard et al., 2013b,a], the
DERs considered are price anticipating and only have
access to local information, but can still compute an
equilibrium solution once the pricing strategy is fixed.
We have proposed a pricing strategy that allows the
aggregator to regulate the consumption (or provision) of
active (or reactive) power by a group of DERs. The upshot
of the pricing strategy proposed is that it does not rely on
the private information about the utilities of the DERs.
We have also discussed a possible shortcoming of this
strategy regarding the revenue of the aggregator, and have
proposed a framework for addressing it. It is an interesting
avenue of research to study this problem for classes of
nonlinear pricing strategies as in [Shen and Başar, 2007],
where the aggregator also uses the average-dependent
pricing terms for regulation.
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