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Abstract: A hierarchical, two-level architecture for manoeuvre generation and vehicle control
for automated highway driving is presented. The high-level planner computes a manoeuvre
in terms of a (X,Y)-trajectory as well as a longitudinal velocity profile, utilizing a simplified
point-mass model and linear collision avoidance constraints. The low-level controller utilizes a
non-linear vehicle model in order to compute the vehicle control inputs required to execute the
planned manoeuvre. Both the high-level planner and low-level controller are formulated based
on the model predictive control methodology. Simulation results demonstrates the ability of the
high-level planner to compute appropriate, traffic-dependent manoeuvres, that can be tracked
by the low-level controller in real-time.

1. INTRODUCTION

Within the automotive industry, automated functionality
is ever increasing and advanced driver assistance systems
(ADAS) such as adaptive cruise control (ACC), lane keep-
ing aid (LKA) [Pohl et al., 2007], and parking assistance
systems [Pohl et al., 2006] are now standard in many pro-
duction vehicles. These systems aid the driver in difficult
and tedious tasks in order to increase safety and comfort.
It is expected that an even higher level of automation will
provide further benefits, especially in relation to traffic
safety by reducing the impact of human factors [Neale et
al., 2005].

An area where a high level of autonomy is both desirable
and feasible is highway driving. Highways are structured
environments with relatively simple and easily maintain-
able traffic rules. As such, the driving task is quite straight-
forward, i.e. maintain a desired velocity while avoiding
collisions with surrounding vehicles and respecting the
rules of the road. However, due to the high velocity and
intense traffic flow, violating safety constraints can have
severe consequences.

Because of its ability to systematically handle system
constraints and non-linearities, model predictive control
(MPC) is an attractive choice for control design of ADAS
for highway driving. In MPC, at every time instance a
finite-time constrained optimal control problem is solved
in receding horizon, i.e. every time instance the optimal
control problem is reformulated and solved based on the
current state, over a shifted time horizon [Mayne et al.,
2000]. Non-linear MPC has been used for combined steer-
ing and braking control [Falcone et al., 2008] as well
as for obstacle avoidance manoeuvres [Gao et al., 2012],
[Gray et al., 2012]. However, non-linear MPC requires
solving complex non-linear optimizations problems which
normally results in high computational complexity. This
drawback can render non-linear MPC unsuitable for ap-

plications with limited computing resources and real-time
demands [Borrelli et al., 2005].

In this paper a two-level hierarchical control scheme, sim-
ilar to the approach presented in [Gao et al., 2012], [Gray
et al., 2012] is employed. The high-level planner computes
a collision free manoeuvre in terms of a (X,Y)-trajectory
and a longitudinal velocity profile which are fed to a
low-level controller which computes the required vehicle
inputs to track the planned manoeuvre. In the paper we
try to overcome the problem of prohibitive computational
complexity in the high-level planner resulting from col-
lision avoidance constraints formulated as mixed-integer
inequalities [Borrelli et al., 2006] or non-linearities in the
vehicle model. To this aim the structured environment of
highways is exploited in order to formulate linear colli-
sion avoidance constraints. The high-level MPC planning
problem can thus be written as an equivalent quadratic
program (QP), utilizing a simplified point-mass model to
represent the vehicle, allowing the planner to optimize
lateral and longitudinal control simultaneously. The re-
sulting manoeuvre is processed by a low-level controller
which tracks the planned (X,Y)-trajectory and longitudi-
nal velocity profile using a four wheel vehicle model and
computes the required vehicle inputs as the solution of a
low complexity non-linear MPC problem. The paper thus
presents a hierarchical, two-level architecture for real-time
manoeuvre generation and vehicle control for automated
highway driving.

