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Abstract: Motivated by the difficulty of designing low-order controllers for large-scale plants consisting
of numerous interconnected subsystems, this paper addresses the issue of quantifying the ν-gap metric
between the plant and a lower-order identified model, using only plant frequency response data. The main
result of this paper is the construction of a bound on the ν-gap metric between plant and model that
exploits the convergence properties of Chebyshev polynomial interpolants of point-wise in frequency
system graph symbols. This bound subsequently informs the design of low-order robust controllers
synthesised from the identified model. The techniques developed in this paper are demonstrated upon a
semi-discretised 1D heat equation.
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1. NOTATION

In this paper Z, R and C denote the natural, real and complex
fields, respectively, and s ∈ C is a complex variable. The
systems considered in this paper are linear and time-invariant
(LTI) with the following state-space realisation:

ẋ(t) = Ax(t)+Bu(t), (1a)
y(t) =Cx(t)+Du(t), (1b)

where A ∈ Rr×r, B ∈ Rr×m, C ∈ Rp×r, D ∈ Rp×m, x(t) ∈ Rr

is the state vector with initial state x(0) = x0, u(t) ∈ Rm ⊂
L2[0,∞) is the control input, y(t) ∈ Rp ⊂L2[0,∞) is the mea-
surement and L2[0,∞) is the space of all signals of bounded
energy. Taking the Laplace transform of (1) yields:

y(s) = P(s)u(s) =
[
C(sI−A)−1B+D

]
u(s), (2)

where I is the identity matrix and P(s) ∈R p×m belongs to the
space of proper real-rational transfer function matrices with p
outputs and m inputs. The complex conjugate-transpose of P(s)
is denoted P∗(s) and let (·? ·) denote the Redheffer star product
of two transfer function matrices with respect to some par-
tition (Zhou and Doyle, 1998). Let RL ∞ denote the space
of proper real-rational functions, bounded on jR, and with
norm ‖·‖

∞
, whilst RH ∞ is the space of proper real-rational

functions that are bounded and analytic in the open right-
half plane. The ordered pairs (N,M) and (Ñ,M̃) denote nor-
malised right and left coprime factorisations of P, respectively,
where N, Ñ,M,M̃ ∈ RH ∞. Normalised right and left graph
symbols for P are defined as G :=

[
N
M

]
and G̃ := [−M̃ Ñ ], respec-

tively. The maximum singular value and determinant of a ma-
trix are denoted σ̄(·) and det(·), respectively. The winding num-
ber of a scalar g(s) ∈RL ∞ is denoted wno g(s) and is defined
as the number of encirclements of the origin of g(s), as s follows
the standard Nyquist D-contour. With respect to computational
complexity, the notation f (q) ∈ O(h(q)), where q ∈ Z, means
there exists c ∈ R+ and q0 ∈ Z such that | f (q)| ≤ c|h(q)| for
all q> q0. Complexity is defined in terms of floating-point oper-
ations (flops), where a flop represents one addition, subtraction,

multiplication or division of two floating-point numbers (Golub
and Van Loan, 1996).

2. INTRODUCTION

The interconnection of numerous subsystems of low dynami-
cal complexity can give rise to large-scale plants that display
a dynamical wealth far in excess of their constituent parts.
Examples include power fluctuations within distributed power
grids (Zhong and Hornik, 2013), string instabilities in traffic
systems (Swaroop and Hedrick, 1996) and congestion of the
internet (Low et al., 2002). Such plants also arise from the dis-
cretization of systems governed by partial differential equations
(PDEs), such as the flexing of beams, the propagation of sound,
and the motion of fluid flows. Even when the plant dynamics
are linear and time-invariant (or can be approximated as such),
the problem of controlling them remains far from trivial.

A typical starting point to deriving a low-order controller as-
sumes a model of a large-scale system in the form (1), wherein
the state dimension is of the order of thousands or more. Low-
order controllers can then be synthesised, either by perform-
ing model reduction and designing a controller from the re-
sulting low-order model, or designing a large-scale controller
and performing controller order reduction (Anderson and Liu.,
1989). A variety of techniques have been developed to over-
come the numerical difficulties associated with the model re-
duction of large-scale systems (Antoulas, 2005), such as Krylov
subspace methods (Jaimoukha and Kasenally, 1994) and bal-
anced proper orthogonal decomposition methods (Willcox and
Peraire, 2002). However, such techniques typically seek low-
order approximations that are close to the large-scale system in
an open-loop sense, as measured by the difference in the H∞-
norm, for example. This can be problematic if the purpose of
the low-order model is for feedback controller design, since
the model reduction technique may neglect important closed-
loop dynamics. For example, it was shown in Jonckheere et al.
(1981) that models obtained from Hankel-norm model reduc-
tion may be unsuitable for robust controller synthesis owing to
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perturbations vanishingly small in the Hankel norm leading to
closed-loop instability.

