
Complexity of

Implementation and Synthesis in

Linear Parameter-Varying Control

Christian Hoffmann
∗

Herbert Werner
∗

∗ Hamburg University of Technology, Hamburg, 21073 Germany
(e-mail: {christian.hoffmann, h.werner}@ tuhh.de).

Abstract: In this paper an analysis of the complexity involved in the implementation and
synthesis of linear parameter-varying (LPV) controllers is presented. Its purpose is to provide
guidance in the selection of a synthesis approach for practical LPV control problems and reveal
directions for further research with respect to complexity issues in LPV control. Standard
methods are classified into polytopic, linear fractional transformation and gridding-based
techniques with an emphasis on output-feedback synthesis. Carried out as a convex optimization
problem via finitely many linear matrix inequalities (LMIs) for both parameter-independent and
parameter-dependent Lyapunov functions (PiDLF/PDLF), the complexity of LPV controller
existence conditions is assessed in terms of the number of decision variables and total size
of the LMI. The implementation complexity is assessed in terms of the number of arithmetic
operations required to compute the parameter-varying state space matrices of the controller,
as well as the memory requirements to store associated variables. The results are applied to
the LPV controller synthesis for a three-degrees-of-freedom robotic manipulator and the charge
control of a spark-ignited engine, for which multiple models, as well as associated synthesis
results have been reported in the literature.

1. INTRODUCTION

The field of nonlinear control using the quasi-linear
parameter-varying (quasi-LPV) modeling and control
paradigm has matured since its introduction in the seminal
work of Shamma and Athans (1990). LPV controller syn-
thesis is attractive since linear time-invariant (LTI) control
methodologies, such as sensitivity shaping and modeling
tools, have been extended to and are available for the LPV
framework. Early synthesis methods were limited to slow
parameter variations Shamma and Athans (1991), but over
the years methods have been derived, capable of allowing
for arbitrarily fast or rate limited parameter variations
(Apkarian et al., 1995; Apkarian and Gahinet, 1995; Wu
et al., 1996; Scorletti and Ghaoui, 1998; Apkarian and
Adams, 1998; Scherer, 2000, 2001; Wu, 2001). Incorporat-
ing knowledge on known bounds on the parameters’ rate
of variation is known to reduce conservatism and has been
explored, e.g., in Apkarian and Adams (1998); Wu and
Dong (2006).

Most controller synthesis approaches involve the formu-
lation of matrix inequalities, whose efficient solution re-
quires certain convexification techniques. The applicable
techniques strongly depend on the type of LPV model that
is used. Common LPV representations are generally, ratio-
nally or affinely parameterized state space representations.
The suitability of one of the individual LPV modeling
frameworks is influenced by the nonlinearities found in
the considered systems. Complex nonlinear functions of
states, inputs and outputs, look-up tables in conjunction
with a limited number of measured scheduling signals can
be handled well within a general LPV framework and a

gridding approach for analysis and synthesis. Linear frac-
tional transformation (LFT)-based or polytopic techniques
require to mask nonlinearities in scheduling parameters.
This can introduce conservatism through overbounding
(Kwiatkowski and Werner, 2008). In turn, this may also
allow for more complex systems, when, e.g., in the LFT-
based approach, multiplier constraints are employed to
reduce synthesis and implementation complexity. Apart
from these fundamental differences, assessing the suitabil-
ity of a synthesis approach via its complexity in syn-
thesis and implementation is not always straight-forward.
Therefore, this paper aims at providing a tool to estimate
the costs a priori—provided the respective models are
available.

Outline: Section 2 briefly reviews different LPV model
descriptions and associated synthesis techniques. The com-
plexity during online implementation associated with the
synthesis approaches is investigated in Section 3. Synthesis
complexity is discussed in Section 4 and a tabular sum-
mary is presented in Section 5. The results are applied
to a three-degrees-of-freedom robotic manipulator, as well
as a spark-ignited engine model, for both of which sev-
eral modeling approaches are motivated and referenced.
Section 7 draws conclusions.

2. PRELIMINARIES

Notation: An (upper) LFT is denoted by ∆⋆
[

M11 M12

M21 M22

]

=

M22+M21∆(I−M11∆)−1M12. The symmetric completion
of a matrix is denoted by •. Time dependence is regularly
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dropped, e.g. θ = θ(t). Also, kerA denotes the kernel of A.
Four types of complexities are considered: The number
of arithmetic operations to compute a value A, which
at some point is referenced to be computed by some
formula A = f(x), is denoted a(A). The multiplications,
additions, divisons, etc., involved are assumed clear from
the context by the explicit formula f(x). Similarly, the
number of scalar values (memory) required to store the
variables, from which A can be computed, is denoted
by m(A). Furthermore, the size of a matrix inequality
L is written as s(L) (provided only in terms of one
dimension, since LMIs are square), whereas the associated
number of decision variables is given by d(L). If, e.g., L
solely contains the matrix variables X , Y , we also write
d(L) = d(X) + d(Y ). We use the short-hand notation
∂X(ρ(t)) :=

∑nρ

i=1
∂X

∂ρi(t)
ρ̇i(t), ρ(t) : R 7→ R

nρ .

2.1 LPV Model Representations

Consider a general LPV plant of the form

Pρ :











ẋ

zp

y



=





A (ρ) Bp(ρ) Bu(ρ)

Cp(ρ) Dpp(ρ) Dpu(ρ)

Cy(ρ) Dyp(ρ) Dyu(ρ)









x

wp

u



, (1)

where x∈R
nx , u∈R

nu , y∈R
ny , wp∈R

nw , zp∈R
nz , are

the state, input, output and performance signal vectors
of the system, respectively. We denote as scheduling sig-
nals ρ = [ρ1(t) ρ2(t) . . . ρnρ

(t)] ∈ ρ measurable quanti-
ties that range in some admissible compact set ρ, as well as
associated bounded rates of variation ρ̇ =: σ =∈ σ. For the
purpose of rewriting a general LPV system (1), in order to
have affine or a rational dependence on a set of scheduling
parameters, we introduce mappings

fρ→δ : R
nρ → R

nδ , ρ(t) 7→ fρ→δ
(

ρ(t)
)

:= δ(t) and

f δ→θ : R
nδ → R

nθ , δ(t) 7→ f δ→θ
(

δ(t)
)

:= θ(t).

The former is used to denote a transformation into a
linear fractional dependence on the parameters δ, whereas
the latter is used for mapping the LFT parameters into
parameters θ that allow for an affine representation. The
linear fractional representation (LFR) of the LPV plant is
given by

Pδ :































ẋ

z∆

zp

y









=









A B∆ Bp Bu

C∆ D∆∆ D∆p D∆u

Cp Dp∆ Dpp Dpu

Cy Dy∆ Dyp Dyu

















x

w∆

wp

u









,

w∆ = ∆z∆,

(2)

where w∆∈R
n∆ , z∆∈R

n∆ denote the scheduling chan-
nel of the system. We denote the state space model
matrices P δ, such that Pδ = diag

(

s−1I,∆
)

⋆ P δ. As-
sume that the LFR is well-posed, i.e., (I −D∆∆∆) is
invertible for all admissible parameter values. The vec-
tor δ(t) = [δ1(t) δ2(t) . . . δnδ

(t)] collects all schedul-
ing parameters assumed to be contained in a compact
set δ. The time derivatives are also bounded, such that
δ̇(t) =: υ(t) = [υ1(t) υ2(t) . . . υnδ

(t)], with υ ∈ υ For an
LFT-LPV plant ∆ is often assumed to have block-diagonal

structure ∆(t) =
nδ

diag
i=1

(

δiIrδ
i

)

, where
∑nδ

i=1 r
δ
i = n∆. How-

ever, it may also be possible to find full block-matrix
structured scheduling blocks ∆, (Hoffmann and Werner,
2014).