The paper is structured as follows: in Section II the four
wheel vehicle model is presented along with the simplified
point-mass vehicle model and the linear collision avoidance
constraints. The predictive control problem of the high-
level planner and low-level controller is introduced in
Section III, and simulation results are shown in Section IV.
Finally, conclusions and directions for future work is given
in Section V.
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2. MODELLING

2.1 Four wheel vehicle model

The low-level controller uses the six state non-linear vehi-
cle model, presented in [Falcone et al., 2008]. The model
captures the main lateral and longitudinal dynamics and
computes the tire forces as a function of the road friction
coefficient, and longitudinal and lateral wheel slip angles,
using a non-linear Pacejka tire model [Bakker et al., 1987].
By considering Fig. 1, the following set of differential equa-
tions to describe the vehicle dynamics is derived using the
equations of motion about the vehicle’s center of gravity
(CoG) and coordinate transformation between the inertial-
and vehicle body-frame,

mẍ = mẏψ̇ +

4∑
i=1

Fxi , (1a)

mÿ = −mẋψ̇ +

4∑
i=1

Fyi
, (1b)

Jzψ̈ = df (Fy1 + Fy2)− dr(Fy3 + Fy4)+
wt

2
(−Fx1

+ Fx2
− Fx3

+ Fx4
),

(1c)

Ẋ = ẋ cosψ − ẏ sinψ, (1d)

Ẏ = ẋ sinψ + ẏ cosψ, (1e)

where m and Jz denote the vehicle mass and yaw inertia
respectively, df and dr denote the distances from the
vehicle CoG to the front and rear axles respectively,
and wt denotes the track width. ẋ and ẏ denote the
vehicle’s longitudinal and lateral velocities in the body
frame respectively, and ψ̇, X, and Y denote the yaw rate,
longitudinal, and lateral vehicle coordinates in the inertial
frame respectively. Fyi

and Fxi
are tire forces acting along

the vehicle’s lateral and longitudinal axis, respectively.

The vehicle dynamics can be compactly written as

ξ̇4w(t) = f(ξ4w(t), u4w(t)), (2)

where ξ4w =
[
ẋ, ẏ, ψ, ψ̇,X, Y

]T
and u4w = [δ, FL, FR]

T
, δ

is the front steering angle, and FL, FR denote the left and
right braking/acceleration forces respectively. Note that it
is assumed that only the steering angle at the front wheels
can be controlled and the steering angles at the right and
left wheels of each axle are the same.

Fyi
and Fxi

are computed as

Fyi
= fxi

sin δ + fyi
cos δ, i ∈ {1, 2, 3, 4} , (3a)∑

Fxi = FL, i ∈ {1, 3} , (3b)∑
Fxi = FR, i ∈ {2, 4} , (3c)

where fxi
and fyi

respectively denote the longitudinal and
lateral tire forces along the tire axis

fxi
= fl(αi, si, µ, Fzi), i ∈ {1, 2, 3, 4} , (4a)

fyi
= fc(αi, si, µ, Fzi), i ∈ {1, 2, 3, 4} , (4b)

where fl and fc are non-linear functions described by a
Pacejka tire model [Bakker et al., 1987]. In Eq. (4), α is
the tire slip angle defined as

αi = arctan
vci
vli
, i ∈ {1, 2, 3, 4} , (5)

where vc and vl respectively are the lateral (cornering) and
longitudinal wheel velocities, computed as

vci = vyi cos δ − vxi sin δ, i ∈ {1, 2, 3, 4} , (6a)

vli = vyi
sin δ + vxi

cos δ, i ∈ {1, 2, 3, 4} , (6b)

where

vyi
= ẏ + df ψ̇, i ∈ {1, 2} , (7a)

vyi
= ẏ − drψ̇, i ∈ {3, 4} , (7b)

vxi
= ẋ− wt

2
ψ̇, i ∈ {1, 3} , (7c)

vxi
= ẋ+

wt

2
ψ̇, i ∈ {2, 4} . (7d)

The slip ratio, s, is defined as

si =


rωi

vli
− 1 if vli > rωi, v 6= 0 for deceleration,

1− vli
rωi

if vli < rωi, ω 6= 0 for acceleration,
(8)

i ∈ {1, 2, 3, 4} ,
where r and ω are the wheel radius and angular speed
respectively. However, as the wheel speed is not captured
by the presented model it is assumed to be measured
at each sampling time and is kept constant until next
available update. Likewise, the friction coefficient µ is
assumed to be a known constant. Further, a constant
normal tyre load, Fz, is assumed distributed between the
front and rear wheels as following

Fzi =
drmg

2(df + dr)
, i ∈ {1, 2} , (9a)

Fzi =
dfmg

2(df + dr)
, i ∈ {3, 4} , (9b)

where g is the gravitational acceleration.