For large-scale systems consisting of numerous smaller subsys-
tems, alternatives to model/controller-reduction exist, wherein
the structure of the subsystem interconnections can be exploited
to efficiently derive feedback controllers. Such methods store
only the models of the subsystems and so avoid any need for
the explicit construction and storage of the system matrices of
the large-scale plant. For the case of spatially invariant inter-
connected systems consisting of subsystems each with sens-
ing and actuation capability, D’Andrea and Dullerud (2003)
developed a state-space framework for designing distributed
controllers. Conversely, if sensing and actuation is restricted to
a small number of subsystems, then the design of a centralised
controller is justified. An interesting example of centralised
controller design for a spatially interconnected system was
that of two-dimensional channel-flow with sensing and actu-
ation restricted to discrete locations on the walls of the chan-
nel (Baramov et al., 2004). To overcome the high dimensional-
ity of the underlying plant (of the order of 105), a model several
orders of magnitude less than this was identified from fre-
quency response data obtained not from simulation, but instead
by exploiting the structure of the plant in an elegant fashion.
This was achieved by computing the point-wise in frequency
Redheffer star product of successive streamwise sections of
the channel. Model validation techniques were then employed
to establish the validity of the identified model. In a similar
fashion, Dahan et al. (2012) identified a low-order model of
the dynamics relating zero-net-mass-flux injection of a flow
to pressure measurements on the rear of a three-dimensional
backward facing step. Such geometries represent a simplified
automobile, and are of interest for designing drag reduction
systems to decrease fuel consumption. These authors obtained
frequency response data via extensive numerical simulation of a
system with state dimension on the order of 107. From this data,
remarkably, a second-order transfer function was identified,
from which a robust controller was synthesised which went on
to successfully provide considerable drag reductions. However,
such an approach does not provide an a priori guarantee that the
controller, synthesised from the identified model, will robustly
stabilise the actual plant. Attempts to reconcile such an issue,
for example via worst-case identification in the ν-gap metric,
were reported by Date and Vinnicombe (2004), and assumed
a priori knowledge of a stabilising controller.

Motivated by these examples, this paper addresses the follow-
ing question; given plant frequency response data, sampled at a
finite number of frequencies, can a bound on the ν-gap metric
between the plant and an identified model be constructed? The
answer is affirmative and relies upon the rapid convergence
of Chebyshev polynomial interpolants though the point-wise
maximum singular values of RL ∞ functions. Assuming that
the computation of the plant’s frequency response is expensive,
we detail a frequency refinement procedure for constructing
the bound in a recursive fashion, starting from a small number
of frequency samples, and provide guidelines for selecting an
appropriate set of frequencies. We remark briefly that were P(s)
not large-scale then one would simply use the standard, O(r3)
complexity, state-space formulae for computing the ν-gap (Vin-
nicombe, 2001).

The rest of this paper is organised as follows. Section 3 sum-
marises the definitions and theorems required to state the main
result of Section 4. Guidelines for the practical implementation

Fig. 1. Standard feedback interconnection.

of this result are also presented in Section 4, and these are
applied to the numerical example of Section 5, followed by
concluding remarks in Section 6.