Using δ(t) = fρ→δ
(

ρ(t)
)

, the general LPV form is recov-
ered by

Sδ(δ)=

[

A (ρ) Bp(ρ) Bu(ρ)
Cp(ρ) Dpp(ρ) Dpu(ρ)
Cy(ρ) Dyp(ρ) Dyu(ρ)

]

=

[

A Bp Bu

Cp Dpp Dpu

Cy Dyp Dyu

]

+

[

B∆

Dp∆

Dy∆

]

∆(I −D∆∆∆)−1[C∆ D∆p D∆u]. (3)

A plant affine in its parameters can be written as

Pθ :































ẋ

zΘ

zp

y









=









A BΘ Bp Bu

CΘ 0 DΘp DΘu

Cp DpΘ Dpp Dpu

Cy DyΘ Dyp Dyu

















x

wΘ

wp

u









,

wΘ = ΘzΘ,

(4)

where wΘ∈R
nΘ , zΘ∈R

nΘ . Again, diagonal scheduling

blocks Θ(t) =
nθ

diag
i=1

(

θiIrθ
i

)

, with
∑nθ

i=1 r
θ
i = nΘ are com-

mon, but other forms can be found (Hoffmann andWerner,
2014). We assume also for the affine LPV parameters and
their rates of change to be contained in compact sets,
s.t. θ ∈ θ and θ̇(t) =: ν(t) = [ν1(t) ν2(t) . . . υnθ

(t)], with
ν ∈ ν.

For LPV systems affine in their parameters, representa-
tions other than the LFT form (4) are also common. From

Sθ(θ)=

[

A (ρ) Bp(ρ) Bu(ρ)
Cp(ρ) Dpp(ρ) Dpu(ρ)
Cy(ρ) Dyp(ρ) Dyu(ρ)

]

= (5)

+

[

A Bp Bu

Cp Dpp Dpu

Cy Dyp Dyu

]

+

[

BΘ

DpΘ

DyΘ

]

Θ[CΘ DΘp DΘu]

= Sθ
0 +

nθ
∑

i=1

θiS
θ
i = Sθ

0 +

nθ
∑

i=1

f δ→θ
i

(

fρ→δ
(

ρ(t)
))

Sθ
i , (6)

one may also obtain a representation in barycentric co-
ordinates αi, where θv,i, i = 1, . . . , nv denote scheduling
parameter vectors in the vertices of a convex hull that
encapsulates the admissible parameter range θ:

Sθ(θ)=

nv
∑

i=1

αi

[

A (ρ) Bp(ρ) Bu(ρ)
Cp(ρ) Dpp(ρ) Dpu(ρ)
Cy(ρ) Dyp(ρ) Dyu(ρ)

]∣

∣

∣

∣

∣

ρv,i

∑nv

i=1
αi = 1,

αi > 0.

Analogously, we have θ =
∑nv

i=1 αiθv,i. If the parameters θ
are assumed to vary inside a hyperbox, we have nv = 2nθ .

A general formula for determining the barycentric coordi-
nates for a scheduling parameter vector θ(t) ranging in a
simple polytope is given in (Warren et al., 2007).

If the parameters reside in a hyperbox, the derivation of
the barycentric coordinates as implemented in the Matlab
function polydec is performed iteratively. Initialize a
vector c0 = 1. Then for k = 1, . . . , nθ, compute

tk =
θk(t)− θk
θk − θk

, ck = [ck−1(1 − tk), ck−1tk] ,

where θk 6 θk 6 θk. The vector cnθ
= [α1, α2, · · · , αnθ ]

then contains the barycentric coordinates.

2.2 State Space Based LPV Output-Feedback Control

In the following, we will review methods to synthesize LPV
output-feedback controllers. Consider a gain-scheduled
controller of the form
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Kρ :

{[

ẋK

u

]

=

[

A K(ρ, σ) BK
y (ρ)

C K
u (ρ) DK

uy(ρ)

] [

xK

y

]

, (7)

where xK ∈R
nK
x . An LFR of the controller may be written

as

Kδ :



















ẋK

zK
∆

u



=





AK BK
∆

BK
y

CK
∆

DK
∆∆

DK
∆y

CK
u DK

u∆
DK

uy









xK

wK
∆

y



,

wK
∆ = ∆KzK∆ ,

(8)

where ∆K contains the scheduling parameters δi, as well
as the rate of variations υi, i = 1, . . . , nδ, on the diagonal.
As above, we use the notation

SKρ

(ρ)=

[

A K(ρ, σ) BK
y (ρ)

CK
u (ρ) DK

uy(ρ)

]

, SKδ

(δ)=

[

A K(δ, υ) BK
y (δ)

CK
u (δ) DK

uy(δ)

]

,

such that, e.g., Kδ = diag
(

s−1I,∆K
)

⋆Kδ = s−1I⋆SKδ

(δ).

The interconnection T ρ = Pρ ⋆Kρ denotes the closed-loop
system

T ρ :

{

[

ξ̇

zp

]

=

[

A
(

ρ, σ
)

Bp

(

ρ
)

Cp

(

ρ
)

Dpp

(

ρ
)

]

[

ξ

wp

]

, (9)

where ξ∈R
nx+nK

x .

Many LPV controller synthesis techniques are based on
first formulating a sufficient analysis condition in terms
of an infinite-dimensional parameter-dependent matrix in-
equality, e.g., Wu (1995); Apkarian and Adams (1998);
Scherer (2001). In order to arrive at a convex synthesis con-
dition, the matrix inequalities need to be rendered linear in
the decision variables. Furthermore, parameter-dependent
linear matrix inequalities (PLMIs) require relaxation tech-
niques, in order to be solved by finitely many LMIs. In the
following, parameter-dependency is suppressed in notation
for the sake of brevity. We restrict the scope to controller
synthesis optimal in the sense of the L2-gain and define
Γ = diag(−γI, 1/γI). For brevity, define Γ̃ = Γ−1.

Theorem 1. (LPV System Analysis). The system T ρ is
stable and achieves an L2-gain γ > 0 on the channel
wp → zp, if there exists X

(

ρ
)

= X⊤
(

ρ
)

> 0, that satisfies

[

•

•

]⊤
[

∂X X

X 0

Γ

]





I 0
A Bp

0 I
Cp Dpp



 < 0, ∀(ρ, σ) ∈ ρ× σ. (10)

The bilinearity of the matrix inequality is usually tackled
by a linearizing change of variables or via an elimination
of the controller variables (Apkarian and Adams, 1998;
Scherer, 2000, 2001), the latter leading to the following
existence condition.