2.2 Point-mass vehicle model

Considering the scenario sketched in Fig. 2, the following
set of equations is used to model the motion of the
ego vehicle, E, with respect to the surrounding vehicles
Sj , (j = 1, . . . , q), and the road boundaries, in a road
aligned coordinate frame,

4ẋj = vsj − vx, (10a)

ẏ = vy, (10b)

v̇x = ax, (10c)

v̇y = ay, (10d)

where y, vy, ay, vx, and ax respectively denote the lateral
position, velocity and acceleration, and the longitudinal
velocity and acceleration of E. The longitudinal velocity
of Sj is denoted by vsj , and 4xj = xsj − xE denotes
the relative distance between E and Sj along the x-axis.

Fig. 1. Model notation for the four wheel vehicle dynamical model.
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Fig. 2. Vehicles travelling on a road with two lanes. The gray boxes
around the surrounding vehicles (S1 and S2) indicate safety
critical regions which the ego vehicle (E) should not enter.

The dynamics of the point-mass model can compactly be
written as

ξ̇pm(t) = f(ξpm(t), upm(t)) (11)

where ξpm = [4xj , y, vx, vy]
T

and upm = [ax, ay]
T

.

Remark 1. A target position can be reached if a feasible
path connecting the initial and the target positions exists.
On the other hand, the lateral and longitudinal positions in
equation (10) are independent, i.e. not subject to the vehi-
cle nonholonomic constraints. For instance, ax = 0, ay 6= 0
would generate a lateral movement, at a constant longitu-
dinal velocity, that is infeasible for a real vehicle. Neverthe-
less, equation (10) can generate a path in a Cartesian coor-
dinate system that can be followed by a vehicle, by limiting
the side slip angle of the vehicle defined as β = arctan

vy
vx

.

In particular, by assuming |β| ≤ 10◦(≈ 0.17rad), small
angle approximation leads to

−0.17vx ≤ vy ≤ 0.17vx. (12)

2.3 Collision avoidance constraints

By restricting E to stay outside safety critical regions, as
illustrated in Fig. 2, it is possible to ensure that the vehicle
stays on a collision free path. However, as indicated in
Fig. 2, the area outside such regions is non-convex. In order
to formulate the planning problem as a QP, the safety
constraints must be expressed as convex sets, e.g. linear in-
equality constraints. Therefore, for each Sj two constraints
are introduced, called the Forward Collision Constraint
(FCC) and the Rear Collision Constraint (RCC). The
purpose of the FCC is to keep E from colliding with its
front while the purpose of the RCC is to avoid collisions
with its rear, as shown in Fig. 3 and 4 respectively.

Whether the constraints should be active depends on the
relative position of E and Sj . The relative position is both
explicitly and implicitly included in the formulation of the
FCC and the RCC in terms of ∆xj and ∆yj as well as in
the slack variables depending thereof.

The FCC is defined as
∆xj
Lf
± ∆yj

W
+ ϑεxjf

+
εyj

ϕ
+ εjf ≥ 1, (13)

where the sign of the second term depends on which lane
Sj is in (+ if left lane, − if right lane) and,

∆yj = ysj − y,
εyj

= −∆yj − σ,
εxjf

≥ 0,

εjf ≥ 0,

where ysj is the lateral position of Sj , and σ denotes
the lane center adjacent to Sj ’s travelling lane. Note that

Fig. 3. The FCC enforced for a surrounding vehicle (S1). The
infeasible area generated by the FCC is displayed in gray.

Fig. 4. The RCC enforced for a surrounding vehicle (S1). The
infeasible area generated by the RCC is displayed in gray.

εxjf
will only relax the constraint if E has passed Sj

rendering ∆xj < 0. Further, εyj
≥ 0 if and only if yj ≥ σ

and the slack variable εyj
will thus only relax the FCC

if E has changed lane. The slack variable εjf should
be heavily penalized in the cost function in order to
only affect condition (13) if no other feasible options
exist. The constant parameters are initialized before each
optimization cycle as following

Lf = vxθf + Lc,

W =
1

2
WL +Wc,

ϑ = −∆xj ,

ϕ = max(ψ, |∆xj |),
where θf is the desired front time gap to Sj . Lc, Wc are
the length and width of Sj respectively, and WL is the
lane width. ϕ is set as max(ψ, |∆xj |), (ψ ≥ 0) in order to
reduce the impact of εyj ≤ 0 when |∆xj | is large.