3. PRELIMINARIES

With respect to Figure 1, let [P,C] denote the standard feed-
back interconnection of plant P ∈ R and controller C ∈ R.
Define [P,C] as stable provided the transfer function matrix
in (3) belongs to RH ∞.[

y
u

]
=

[
P
I

]
(I−CP)−1[−C I]

[
v2
v1

]
. (3)

The stability margin bP,C with respect to this arrangement is
defined as:

bP,C :=


∥∥∥∥[P

I

]
(I−CP)−1[−C I]

∥∥∥∥−1

∞

, if [P, C] is stable,

0, otherwise.
(4)

The ν-gap metric between two plants P1, P2 ∈ R p×m, de-
noted δν(P1,P2), is defined as (Vinnicombe, 2001):

δν(P1,P2) :=


∥∥G̃2G1

∥∥
∞
, if det(G∗2G1)( jω) 6= 0 ∀ω ∈ R

and wno det(G∗2G1) = 0,
1, otherwise,

(5)
With respect to Chebyshev polynomial interpolation, the Cheby-
shev points {ψk} ∈ [−1,1], {k,n ∈ N | 0≤ k ≤ n}, are defined
as:

ψk := cos(πk/n). (6)
For a given number of points at which an interpolating polyno-
mial is constructed, the following theorem establishes the error
between such an interpolant and the underlying function.
Theorem 1. (Battles and Trefethen, 2004) Let f (·) : R → R
be a continuous function on [−1,1], and pn(·) : R→ R be its
degree n polynomial interpolant in the Chebyshev points (6).
If f has a d-th derivative in [−1,1] of bounded variation for
some {d ∈ N | d ≥ 1}, then:

sup
ψ

( f − pn)(ψ) = O
(

n−d
)

as n→ ∞. (7)

The interpolant is defined as pn(ψ) :=∑
n
k=0 akTk(ψ), where {ak}

are the coefficients of the polynomial interpolant through
the function values at the Chebyshev points f (ψk), and
the Chebyshev polynomials Tk(ψ) are defined via the recur-
sion Tk+1(ψ) = 2ψTk(ψ)−Tk−1(ψ), with T0 := 1 and T1(ψ) :=
ψ (Boyd, 2001). Chebyshev polynomial interpolants are em-
ployed in this work owing to their near-best properties for
approximating smooth functions (Battles and Trefethen, 2004).
Lastly, the following theorem provides a regularity result con-
cerning the singular values of transfer function matrices.
Theorem 2. (Boyd and Balakrishnan, 1990) Let H(s) ∈RL ∞

and suppose σ̄ (H( jω)) has a local maximum at ω = ωm.
Then σ̄ (H( jωm)) is at least twice continuously differentiable.
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These definitions and theorems are next applied to derive the
main result of this paper.

4. ν-GAP BOUND CONSTRUCTION FROM FREQUENCY
RESPONSE DATA

Given a set of frequency response data {P( jωk)} from some
large-scale plant, we seek to compute δν(P,Pa), the ν-gap be-
tween this plant and a lower-order approximation Pa. Let Pn, Pa,n
denote the plant and model whose frequency responses are
approximated by mapped Chebyshev interpolating polynomials
at the following set of frequencies {ωk} ∈ [0,∞):

ωk = γ
1+ψk

1+ ε−ψk
, ↔ ψk =

ωk(1+ ε)− γ

ωk + γ
, (8)

where {γ ∈ R | γ > 0} determines the frequency around which
the {ωk} are most densely distributed and {ε ∈ R | ε > 0} is
vanishingly small. Such mappings enable Chebyshev polyno-
mials interpolants, defined on the canonical domain [−1,1] to
be extended to functions on arbitrary domains (Boyd, 2001).
We now state the main result.
Theorem 3. Given a plant P ∈ R p×m, a set of n + 1 Cheby-
shev points (6), data {P( jωk)} and a model Pa ∈ R p×m such
that wno det(G∗aG) = 0, define pn(ψ) as the degree n polyno-
mial interpolant of f (ψ) := σ̄

(
G̃aG

)
( jω(ψ)) evaluated at the

mapped points {ωk} (8). Then there exists {α ∈ R | α > 0},
{β ∈ N | β ≥ 3} such that:

δν(P,Pa)≤ sup
ψ

pn(ψ)+αn−β as n→ ∞. (9)

Proof. The proof proceeds from (5):
δν(P,Pa)−δν(Pn,Pa,n)=sup

ω

σ̄(G̃aG)(jω)−sup
ω

σ̄(G̃a,nGn)(jω),

= sup
ψ

f (ψ)− sup
ψ

pn(ψ),

≤ sup
ψ

( f − pn)(ψ).

Next, note that G̃aG ∈ RL ∞ and so σ̄(G̃aG)( jω) is at least
twice continuously differentiable, according to Theorem 2, and
thus has a third derivative of bounded variation. The bounded-
ness and continuity of the rational maps (8) and their derivatives
ensures f (ψ) also has a third derivative of bounded variation.
Straightforward application of Theorem 1 completes the proof.