Theorem 2. (LPV Controller Existence). There exists a
controller Kρ, that renders the system T ρ stable and
achieves an L2-gain γ > 0 on the channel wp → zp, if
there exist R

(

ρ
)

= R⊤
(

ρ
)

> 0 and S
(

ρ
)

= S⊤
(

ρ
)

> 0,
that satisfy

LR = N⊤

R

[

•

•

]⊤
[

∂R R

R 0

Γ

]





I 0
A Bp

0 I
Cp Dpp



NR < 0, (11)

LS = N⊤

S

[

•

•

]⊤
[

0 S

S −∂S

Γ̃

]







−A ⊤ −C⊤
p

I 0

−B⊤
p −D⊤

pp

0 I






NS > 0, (12)

LRS =

[

R I
I S

]

> 0, ∀(ρ, σ) ∈ ρ× σ, (13)

where NR = ker (Cy Dyp) , NS = ker
(

B
⊤

u D
⊤

pu

)

. (14)

Assuming full row rank of [Cy Dyp] and
[

B⊤
u D⊤

pu

]

guar-
antees the existence of a stabilizing output-feedback LPV
controller. Note that the matrix inequalities (11) and (12)
are sigmonial inequalities in γ. A Schur argument renders
these linear in γ. If the variables fulfilling these existence
LMIs have been found, explicit formulae can be used to
calculate the controller matrices Wu (1995); Wu et al.
(1996); Apkarian and Adams (1998); Wu (2001); Wu and
Dong (2006). Note that they have been derived under the
assumptions Dyu = 0 and Dpp = 0, which can be achieved
by proper pre- and postfiltering. Compute the controller
matrices via

MN⊤ = I −RS

F = −
(

D
⊤
puDpu

)−1 (

γB
⊤
u R−1 + D

⊤
puCp

)

, (15a)

L = −
(

γS−1
C

⊤
y + BpD

⊤
yp

) (

DypD
⊤
yp

)−1
, (15b)

A
K = −N−1

(

− SṘ − NṀ⊤+

+ A
⊤ + S

[

A + BuF + LCy

]

R+

+ γ−1S
[

Bp + LDyp

]

B
⊤
p +

+ γ−1
C

⊤
p

[

Cp + DpuF
]

R

)

M−⊤, (16a)

B
K = N−1SL, C

K = FRM−⊤, D
K = 0. (16b)

To reduce the online computational load by avoiding an
online singular value decomposition, the trivial factoriza-
tions M = I − RS, N = I or M = I, N = I − SR can
be chosen (Apkarian and Adams, 1998). Furthermore, if
in the first case R := R(ρ), S := S0 (or vice versa for the
second case) is chosen, the controller will not depend on
the parameters’ rate of variation (Apkarian and Adams,
1998). For example, if N = I,S := S0, we have

M = I −RS0

F = −
(

D
⊤
puDpu

)−1 (

γB
⊤
u R−1 + D

⊤
puCp

)

, (17a)

L = −
(

γS−1
0 C

⊤
y + BpD

⊤
yp

)(

DypD
⊤
yp

)−1
, (17b)

A
K = −

(

A
⊤ + S0

[

A + BuF + LCy

]

R+ γ−1S0

[

Bp + LDyp

]

B
⊤
p

+ γ−1
C

⊤
p

[

Cp + DpuF
]

R

)

M−⊤, (18a)

B
K = S0L, C

K = FRM−⊤, D
K = 0. (18b)

For constant Lyapunov functions, there exist approaches
for both affine and rational parameter-dependencies that
allow to search for the controller variables via LMIs. In this
case, further optimizations—e.g. w.r.t. the spectral radius
of the controller’s state matrix—can be performed.
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In the following, we will distinguish the three most com-
mon approaches for turning the infinite set of LMIs into
a finite set of LMIs that can be solved via semi-definite
programming:

a) Polytopic LPV synthesis,
b) LFT-based LPV synthesis with multipliers,
c) Gridding-based LPV synthesis.

Polytopic LPV Synthesis: If the system (1) admits
an affine/polytopic LPV representation with Cy, Dyp,
Bu, Dpu being constant matrices and the parameter-
dependence of R

(

ρ
)

and S
(

ρ
)

is dropped at the expense
of conservatism, the existence conditions (11)–(13) can be
solved in the vertices θv,i, i = 1, . . . , nv, nv = 2nθ , where
the convex hull of this set of vertices conv (θv) includes
the parameter set θ (Apkarian et al., 1995). If R

(

ρ
)

and

S
(

ρ
)

are assumed to depend affinely on the parameters θ,
a multi-convexity approach (Gahinet et al., 1996) can be
used to introduce additional constraints

∂2

∂θ2i
LR > 0,

∂2

∂θ2i
LS 6 0, i = 1, . . . , nθ (19)

which allow to still solve the inequalities on a finite
set of vertices Gahinet et al. (1996). If the performance
channel, or more specifically matrices Bp and Cp are
parameter-independent, the multi-convexity constraints
can be reduced to

∂2

∂θ2i

(

Ṙ+RA + A
⊤R

)

> 0, −
∂2

∂θ2i

(

Ṡ + SA
⊤ + A S

)

6 0,

for all i = 1, . . . , nθ. Matrix inequalities (11)–(12) will be
affine in ν and assuming that nν 6 nθ of the parameters
have a non-zero rate of change and/or are considered in
the parameter-dependent Lyapunov function (PDLF), the
number of vertices increases to nv = 2nθ+nν .

The controller is computed online as a weighted sum of
the vertex controllers, which may be obtained explicitly.
So-called overbounding may occur, i.e., guarantees are
provided for portions of the scheduling signal range, that
are not physically admissible. In many applications, the
parameter polytope can be optimized to either cover the
parameter set more closely and/or use less vertices than
incurred by naively considering a hyperbox.

Multiplier-Based LFT LPV Synthesis: The analysis con-
dition (10) can be turned into a finite-dimensional inequal-
ity on the system matrices by application of the Full-
Block S-Procedure (FBSP) (Scherer, 2001). An additional
inequality on the multiplier quadratic in the LFT schedul-
ing block is introduced, which can again be evaluated
in the vertices of the parameter range if constrained by
multi-convexity conditions. Existence conditions linear in
all variables are derived via controller elimination and
controller construction is either performed by closed-form
formulae (15)–(16), or by first reconstructing the extended
closed-loop multiplier and Lyapunov variable (Scherer,
2001) and then solving an LMI problem. Both approaches
will lead to potentially complex, yet less conservative,
controller scheduling policies, while by the introduction
of some more conservative structural constraints on the
multipliers—such as D/G-scalings (Scorletti and Ghaoui,

1998)—, the conditions are rendered trivially fulfilled and
the controller is allowed to receive a copy of the plant’s
scheduling block. This reduces implementation complexity
but increases conservatism.

PDLF based synthesis (Wu and Dong, 2006) requires the
application of the FBSP on (11)–(13). For this purpose,
LFRs of the null-spaces NR and NS are required, if they
are parameter-dependent, or pre- and postfiltering can be
applied to render them parameter-independent. To the
best of the authors’ knowledge, the controller can then
only be constructed by closed-form formulae (15)–(16)
or (17)–(18), respectively.