The RCC can likewise be formulated as
∆xj
Lr
± ∆yj

W
− ϑεxjr

−
εyj

ϕ
+ εjr ≤ −1, (14)

where the sign of the second term depends on which lane
Sj is in (− if left lane, + if right lane),

εjr ≤ 0,

εxjr
≤ 0,

and the constant parameter is initialized before each
optimization cycle as

Lr = vxθr + Lc,

where θr is the desired rear time gap to Sj . Further details
on the formulation of the collision avoidance constraints
are provided in [Nilsson et al., 2013].

Remark 2. The main drawback of formulating the collision
avoidance constraints in this manner, is that during an
optimization cycle a full overtake manoeuvre cannot be
planned. This is because over the prediction horizon, the
FCC is only relaxed when E is in the adjacent lane. Thus,
only when E has actually passed Sj can the constraint
be appropriately relaxed by εxjf

> 0, and E is allowed

to return to its original lane. The main advantage is that
forward collisions are avoided if a collision free trajectory
exists.
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3. PREDICTIVE CONTROL PROBLEM

The problem of highway manoeuvre generation and con-
trol is modelled through a two-level hierarchical decom-
position [Gao et al., 2010] as illustrated in Fig. 5. The
high-level planner utilizes the point-mass model (11) and
collision avoidance constraints (13)-(14) in order to com-
pute a collision free manoeuvre. The resulting manoeuvre
[ẋref(X), Yref(X)] is fed to the low-level controller which
computes the optimal input required to execute the planed
manoeuvre using the four wheel vehicle model (2).

The braking/acceleration forces FL and FR computed by
the low-level controller is distributed to braking/acceleration
torques Ti, i ∈ {1, 2, 3, 4}, by using braking/acceleration
logic as described in [Falcone et al., 2008]. Both the high-
level planner and low-level controller are formulated as
MPC problems where at each time instance an optimal
input sequence is calculated by solving a constrained finite
time optimal control problem. The optimization problem
is solved in receding horizon i.e. the computed input se-
quence is only applied during the following sampling inter-
val after which the problem is reformulated and resolved
based on the current state and sensor measurements.

3.1 High-level planner

The goal of the high-level planner is to plan the path of
E with the objective of (i) maintaining the vehicle at the
centreline of its preferred lane, yref, and (ii) travelling at
a desired velocity, vxdes

, while (a) avoiding collisions with
Sj , (b) keeping E within the road boundaries, and (c)
fulfilling E ’s physical and design constraints.

In order to achieve objective (i)-(ii) while allowing smooth
ride comfort, the performance index i.e. cost function is
defined as

J =

Hpm
p −1∑
k=0

α(vxk
− vxdes

)2 + κ(yk − yref)2 + γv2yk

+ νa2xk
+ %a2yk

+ χε2jf + Ξε2jr ,

(15)

where Hpm
p denotes the prediction horizon and α, κ, γ, ν, %,

χ, and Ξ are positive scalar weights. Objective (ii) is
achieved by the α(vxk

−vxdes
)2 term, while the κ(yk−yref)2

term satisfies objective (i) and implies a cost associated
with a lane change manoeuvre, whereas the γv2yk

, νa2xk
,

and %a2yk
terms allow for ride comfort.

Since the sets of feasible states, X , and control inputs,
U , are convex the MPC problem can be formulated as a
standard QP problem

min
w
J =

1

2
wTHw (16a)

subject to (16b)

Heqw = Keq, (16c)

Hinw ≤ Kin, (16d)

with w = [ξpmk , upmk ], (16a) is the cost function (15), (16c)
is the system dynamics (11) discretized with sampling
time T pm

s , and (16d) includes the collision avoidance
constraints (13)-(14) as well as the following physical and
design constraints

ξpmmin ≤ ξ
pm
k ≤ ξpmmax, (17a)

upmmin ≤ u
pm
k ≤ upmmax, (17b)

∆upmmin ≤ ∆upmk ≤ ∆upmmax, (17c)

where upmk = ∆upmk + upmk−1.