Thus, Theorem 3 provides a means of computing a bound on
the ν-gap between plant and model, from frequency response
data. Moreover, the convergence of the bound to the actual
value of the ν-gap is rapid in the sense that the interpolation
error decays at least as fast as O(n−3). As an example to
demonstrate such convergence, consider the following transfer
function matrix P(s) ∈RL ∞, where:

P(s) =
[

P0(s) 0
0 P0(s−1)

]
, P0(s) :=

√
3s2 +

√
2s

2s2 +2s+1
. (10)

It can be shown that the highest derivative of bounded variation
for σ̄(P( jω)) is its third derivative (Boyd and Balakrishnan,
1990). For such a low-order system, it is possible to compute
the Chebyshev polynomial interpolation error of σ̄(P( jω)), as
a function of interpolant order. This is plotted in Figure 2(b)
on logarithmic axes, and clearly shows the error decaying with
a slope of −3. Of course, if the plant is large-scale then it is
not feasible to directly compute such an interpolation error.
However, the parameters α and β governing the decay of the
interpolation error can be obtained by considering the error

Fig. 2. Chebyshev polynomial interpolation of P( jω) (10)
showing (a) interpolation error between interpolants of

degree n and 2n (·), plot of α(1−2−β )n−β (−), (b) actual
interpolation error (·) and plot of αn−β (−). For this

example, α = 14.9, β = 3 and γ = 0.6.

between interpolants of different degrees, according to the
following corollary.
Corollary 4. Assume f (ψ) as defined in Theorem 3 and
let pn(ψ), p2n(ψ) be its Chebyshev polynomial interpolants of
degree n,2n, respectively, then the following is true:

α(1−2−β )n−β ≤ sup
ψ

(p2n− pn)(ψ) as n→ ∞. (11)

Proof.
α(1−2−β )n−β = αn−β −α(2n)−β ,

= sup
ψ

( f−pn)(ψ)−sup
ψ

( f−p2n)(ψ) as n→ ∞,

≤ sup
ψ

(( f − pn)− ( f − p2n))(ψ) as n→ ∞,

= sup
ψ

(p2n− pn)(ψ) as n→ ∞.

Hence, bounds on α and β can be deduced from a logarithmic
plot of the error between successive interpolating polynomials,
and an example of this is shown in Figure 2(a). The following
additional remarks are provided for guidance in computing the
right hand side of (9).
Remark 5. The construction of, and subsequent operation upon
interpolating polynomials is rendered straightforward by ded-
icated software, such as MATLAB’s Chebfun toolbox (Battles
and Trefethen, 2004).
Remark 6. Although the interpolation error decays rapidly (β ≥
3 in (9)) with increasing n, in the interests of efficient compu-
tation it is desirable to avoid evaluation of σ̄(G̃a,nGn)( jω) at
an excessive number of interpolation points. With this in mind,
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the convergence of the bound (9) with respect to the parame-
ter α , is influenced by the choice of sampling frequencies {ωk},
determined by γ . The ideal choice is γ = ωδν

, where ωδν
:=

argsupω σ̄(G̃aG)( jω), since this clusters the mapped Cheby-
shev points evenly around the frequency at which the ν-gap
is achieved. Of course ωδν

is not known a priori. However,
a reasonable estimate can be obtained by observing that ωδν

occurs in the vicinity of the open-loop crossover frequencies
of the system singular values, which are typically known for
controller design purposes. Furthermore, provided γ is within
an order of magnitude of the ωδν

, then the convergence of the
interpolant is not adversely affected (Boyd, 2001).
Remark 7. Since the bound (9) is asymptotic, it is necessary
to inspect convergence as the number of interpolation points
increases. Selecting the order of the interpolant at each new
iteration to be twice that of the previous iteration, as advocated
in Corollary 4, ensures that the set of interpolation points
for p2n contains all the points used in forming pn. Hence, the
maximum number of function evaluations is not more than
the smallest (power-of-two) n for which a given convergence
tolerance is satisfied (Boyd, 2003).

A typical controller design procedure might proceed as follows:

(i) Select an approximate crossover frequency γ and eval-
uate {P( jωk)} at a small number nmin + 1 of mapped
points (8).