For illustration consider quadratic Lyapunov parameter-
izations R = T ⊤

R RTR, S = T ⊤

S STS . LFRs of the outer
factors

∆R ⋆

[

G11
R

G12
R

G21
R G22

R

]

=







TR 0

ṪR TR

I 0
0 I











I 0
A Bp

0 I
Cp Dpp



NR, (20)

∆S ⋆

[

G11
S

G12
S

G21
S

G22
S

]

=







TS −ṪS

0 TS

I 0
0 I













−A ⊤ −C ⊤
p

I 0

−B⊤
p −D⊤

pp

0 I






NS , (21)

∆RS ⋆

[

G11
RS

G12
RS

G21
RS

G22
RS

]

=





TR 0
0 TS

I 0
0 I



 (22)

allow to write (11)–(13) as

LR =
[

•

•

]⊤





M

0 R

R 0

Γ





[

G11
R G12

R

I 0

G21
R G22

R

]

< 0, (23)

LS =
[

•

•

]⊤





N

0 S

S 0

Γ̃





[

G11
S G12

S

I 0

G21
S G22

S

]

> 0, (24)

LRS =
[

•

•

]⊤







P

R 0

0 S

0 I

I 0







[

G11
RS G12

RS

I 0

G21
RS G22

RS

]

> 0 (25)

and ∀(ρ, σ) ∈ ρ× σ

LM =

[

•

•

]⊤

M

[

I

∆R

]

> 0, LN =

[

•

•

]⊤

N

[

I

∆S

]

< 0, (26)

LP =

[

•

•

]⊤

P

[

I

∆RS

]

< 0. (27)

Note that in the case of parameter-independent Lyapunov
functions, TR and TS degenerate to identities, rendering
the multiplier P obsolete. The results from (Scherer, 2000,
2001) are recovered if in contrast to the derivation of (11)–
(12) the multiplier is introduced before the controller
is eliminated. To arrive at the LMIs for the existence
conditions for parameter-independent Lyapunov function
based synthesis, set the LFRs of the outer factors (20)–(21)
to

∆ ⋆
[

G11
R G12

R

G21
R G22

R

]

=





I 0

A Bp

0 I

Cp Dpp



, ∆ ⋆
[

G11
S G12

S

G21
S G22

S

]

=





−A
⊤

−C
⊤

p

I 0

−B
⊤

p −D
⊤

pp

0 I



,

and use
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L̃R = Ñ⊤

R LRÑR < 0, L̃S = Ñ⊤

S LSÑS > 0, (28)

L̃RS =

[

R 0
0 S

]

> 0, (29)

L̃M =

[

•

•

]⊤

M

[

I

∆

]

> 0, L̃N =

[

•

•

]⊤

N

[

I

∆

]

< 0, (30)

with ÑR = ker (Cy Dy∆ Dyp), ÑS = ker
(

B⊤
u D⊤

∆u D⊤
pu

)

.
Controller construction can then be handled by recon-
structing an extended multiplier Mcl and a closed-loop
Lyapunov matrix X , which—inserted in the analysis ma-
trix inequality—allow to solve for the controller LTI ma-
trices Kδ explicitly instead of using (15) and (16).

Gridding-Based LPV Synthesis: In gridding-based LPV
synthesis approaches Wu (1995); Apkarian and Adams
(1998), the inequalities (11)–(13) are solved on a set of
points covering the admissible parameter signals. This
technique is applicable to LPV plants with general
parameter-dependency, requiring neither polytopic nor
LFRs. Accordingly, the Lyapunov variable can be param-
eterized by general parameter-dependency. Since this ap-
proach does not provide any rigorous guarantees for closed-
loop stability and performance, the analysis inequality (10)
is usually checked a posteriori on a much denser grid. Note
that the gridding approach can easily accommodate non-
convex signal ranges.

The implementation scheme may consist in an interpola-
tion or a switching between local pre-computed controllers,
requiring a high amount of memory. Closed-form controller
formulae can be applied instead, shifting the complexity
to online computing. Especially in the light of micropro-
cessors limited in precision and/or computing power, the
gridded look-up table based implementation is attractive,
but applies to the other synthesis methods as well. I.e.

also controller matrices SKθ

or SKδ

derived from polytopic
and LFT-based controller representations can be gridded
in terms of the scheduling signals ρ and implemented in
look-up tables.

If observer-based state-feedback synthesis is performed,
parameter-dependent state-feedback matrices of both ob-
server and controller can be computed online each by a
single matrix inversion without the need to store multiple
controllers in memory (Saupe and Pfifer, 2011, 2012). Via
a loop-shaping approach frequency-dependent character-
istics as in the output-feedback case can be achieved,
while observer and state-feedback gains can be synthesized
sequentially via projection or a linearizing change of vari-
ables each at the cost of approximately the analysis prob-
lem (10) instead of the two projected LMIs. This can—in
some sense—alleviate the relatively high complexity of the
gridding approach.

3. IMPLEMENTATION COMPLEXITY

The choice of the modeling framework and associated
synthesis techniques affect both the complexities encoun-
tered during implementation and synthesis. In this section
the involved complexity is analyzed, in order to generate
numerical indicators for benefits and drawbacks of the
individual approaches a priori.

Table 1. Complexity of matrix operations.

Operation Sizes a(A)

Multiplication A=BC B ∈ R
n×m, C ∈ R

m×p n(2m−1)p

Scaling A=
n

diag
i=1

(

bi

)

C bi ∈ R, C ∈ R
n×m nm

Addition A=B + C B ∈ R
n×m, C ∈ R

n×m nm

Inversion∗ A=B−1 B ∈ R
n×n, 2

3
n3

∗Gauss elimination provides an upper bound for the cost.

Table 2. Memory requirements of matrix types.

Matrix structure Sizes m(A)

Full A A ∈ R
n×m, nm

Symmetric A = A⊤ A ∈ R
n×n,

∑n+1

k=1
k = n(n+ 1)/2

Skew-sym. A = −A⊤ A ∈ R
n×n,

∑n−1

k=1
k = n(n− 1)/2

For the sake of simplicity, we consider the case, when
signal and parameter values are taken to range inside
a hyperbox, which in most cases will mark an upper
bound on the complexity. Furthermore, we will—as in
the preceding discussions—for the most part consider
the synthesis and implementation of state space output-
feedback LPV controllers (7) of full order (nK

x = nx).

Tab. 1 shows the number of arithmetic computations,
denoted by a(·), for elementary matrix operations and the
number of scalar variables to be stored m(·), which is used
as a measure for the memory requirements.

3.1 General Complexity

Updating the states and calculating the outputs is as-
sumed to consume the same amount of arithmetic op-
erations for each output-feedback-based method, which
amounts to

a
(

[ẋK⊤, u⊤]⊤
)

6(nx + nu) (2(nx + ny)− 1) (31)

arithmetic operations once the state space matrices of the
controller at a particular time instant are available. In
contrast, a state-feedback controller requires

a(u)6nu(2nx − 1). (32)

once the state-feedback gain matrix F , as from (15a) with
Dpu = I, has been computed.

If the projection approach considered in Theorem 2 is
applied, formulae (15)–(18) have to be used for the imple-
mentation of PDLF-based controllers, independent of the
LPV framework (polytopic, LFT-based, gridding) consid-
ered. The reason for this resides in the fact that the con-
struction of the closed-loop Lyapunov matrix X—even if
carried out symbolically—results in a rational parameter-
dependence and a convex search for the controller variables
is only possible by again solving a gridded LMI problem
based on (10). For online implementation via (15)–(18),
the plant matrices (1) should therefore be available at
any given time instant via their polytopic, affine, look-up
table or LFR, respectively. We consider the case where the
controller depends on rates of change practically undesir-
able and therefore restrict the analysis to Eqs. (17)–(18).
Computing (17) and (18) then amounts to

a(SKρ

)6a(Sρ) + a(F) + a(L) + a(M)

+ a
(

A
K
)

+ a
(

B
K
)

+ a
(

C
K
)

.
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For implementation, the generalized plant matrices in (1)
are required and we assume that their evaluation can
be performed efficiently enough, such that the cost in
arithmetic operations is negligible. The actual memory
and evaluation costs then depend on the parameterization
of R. Throughout we will consider the intuitive heuristic
that a Lyapunov function basis is chosen that aims at re-
flecting the parameter-dependency of the plant. Therefore
a(R) will depend on the framework, the plant is modeled
in. Once R is constructed online, however, its inversion
requires

a
(

M−⊤
)