Remark 3. The optimization problem (16), has
(2 + q)Hpm

p + 4q optimization variables i.e. control inputs
and slack variables, and (11 + 4q)Hpm

p linear constraints
corresponding to system dynamics (11), physical and de-
sign constraints (17a)-(17c) as well as collision avoidance
constraints (13)-(14).

3.2 Low-level controller

The low-level MPC controller is formulated as follows

min
Ut

H4w
p −1∑
k=0

‖ηt+k,t − ηreft+k,t
‖2Q + ‖u4wt+k,t‖2R + ‖∆u4wt+k,t‖2S

(18a)

subject to (18b)

ξ4wt+k+1,t = fd(ξ4wt+k,t, u
4w
t+k,t), k = 0, . . . ,H4w

p − 1 (18c)

u4wt+k,t = ∆u4wt+k,t + u4wt+k−1,t, k = 0, . . . ,H4w
p (18d)

u4wmin ≤ u4wt+k,t ≤ u4wmax, k = 0, . . . ,H4w
p (18e)

∆u4wmin ≤ ∆u4wt+k,t ≤ ∆u4wmax, k = 0, . . . ,H4w
c − 1 (18f)

∆u4wt+k,t = 0, k = H4w
c , . . . ,H4w

p (18g)

u4wt−1,t = u4w(t− 1), (18h)

ξ4wt,t = ξ4w(t), (18i)

where t denotes the current time instance and ξ4wt+k,t

is the predicted state at time t + k obtained by ap-
plying the control sequence Ut = [ut,t, . . . , ut+k,t] to
the discrete time version fd of (2) with ξ4wt,t = ξ4w(t).
The cost function considers the deviation of the tracking
state ηt+k,t = [ẋt+k,t, Yt+k,t] from the state reference
ηreft+k,t

= [ẋreft+k,t
, Yreft+k,t

], and penalizes large control
inputs and changes thereof over the prediction horizon
H4w

p , according to the weighting matrices Q, R, and S.

H4w
c denotes the control horizon and the control input

is kept constant during the prediction time beyond H4w
c .

Further details on the low-level controller is given in [Gao
et al., 2010].

Remark 4. The optimization problem (18), has 3H4w
c op-

timization variables i.e. control inputs, 5H4w
p non-linear

constraints corresponding to system dynamics (2), and
15H4w

p linear constraints corresponding to physical and
design constraints (18d)-(18g).

Fig. 5. Two-level hierarchical architecture for the decision and
control algorithm.
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4. SIMULATION RESULTS

In order to test the performance of the proposed planning
and control scheme, a scenario where E is driving on
a straight two-lane, one-way road with one surrounding
vehicle S is considered. Three versions of this traffic
scenario are created, where in each version E approaches
S which is travelling at a velocity just less, less, and much
less than E ’s desired velocity in scenario versions 1, 2,
and 3, respectively. It is assumed that E initially travels
at its desired velocity (vxdes

= 20 m/s), in its preferred
lane i.e. the right lane (yref = 0). Further, it is assumed
that S is travelling in the right lane at constant velocity
over the prediction horizon. Although this is a strong
assumption regarding the behaviour of S, it can still be
considered reasonable since some changes in the behaviour
of S can be handled by the replanning nature of the MPC
algorithm that accounts for measurement updates. The
signals vs and ys are treated as measurable exogenous
disturbance signals which can be obtained using e.g. a
doppler radar [Jansson, 2005].

For each of the described scenarios, the respective ini-
tial conditions are given in Table 1. The general design
parameters for the high-level planner (16) and low-level
controller (18) are given in Table 2 and 3 respectively.
Note that for the parameters that do not have a physical
counterpart the parameter values are selected through
tuning. The closed loop system is simulated using Matlab
where the two MPC optimization problems have been
implemented as C-coded s-Functions. For the high-level
planner (16) CVXGEN [Mattingley et al., 2012] is used.
The commercial NPSOL software package [Gill et al.,
2014] is used for solving the non-linear low-level control
problem (18). The first element of the optimized control
sequence is passed to an external block which uses a four
wheel vehicle model and Pacjeka tire model to simulate
the vehicle dynamics, and feeds the current state of the
vehicle back to the high- and low-level optimization blocks,
as shown in Fig. 5.