(ii) Repeat step (i) at 2n+1 interpolation points for {n ∈ N |
nmin ≤ n ≤ nmax}, until at n = nmax there is little change
in the maximum singular value plots in the vicinity of the
anticipated crossover frequency.

(iii) Identify a low order model Pa(s) from the data {P( jωk)}
and design pre/post-compensators, W1(s),W2(s), respec-
tively, to shape the singular value plots in a fashion
consistent with design objectives. Construct the shaped
model Psa(s) := W2PaW1(s) and synthesise the loop-
shaping controller C(s) that maximises the robust stability
margin bPsa,C (4) (McFarlane and Glover, 1992). If bPsa,C
is too small, then redesign the compensators until satis-
factory robustness is achieved.

(iv) Shape the plant data to obtain {Ps( jωk)} := {W2PW1( jωk)}
and compute {Gs( jωk)}. From the low order model also
compute {Gsa( jωk)} and use to verify the winding num-
ber criterion in (5).

(v) Evaluate {σ̄(G̃saGs)( jωk)} and compute the associated
Chebyshev polynomial interpolant pnmax(ψ) through these
values.

(vi) Repeat step (v) for the values of n defined in step (ii) and
apply Corollary 4 to obtain bounds on the interpolation
error parameters α and β .

(vii) Set n = nmax and evaluate the right hand side of (9)
from Theorem 3. Then check that the residual stability
margin bPsa,C− (supψ pn(ψ)+αn−β ) is acceptable.

An application of this procedure is demonstrated in the next
section.

5. NUMERICAL EXAMPLE

Consider the following heat equation in a medium of one spatial
dimension (Boskovic et al., 2001; Jones and Kerrigan, 2010)
with a measurement of temperature gradient at one end:

Fig. 3. Interconnection of grid-point models Pi forming the
large-scale system P.

∂x(ζ , t)
∂ t

=
∂ 2x(ζ , t)

∂ζ 2 +λx(ζ , t), ζ ∈Ω, (12a)

y(t) =
∂x(ζ , t)

∂ζ

∣∣∣∣
ζ=−1

, (12b)

with initial and boundary conditions:

x(ζ ,0) = x0(ζ ), (12c)
∂x
∂ t

(−1, t) =
−1
τu

x(−1, t)+
1
τu

u(t), (12d)

x(+1, t) = 0, (12e)

where the temperature of the medium is x(·, ·) : Ω×R+→ R,
and λ = 2.39 is a parameter that accounts for the internal
heating of the material. Ω := [−1,1] is a bounded domain
with left and right boundaries ∂Ω−1 = −1 and ∂Ω+1 = 1,
respectively, ζ ∈Ω is a point within the domain and y(·) :R+→
R is the temperature gradient at the lower boundary. A control
input u(·) : R+ → R is applied to a heating element with time
constant τu = 1 at the left boundary, whilst the right boundary
satisfies the Dirichlet condition (12e) .

The system (12) is spatially discretised via second-order finite
differences on a set of points {ζ1, . . . ,ζnζ

}, where ζi := −1+
(i− 1)∆ζ for {i ∈ N | 1 ≤ i ≤ nζ}, and the grid spacing ∆ζ :=
2/(nζ − 1) is constant. Under this approximation scheme, the
state evolution at each interior grid point is given by:

ẋi(t) = ∆
−2
ζ

xi−1(t)+(λ −2∆
−2
ζ
)xi(t)+∆

−2
ζ

xi+1(t), (13)

with similar expressions for the boundary nodes. The inputs
to each interior grid point model (13) are the states from
neighbouring nodes, whilst the output is the state itself, thus
defining the subsystem Pi. The interconnection between these
subsystems is shown in Figure 3, from which it is apparent that
the large-scale plant P is the chain of star products of each
subsystem. In theory, a state-space realisation of P could be
constructed in this way, with a state vector x ∈ Rnζ , but for
fine discretisations (nζ = 1000 in the present case) the resulting
system matrices would be large and require significant storage.
Instead, we proceed by computing the frequency response of
the system in a point-wise fashion, by evaluating the star-
product chain of subsystem frequency responses, according to
the following expression:

P( jω) = P1( jω)? . . . ?Pi( jω)? . . . ?Pnζ
( jω). (14)

Given the small state-dimension of each subsystem, it can be
shown for this example that the complexity of evaluating (14)
is O(nζ ) flops, as opposed to O(n3

ζ
) flops using standard LU

factorisation (Golub and Van Loan, 1996) of the resolvent
of P( jω).