≈ a
(

R−1
)

6
2/3n

3
x (33)

operations. Note that this complexity is absorbed in a(F).
We further have a(M) 6 nx + 2n3

x. In the following
enumeration of complexities care of an economic sequence
of operations has been taken, such that, e.g., the inversion
of M is considered in a

(

A K
)

, but not in a
(

CK
)

, as
an efficient implementation will store the result of the
inversion for multiple uses.

a(F)6 2n2
unz+

2/3(n
3
u + n3

x)+nu(2nx−1)nx

+2nunx+nu(2nz−1)nx+nu(2nu−1)nx (34)

a(L)6 2n2
xny+nx(2nw−1)ny+nxny+2n2

ynw+2/3n
3
y (35)

a

(

A
K
)

6 7n2
x+nxnw+nxnz+nx(2ny−1)(nx + nw)

+(nx + nz)(2nu−1)nx+nx(2nx−1)(5nx + nz)

+n2
x(2nw−1)+2/3n

3
x (36)

a

(

B
K
)

6 nx(2nx−1)nu (37)

a

(

C
K
)

6 nx(2nx−1)(ny + nx) (38)

In addition to evaluating the Lyapunov variable online,
which costs a(R), this results in a total number of arith-
metic operations to evaluate the controller’s state space
matrices from (17)–(18)

a(SKρ

)6 46/3n
3
x + (6muy + 2mwz − 2)n2

x

+ (nw +muz(2nu − 1) + 2nunz −muyw + 4nynw + 1)nx

+ 2nzn
2
u + 2nwn2

y + 2/3n
3
u + 2/3n

3
y. (39)

In many cases the performance channel related matrices
will be parameter-independent. If in addition, Cy is also
parameter-independent, L ∈ R

nx×ny can be computed
offline and the number of required computational steps
reduces. The same applies to the alternative practical case,
where R instead of S is chosen constant and performance
channel and input matrices are parameter-independent.

The memory requirements to store the plant matrices of
general dependency on the scheduling signals are approx-
imated by (Dpp = 0,Dyu = 0)

m(Sρ)≈(nx+nz+ny)(nx+nw+nu)−nznw−nynu. (40)

We further havem(S0)= m
(

S−1
0

)

= nx(nx + 1)/2. Through-
out the paper, we will neglect the memory requirement
m(γ). Thus the total required scalar variables to be stored
amount to

m(SKρ

) ≈m(Sρ) + 2m(S0) +m(R)

≈ nx(nx + 1) +(nx+nz+ny)(nx+nw+nu)

−nznw −nynu +m(R) (41)

A particularly efficient implementation can be performed
for state-feedback LPV controllers. It is possible to evalu-
ate the state-feedback gain F = −

(

γB⊤
u R

−1 + Cp

)

by

a(F)6 a(R) + 2/3n
3
x + nu(2nx − 1)nx + nunx.

Here, only two plant matrices and a single inversion need
to be calculated, which makes up the main computational
load (Saupe and Pfifer, 2012).

3.2 Polytopic LPV Controllers

Polytopic LPV controllers synthesized based on parameter-
independent Lyapunov functions can be implemented by
the interpolation of the state space matrices of the LTI
vertex controllers. Therefore, we have:

SKθ

(θ)=

[

A K
(

ρ
)

BK
y

(

ρ
)

CK
u

(

ρ
)

DK
uy

(

ρ
)

]

=

nv
∑

i=1

αiS
Kθ

(θv,i). (42)

The associated number of arithmetic operations is

a(SKθ

)6(2nθ+1 − 1)(nx + nu)(nx + ny), (43)

which results from scaling each of the nv = 2nθ vertex
controllers by the respective αi and then calculating the
controller as a weighted sum by 2nθ − 1 matrix additions.
In addition, the algorithm given in (Warren et al., 2007)
to compute the barycentric coordinates α from the affine
parameters θ requires approximately

a(α)6nva(αi) = nv

(

O(n3
θ) + n2

θ + nθ − 1
)

.

When the parameters range in a hyperbox, the compu-
tation of the involved determinants is always one and we
have

a(α)62nθ
(

n2
θ + nθ − 1

)

.

In contrast the Matlab implementation of the command
polydec requires

a(α)6

nθ
∑

k=1

(a(tk) + a(ck))

= 3nθ + 2
1− 2nθ+1

1− 2
= 2nθ+2 + 3nθ − 2,

with a(tk) = 3, a(ck) = 2k+1 and by using the geometric

series
∑n

k=0 a
k = 1−an+1

1−a
. Note that this is only valid

for parameters ranging in a hyperbox, but also that it is
always less costly than the algorithm proposed by (Warren
et al., 2007).

Storing the controller matrices in the nv = 2nθ vertices
requires

m(SKθ

)≈2nθ(nx + nu)(nx + ny). (44)

If either an offline preprocessing can be applied, which
converts the convex coordinates back into the affine LPV
parameter coordinates, or the synthesis for an affine LPV
plant is carried out using multiplier-based LFT methods
with additional constraints (Dettori and Scherer, 2001;
Hoffmann et al., 2013a, 2014a, 2013b), the exponential
growth can be reduced to linear growth and convex co-
ordinates need no longer be computed online:

a(SKθ

)62nθ(nx + nu)(nx + ny), (45)

m(SKθ

)≈(nθ + 1)(nx + nu)(nx + ny). (46)

In the subsequent summary, we will assume that the
implementation of affine controllers is carried out in this
more efficient way.

Using PDLFs in conjunction with the multi-convexity
approach results in a controller which is no longer affine
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in the parameters θ, but rational. Therefore, the explicit
formulae (15)–(16) or (17)–(18), respectively, have to be
used, the complexity of which has already been discussed.
Assuming the Lyapunov matrix has been parameterized
as

R = R0 +

s
∑

i=r

θiRi, nR

θ = s− r. (47)

its online construction requires

a(R) 6 2nR

θ n2
x, m(R) ≈ 1/2(n

R

θ + 1)nx(nx + 1)

operations and stored scalars, respectively.

3.3 LFT-Based LPV Controllers

The computation of LFT-based controllers is of polyno-
mial order:

a(SKδ

)62n∆(nx + nu)(nx + ny)+a
(

ΨK
)

+ . . .

. . .+n∆(nx + nu) + a
(

∆K
)

∈ O(n3
∆), (48)

with a
(

ΨK
)

6 n∆

(

2/3n
2
∆ + 2n∆ + 1

)

,

where ΨK(t) = ∆K(I − DK
∆∆∆

K)−1, ∆K ∈ R
n∆×n∆ .

Memory requirements amount to

m(SKδ

)6(nx+n∆+nu)(nx+n∆+ny)+m
(

∆K
)

. (49)

The terms a
(

∆K
)

and m
(

∆K
)

are due to the scheduling

block ∆K(∆). For LFT-based synthesis with PiDLFs,
Scherer (2000) provides details on the conditions and
explicit construction of the scheduling function ∆K(∆) as

an LFT in

[

0 ∆⊤

∆ 0

]

, which reads as

∆K(∆) = −W22 + [W21 V21]
[

U11 •

W11 +∆ V11

]−1 [
U12

W12

]

(50)

with matrices Vij ,Wij , Uij , i, j = 1, 2 being elements
of Rn∆×n∆ constructed from a certain block partitioned
symmetric extended multiplierMcl via V = −M−1

cl,22, W =

−VMcl,12, U = Mcl,11+M⊤

cl,12W . It can be observed that
both V and U are symmetric.