In Figs. 6-8 the (X,Y)-trajectory of E relative to S, as well
as the longitudinal velocity profile of E are shown for each
of the three scenarios respectively. In each figure both the
planned and the resulting trajectories are shown, and it
can be seen that low-level controller is able to follow the
planned trajectories with only a slight mismatch. From the
figures it can also be seen that depending on the relative
velocity of E and S, the longitudinal velocity of E is
reduced in order to perform an appropriate manoeuvre
i.e. change lanes while keeping safe distance to S. The
reduction in longitudinal velocity during the overtake
manoeuvre is a consequence of the condition on lateral
jerk (17c) and tuning parameters in the FCC (13). These
conditions along with the selected values of the tuning
parameters in Table. 2 is also the reason as to why the
trajectories in Figs. 6-8 are slightly off-centred with respect
to S.

Table 1. Initial conditions for the three considered
scenarios with one surrounding vehicle.

∆x0 y0 vx0 vy0 ax0 ay0 vs ys
scenario 1 50 0 20 0 0 0 15 0

scenario 2 50 0 20 0 0 0 10 0

scenario 3 50 0 20 0 0 0 5 0

Table 2. Design parameters for the high-level planner.

vx ∈ [0, 22] m/s vy ∈ [−5, 5] m/s y ∈ [−2.5, 7.5]

ax ∈ [−4, 1] m/s2 ay ∈ [−2, 2] m/s2 T pm
s = 0.2 s

∆ax ∈ [−3, 1.5] m/s2 θf = 2 s Hpm
p = 25

∆ay ∈ [−0.5, 0.5] m/s2 θr = 1 s Lc = 5 m

WL = 5 m Wc = 2.5 m σ = 4.5

ψ = 7 α = 20 κ = 2

γ = 20 ν = 1 % = 1

χ = 50000 Ξ = 50000

Table 3. Design parameters for the low-level con-
troller.

δ ∈ [−10, 10]◦ ∆δ ∈ [−17, 17]◦/s

FL ∈ [−1500, 1500] N FR ∈ [−1500, 1500] N

∆FL ∈ [−1000, 1000] N/s ∆FR ∈ [−1000, 1000] N/s

T 4w
s = 0.05 s H4w

p = 15

H4w
c = 1 µ = 0.3

Q = diag(30, 30) R = diag(0.1, 0.1, 0.1)

S = diag(0.1, 0.1, 0.1)

Fig. 6. The (X,Y)-trajectory of the ego vehicle relative to the
surrounding vehicle, as well as the longitudinal velocity profile
of the ego vehicle for scenario 1.

Fig. 7. The (X,Y)-trajectory of the ego vehicle relative to the
surrounding vehicle, as well as the longitudinal velocity profile
of the ego vehicle for scenario 2.

Fig. 8. The (X,Y)-trajectory of the ego vehicle relative to the
surrounding vehicle, as well as the longitudinal velocity profile
of the ego vehicle for scenario 3.

.

.

.

.
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Fig. 9. Computational time for the high-level planner (top) and
low-level controller (bottom).

To study the possibility of real-time implementation, the
closed loop system was tested in a hardware-in-the-loop
(HIL) simulation environment using a dSPACE Autobox
system, equipped with a DS1005 processor board and a
DS2210 I/O board. The required computational time for
the high-level planner and low-level controller, for version 2
of the considered scenario is shown in Fig. 9. From these
results it can be seen that real-time execution is possible,
since the required computational time is less than the
sampling time for both the high-level and low-level MPC
optimization problems.

5. CONCLUSIONS

A two-level architecture for manoeuvre generation and
vehicle control for automated highway driving has been
presented. The high-level path planner computes a (X,Y)-
trajectory along with a longitudinal velocity profile as
the solution of a QP optimization problem. The low-level
controller computes the required vehicle control inputs to
follow the trajectories provided by the high-level planner
by solving a low-complexity non-linear MPC problem.

Simulation results have shown the ability of the presented
approach to plan appropriate manoeuvres depending on
the traffic situation, in real-time.

These results motivate continued work in incorporating
a dynamic prediction model of the surrounding vehicles,
and also include sensor noise and uncertainty. In order
to improve the traffic dependent trajectories, tuning func-
tions for the problem parameters of the high-level planner
should also be developed. Further, efforts should be made
towards implementation and testing on a passenger car in
real-world scenarios.
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