The design procedure of the previous section was applied as
follows:
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Fig. 4. Singular-values of plant data {P( jωk)} (×), identified
model Pa( jω) (−−) and the shaped model Psa( jω) :=
PaW1( jω) (–).

(i) Anticipating the crossover frequency to be determined by
the actuator dynamics (12d), a value of γ = 1 rad/s was
selected and {P( jωk)} were evaluated at the set of points
defined by (8), (6) with nmin = 2.

(ii) The process was repeated for values of n up to nmax = 128,
whereupon little change around the anticipated crossover
frequency was observed in the open-loop singular val-
ues {σ̄(P( jωk))} at successive resolutions.

(iii) From the data {P( jωk)}, a third-order model Pa(s) was
identified using MATLAB’s fitsys algorithm (Balas
et al., 1998). Inspection of this model revealed a right-
half plane zero at a frequency of ω ≈ 1.8 rad/s. To
achieve a crossover frequency less than this, the following
precompensator was used:

W1(s) :=
10s+1

4s(s+10)
; (15)

Singular-value plots of {P( jωk)}, Pa( jω) and the shaped
model Psa( jω) are shown in Figure 4. A H∞ loop-shaping
controller C(s) was synthesised from the shaped plant,
with a robust stability margin bPsa,C = 0.52.

(iv) The plant data was shaped to obtain {Ps( jωk)} :=
{PW1( jωk)} from which the point-wise graph sym-
bols {Gs( jωk)} were computed. The point-wise graph
symbols of the low-order model {Gsa( jωk)} were also
computed and used to form {det(G∗saGs)( jωk)}, the in-
spection of which revealed satisfaction of the winding
number criteria (5).

(v) The set of values {σ̄(G̃saGs)( jωk)} were computed, from
which the Chebyshev polynomial interpolant pnmax(ψ)
was constructed. A plot of this interpolant as a function of
frequency is shown in Figure 5, from which we obtain the
first term on the right hand side of (9); supψ pnmax(ψ) =

3.1×10−3.
(vi) The interpolation error between successive interpolants

supψ(p2n − pn)(ψ) was evaluated for nmin ≤ n ≤ nmax
and plotted as in Figure 6. Inspection of the slope of
this plot reveals an asymptotic order of convergence of
order O(n−3), hence β = 3. Corollary 4 was then applied
to deduce α ≤ 1.14.

(vii) Lastly, we apply (9) to obtain:

δν(Pa,Psa)≤ sup
ψ

pnmax(ψ)+αn−β
max,

= 3.1×10−3.

Fig. 5. Plot of the interpolating polynomial pnmax (-) as
a function of frequency ω through the interpolation
points {σ̄(G̃saGs)( jωk)} (·).

Fig. 6. Interpolation error between interpolants of degree n
and 2n (·), plot of α(1−2−β )n−β (−) for α = 1.14,β = 3.

We remark that the obtained bound on the ν-gap is negligible
in comparison to the stability margin bPsa,C and so we conclude
that the controller W1C(s), obtained from the low-order identi-
fied model Pa(s), will robustly stabilise the plant P(s).

6. CONCLUSION

The main contribution of this paper lay in the derivation of a
bound on the ν-gap between a linear, time-invariant plant and a
model identified from plant frequency response data. This is of
particular relevance when the state-dimension of the underlying
plant is too great to enable direct computation of the ν-gap, and
where the plant possesses a structure that lends itself to effi-
cient point-wise evaluation of its frequency response. This work
therefore has application to the robust control of large-scale in-
terconnected systems. Chebyshev polynomial interpolants were
employed to construct the bound. By exploiting the smooth-
ness of the maximum singular values of system graph sym-
bols, together with the properties of Chebyshev polynomial
interpolants, it was shown how the interpolation error decayed
rapidly as a function of interpolant order. In practical terms this
meant that relatively few frequency response evaluations were
required to construct the bound, which subsequently informed
the design of robust controllers synthesised from low-order
identified models. Guidelines for the use of the bound were
presented and demonstrated upon a semi-discretised 1D heat
equation.
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