The computation of the controller’s scheduling function
therefore requires

a(∆K) 62/3(2n∆)3+2n2
∆+2n2

∆(4n∆−1)+n2
∆(4n∆−1) (51)

with summands from left to right denoting the inversion,
additions performed before the inverse, the right hand
and left hand side multiplications, respectively. Due to
the symmetry, the inversion can possibly be performed
more efficiently, which has been neglected here. Taking into
account the symmetry of U and V , however, the memory
requirements amount to

m(∆K) = 7n∆(n∆ + 1). (52)

Via additional constraints on multipliers and at the price
of increased conservatism (Dettori and Scherer, 2001), the
choice ∆K = ∆ can be made admissible. We neglect the
cost of evaluating ∆ and therefore consider both memory
requirements and arithmetic operations negligible.

In the case of PDLFs and LFT-based synthesis methods
the Lyapunov variable can be parameterized in a multitude
of ways and an affine parameterization is most likely not

the best choice. Therefore, we consider an Ansatz which—
in a sense—mimics the rational parameter-dependence of
the plant (Iwasaki and Shibata, 2001):

R = T ⊤

R RTR =
[

•

•

]⊤ [

R0 R∆

R⊤

∆
0

] [

I
∆(I −D∆∆∆)−1C∆

]

, (53)

with s(R) = nx + n∆. For controller implementation,
evaluating (17)–(18) is required and the complexity again
follows (39) with

a(R)6n∆(2n∆−1)nx+(nx+n∆)(2(nx+n∆)−1)nx

+nx(2(nx+n∆)−1)nx+a(Ψ)

with a (Ψ) 6 n∆

(

2/3n
2
∆ + 2n∆ + 1

)

.

Storing the Lyapunov variables requires

m (R) = 1/2nx(nx + 1) + n2
∆. (54)

However, the evaluation of SKδ

can possibly be performed
more efficiently via first evaluating (17)–(18) offline sym-
bolically (Gonzalez et al., 2013). It is put into LFT form by
tools available in the Control System Toolbox of Matlab
or the LFR-toolbox available from the German Aerospace
Center (DLR) (Hecker et al., 2004). In this case, it is
difficult to predict the size of the scheduling block ∆K ,
which will no longer match the size of the block ∆. Then
again both (48) and (49) apply, but with n∆ replaced by
nK
∆ .

3.4 Gridding-Based LPV Controllers

Gridding-based LPV controllers can be implemented on-
line by the formulae (15)–(16) or (17)–(18). For PiDLFs
the computation simplifies drastically, as, e.g., the fac-
torization problem and many multiplications can be per-
formed offline.

Apart from using the explicit formulae, it is also possible
to store precomputed controllers on some parameter grid,
which does not necessarily need to match the one used to
solve the synthesis LMIs. If an evenly spaced grid of ng

points per parameter dimension is assumed, the required
memory amounts to

m(SKρ

)=nnρ
g (nx + nu)(nx + ny).

It is clear, that an interpolation for intermediate grid
points requires a number of arithmetic operations in the
same order as in the polytopic case:

a(SKρ

)6(2nρ+1 − 1)(nx + nu)(nx + ny).

This approach, which resembles the complexity of classical
gain-scheduling techniques, can therefore quickly become
intractable and control engineers might opt for switching
between controller parameters or the above mentioned
closed-form formulae instead.

4. SYNTHESIS COMPLEXITY

In the following both the total size of the LMI resulting
from the diagonal concatenation of multiple LMI condi-
tions and the number of decision variables are assessed or
estimated.

4.1 Polytopic LPV Synthesis

Parameter-Independent Lyapunov Functions: The size
of the LMIs (11) and (12) is determined by
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s(NR) + nz = (nx + nw − ny) + nz and

s(NS) + nw = (nx + nz − nu) + nw.

Note that in order to solve the LMIs a Schur complement
with respect to 1

γ
has to be taken each, which accounts

for the additional terms nz and nw. The dimensions of the
basis forming the null-spaces NR and NS are due to the
assumptions on the full row rank, which means that it is
derived by the number of columns minus the number of
rows, respectively.

Furthermore, if evaluated in a hyperbox the number of
LMIs grows with O(2nθ ). Together with the Lyapunov
variable coupling condition of size 2nx the total size of
the LMI amounts to

2nθ (2(nx + nw + nz)− (ny + nu)) + 2nx. (55)

The associated number of decision variables of the exis-
tence conditions are limited to the Lyapunov variables R
and S and amount to nx(nx+1). When solving for the con-

troller in the vertices, we again obtain m(SKθ

) from (44),
although closed-form formulae (15)–(16) can also be used,
as performed in the MATLAB implementation ”hinfgs”.

Parameter-Dependent Lyapunov Functions: The param-
eterization of the Lyapunov functions has a strong impact
on the synthesis complexity. Assume again that while
S = S0 is chosen constant, R is parameterized as (47).
The number of decision variables therefore increases to
nx(nx + 1)(1 + 1/2n

R

θ ). Furthermore, the LMI (11) has to

be evaluated on 2nθ+nR

θ vertices when considering the
extremal values of (θ, ν) ∈ θ× ν. The multi-convexity ap-
proach further introduces nR

θ additional LMI constraints
of size s(NR) + nz . The second multi-convexity constraint
is not required if only R is parameter-dependent. Further-
more, as above, we will assume that Bp is parameter-
independent, such that only LMIs of size nx are intro-
duced.

Additionally the coupling (13) needs to be verified on the

2n
R

θ vertices, as well. In conclusion the total size of the
LMI is

(2nθ+nR

θ ) (nx + nw + nz − nu)

+ 2nθ (nx + nw + nz − ny) + nR

θ nx + 2n
R

θ +1nx.

4.2 LFT-Based LPV Synthesis

A core advantage in the synthesis of LPV controllers based
on the LFT paradigm and the Full-Block S-Procedure con-
sists in decoupling parameter-dependent from parameter-
independent LMIs. In addition, the multiplier conditions
are quadratic in the parameters and therefore easily con-
vexified by inertia hypotheses (multi-convexity) even in
the face of rational parameter-dependence of the plant.

Parameter-Independent Lyapunov Functions: After a
Schur argument, the nominal LMIs (28) are of the size

s(ÑR) + nz = (nx + nw + n∆ − ny) + nz and

s(ÑS) + nw = (nx + nz + n∆ − nu) + nw,

which is again derived from the dimensions of the null-
spaces as explained above. The Lyapunov variable cou-
pling condition is again of size 2nx and the multiplier

conditions (30) are both of size n∆, where in general M
and N take the form

M =
[

M11 M12

M⊤

12 M22

]

, N =
[

N11 N12

N⊤

12 N22

]

,
M11 > 0, M22 < 0
N11 < 0, N22 > 0

.

With the multi-convexity constraints above, the multiplier
conditions (30) have to be evaluated at vertices of the
convex hull of the parameter range. Assuming a hyperbox,
we have 2nδ LMI constraints on each multiplier and a total
size of the concatenated LMIs of

2(2nx + nw + nz + n∆)− (ny + nu) + 2nδ+1n∆. (56)

As before, the Lyapunov variables require nx(nx+1) deci-
sion variables and the major increase is due to the size of
the multipliers, which can be structurally constrained. For
full-block multipliers M and N both require n∆(2n∆ + 1)
decision variables each. So-called D/G-scalings can be
used, which require all blocks of M and N to commute
with ∆ and

M =
[

M11 M12

M⊤
12 −M11

]

, N =
[

N11 N12

N⊤
12 −N11

]

,
M12 = −M⊤

12

N12 = −N⊤

12

.

The commutativity requirement essentially reduces the
number of decision variables to the case, where several
multiplier conditions involving only a single parameter are
solved simultaneously and the individual multiplier block
sizes are inferred from the parameter’s repetitions, leading
to a total of

nδ
∑

i=1

rδi (r
δ
i + 1) + rδi (r

δ
i − 1) = 2

nδ
∑

i=1

rδ
2

i .

decision variables for M and N . Without a priori knowl-
edge of the number of repetitions, we consider the limiting
cases: Take nδ → n∆, which leads to rδi = 1, i = 1, . . . , nδ

and therefore the number of decision variables collapses to
2nδ. If nδ → 1, D/G-scalings are lossless (Meinsma et al.,
1997) and full-block multipliers are not required. We then
have 2n2

∆ decision variables for both multipliers. Note that
D/G-scalings render the multiplier conditions trivially ful-
filled, such that the total size of the LMI reduces to

2(2nx + nw + nz + n∆)− (ny + nu). (57)

When solving for the controller variables, the number of

decision variables adheres to m(SKδ

) from (49). Again,
closed-form formulae (15)–(16) can also be used.

Parameter-Dependent Lyapunov Functions: Consider
again the approach to mimic the plant’s parameter-
dependence in the Lyapunov variable (53), which intro-
duces m (R) = 1/2nx(nx + 1) + n2

∆ decision variables, as
seen from (54). When non-constant null-spaces NR and
NS are considered, the sizes of the resulting LFT blocks
in (20) and (21) are upper bounded by

n∆R
= s(∆R) = s(diag(∆̇,∆,∆,∆,∆)) = 5n∆,

n∆S
= s(∆S) = s(diag(∆,∆)) = 2n∆,

n∆RS
= s(∆RS) = s(diag(∆,∆)) = n∆.

At the cost of an increased number of states nx, in this
approach it will usually be beneficial to pre- and postfilter,
reducing the problem to the sizes s(∆R) = 4n∆, s(∆S) =
n∆. For this case, LMIs (23)–(25) jointly have the size

2(nx+nw+nz)− (ny+nu)+n∆R
+n∆S

+(n∆RS
+2nx)

= 2(nx + nw + nz)− (ny + nu) + 6n∆ + 2nx

In order to evaluate the multiplier conditions (29) via
full-block multipliers, also the rates of change have to be
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taken into account for conditions on M , which requires the
formulation of 22nδ LMI constraints. In total the multiplier
conditions form an LMI of size

2nδ(2nδ4n∆ + 2n∆) = 2nδ+1n∆(2
nδ+1 + 1),

containing
1/2 (4n∆(4n∆ + 1) + 4n∆(2n∆ + 1)) = 4n∆(3n∆ + 1)

decision variables. Again, using D/G-scalings the multi-
plier conditions are trivially fulfilled and the number of
multiplier related decision variables reduces to

3

nδ
∑

i=1

rδ
2

i +

nδ
∑

i=1

(3rδi )
2 = 12

nδ
∑

i=1

rδ
2

i ,

when treating rates of change independently and regarding
the repeated ∆-block structure as a single block with three
times the repetitions for each parameter δi.

4.3 Gridding-Based LPV Synthesis

Parameter-Independent Lyapunov Functions: For ng

equidistant grid points between the minimum and max-
imum value of a scheduling signal, the number of LMI
constraints grow with O(n

nρ
g ). The size of the LMIs (11)

and (12) is identical to the polytopic case, which leads to
a total size of the LMI of

nnρ
g (2(nx + nw + nz)− (ny + nu)) + 2nx. (58)

As before, the only decision variables of the existence
conditions are the Lyapunov variables R and S and
amount to nx(nx + 1). When solving for the controller
in the grid points, one needs to solve for n

nρ
g · m(SKρ

)
variables as obtained from (55). More typically the closed-
form formulae (17)–(18) are used, which further reduce in
online complexity for constant Lyapunov functions.

Parameter-Dependent Lyapunov Functions: As in the
previous approaches, the parameterization of the Lya-
punov functions has a strong impact on the synthesis
complexity. Assume again that while S = S0 is chosen
constant, R chosen parameter-dependent. Following the
heuristic to mimic the plant’s parameter-dependence, it
appears a natural choice to consider the parameteriza-
tion (47), which leads to nx(nx + 1)(1 + 1/2n

R

θ ) decision
variables. However, the Lyapunov matrix can also be cho-
sen to depend on the scheduling signals ρ directly. In any
case, the rates of change ν or σ do not have to be gridded,
since they enter the matrix inequality in an affine manner.

Therefore, LMI (11) has to be evaluated on 2n
R

θ n
nρ
g grid

points, whereas LMI (12) is still only considered in n
nρ
g

grid points. For affine parameterizations of the Lyapunov

variable, the coupling (13) needs to be verified on 2n
R

θ

vertices, whereas—perhaps more typically—it is gridded
over the n

nρ
g grid points. In conclusion the total size of the

LMI is

2n
R

θ nnρ
g (2(nx + nw + nz)− (ny + nu)) + 2n

R

θ +1nx. (59)

5. SUMMARY

Tab. 3 summarizes the above discussion by collecting the
complexities in implementation for the different synthesis
methods. Tab. 4 in turn collects the complexity in syn-
thesis focussing on the LMI sizes and decision variables

for solving the existence conditions with respect to the
different synthesis methods. Note that in both tables the
number of arithmetic operations, memory requirements,
etc. are provided as the sum of individual components.
These components are given in the headerless columns to
the right, respectively. The formulae are provided online
at www.tuhh.de/~rtsch/HoWe13b for easy adaptation and
use. The notational shortcut mabcd = na + nb + nc + nd,
with a, b, c, d ∈ {x, u, y, w, z,∆, {}, . . .} is used, such that,
e.g., mxu = nx + nu or mxw∆u = nx + nw + n∆ + nu.

6. NUMERICAL EXAMPLES

6.1 Robotic Manipulator

In the following, the example of a three-degrees-of-
freedom (3-DOF) robotic manipulator is considered and
the involved complexity for each synthesis method will
be analyzed. The problem has been extensively stud-
ied and detailed model representations for both 2-DOF
and 3-DOF control problems can be found in (Hashemi
et al., 2009, 2012; Hoffmann et al., 2013a; Hoffmann and
Werner, 2014), as well as online, including Matlab files at
www.tuhh.de/~rtsch/HoHaAbWe13. A compact LFR using
a block-diagonal scheduling block, which is called Υ to
distinguish it from the diagonal block ∆, is proposed in
Hoffmann and Werner (2014). It is derived based on the
standard formulation of differential equations for mechan-
ical systems

M(q)q̈ +D(q̇, q)q̇ +K(q)q = u,

which essentially leads to Υ = diag(M,D,K), except
for one zero row and column in K. The matrix Υ can
be affinely parameterized by ten scheduling parameters
denoted υi, i = 1, . . . , 10. The block-diagonal structure
prohibits the use of D/G-scalings in LFT-based LPV
controller synthesis due to an excessive amount of con-
servatism. Instead full-block multipliers are used. Addi-
tionally a second multiplier stage can be incorporated
to avoid the evaluation in the vertices, introducing ad-
ditional decision variables. The benefits are discussed in
Hoffmann and Werner (2014) and omitted here for lack
of space. Using standard Matlab tools, the LFR can be
converted into a form, which uses a diagonal scheduling

block Υ̂(υ) =
nυ=10

diag
i=1

(

υiIrυ
i

)

. The parameters υ in turn are

rational functions of the parameters δ, which are mostly
defined as angular velocities and sine and cosine terms of
joint angles, see Hoffmann and Werner (2014) for details.
Using this relationship, an LFR with scheduling block

∆(δ) =
nδ=9

diag
i=1

(

δiIrδ
i

)

can be generated. The general LPV

model is revealed by defining scheduling signals ρ as joint
angles two and three, as well as angular velocities of joints
one to three. In these the model is no longer rational due
to the trigonometric functions and the gridding approach
is therefore applied. It is also possible to derive an affine
LPV model for the robot incorporating 16 scheduling pa-
rameters θi, i = 1, . . . , 16. Naturally, the affine model can
also be represented by an LFT-based model. The technique
of parameter set mapping introduced in Kwiatkowski and
Werner (2008) is taken up here, to heuristically reduce
the number of affine parameters based on a principal com-
ponent analysis of experimental data or parameter values
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Table 3. Implementation complexity of LPV controllers vs. synthesis technique.

Technique Implementation complexity

PDLF Arith. ops. a(·) Mem. req. m(·)

Poly.

Polytopic: a(SKθ
) + a(α) a(α) = 2nθ+2 + 3nθ − 2 Polytopic: m(SKθ

) m(SKθ
) = 2nθmxumxy

a(SKθ
) = (2nθ+1 − 1)mxumxy

Affine: a(SKθ
) a(SKθ

) = 2nθmxumxy Affine: m(SKθ
) m(SKθ

) = (nθ + 1)mxumxy

a(SKρ
) + a(R) a(R) = 2nR

θ
n2
x m(Sρ) +m(R) + 2m(S0) m(R) = 1/2nx(nx + 1)(nR

θ
+ 1)

m(S0) = 1/2nx(nx + 1)

LFT

FBM a(SKδ
) + a(Ψ) + a(∆K(∆)) a(Ψ) = n∆

(

2/3n∆
2 + 2n∆ + 1

)

m(SKδ
) +m(∆K(∆)) m(∆K(∆)) = 7n∆(n∆ + 1)

D/G a(SKδ
) + a(Ψ) a(∆K(∆)) = n2

∆

(

52/3n∆ − 1
)

m(SKδ
) m(SKδ

) = mx∆umx∆y

D/G w/ Θ a(SKθ
) a(SKδ

) = n∆mxu

(

2mxy + 1
)

m(SKθ
) m(SKθ

) = mxΘumxΘy − n2
Θ

a(SKθ
) = nΘmxu

(

2mxy + 1
)

a(SKρ
) + a(R) a(R) = 2nx

(

3nxn∆ + 2n2
∆

+ 2n2
x −mx∆

)

+ a(Ψ) m(Sρ) +m(R) + 2m(S0) m(R) = 1/2nx(nx + 1) + n2
∆

m(S0) = 1/2nx(nx + 1)

Grid.
a(SKρ

)− a(M−⊤)− a(R−1) a(M−⊤) ≈ a(R−1) 6 2/3n3
x m(Sρ) + 4m(R0) +m(M−⊤) m(R0) = 1/2nx(nx + 1)

m(M−⊤) = n2
x

a(SKρ
) + a(R) a(R) = 2nR

θ
n2
x m(Sρ) +m(R) + 2m(S0) m(R) = 1/2nx(nx + 1)(nR

θ
+ 1)

m(S0) = 1/2nx(nx + 1)

a(SKρ
) = 46/3n3

x + (6muy + 2mwz − 2)n2
x + (nw +muz(2nu − 1) + 2nunz −muyw + 4nynw + 1)nx + 2nzn2

u + 2nwn2
y + 2/3n3

u + 2/3n3
y

m(Sρ) = mxzymxwu − nznw − nynu

Table 4. Synthesis complexity of LPV controllers vs. synthesis technique.

Technique Synthesis complexity (existence conditions)

PDLF Size of LMI s(·) No. of dec. vars. d(·)

Poly.

2nθ (s(LR) + s(LS)) + s(LRS) s(LR) = mxzw − ny d(R0) + d(S0) d(R0) = d(S0) = 1/2nx(nx + 1)

s(LS) = mxzw − nu, s(LRS) = 2nx

2nθ+nR

θ s(LR) + nR

θ
s( ∂2

∂θ2
i

LR) s( ∂2

∂θ2
i

LR) = nx d(R) + d(S0) d(R) = 1/2nx(nx + 1)(nR

θ
+ 1)

+2nθ s(LS) + 2n
R

θ s(LRS)

LFT

FBM

s(L̃R) + s(L̃S) + s(L̃RS) s(L̃R) = mx∆zw − ny, s(L̃M ) = n∆ d(R0) + d(S0) + d(M) + d(N) d(R0) = d(S0) = 1/2nx(nx + 1)

+2nδ (s(L̃M ) + s(L̃N )) s(L̃S) = mx∆zw − nu, s(L̃N ) = n∆ d(M) = d(N) = n∆(2n∆ + 1)

s(L̃RS) = 2nx

D/G

s(L̃R) + s(L̃S) + s(L̃RS) s(L̃R) = mx∆zw − ny, s(L̃RS) = 2nx d(R0) + d(S0) + d(M) + d(N) d(R0) = d(S0) = 1/2nx(nx + 1)

s(L̃S) = mx∆zw − nu d(M) = d(N) =
∑nδ

i=1
rδ

2

i

2nδ 6 d(M) 6 2n2
∆

FBM

s(LR) + s(LS) + s(LRS) s(LR) = mxzw + 4n∆ − ny d(R) + d(S0) d(R) = 1/2nx(nx + 1) + n2
∆

+22nδ s(LM ) + 2nδ (s(LN ) + s(LP )) s(LS) = mxzw + n∆ − nu, s(LM )=4n∆ +d(M) + d(N) + d(P ) d(S0) = 1/2nx(nx + 1)

s(LRS) = 2nx + n∆, s(LN )= s(LP )=n∆ d(M) = 4n∆(8n∆ + 1)

d(N) = d(P ) = n∆(2n∆ + 1)

D/G

s(LR) + s(LS) + s(LRS) s(LR) = mxzw + 4n∆ − ny, d(R) + d(S0) d(R) = 1/2nx(nx + 1) + n2
∆

s(LS) = mxzw + n∆ − nu, +d(M) + d(N) + d(P ) d(S0) = 1/2nx(nx + 1)

s(LRS) = 2nx + n∆ d(M) = 10
∑nδ

i=1
rδ

2

i

d(N) = d(P ) =
∑nδ

i=1
rδ

2

i

Grid.

n
nρ
g (s(LR) + s(LS)) + s(LRS) s(LR) = mxzw − ny d(R0) + d(S0) d(R0) = d(S0) = 1/2nx(nx + 1)

s(LS) = mxzw − nu, s(LRS) = 2nx

n
nρ
g (2n

R

θ s(LR) + s(LRS) + s(LS)) s(LR) = mxzw − ny d(R) + d(S0) d(R) = 1/2nx(nx + 1)(nR

θ
+ 1)

s(LS) = mxzw − nu, s(LRS) = 2nx

gridded over the scheduling signals ρ. In this course, the
affine parameters θ are approximated by the parameters
φi, i = 1, . . . , 4 (Hoffmann et al., 2013a). Note that this
technique can also be applied to the parameters υ in which
the scheduling block Υ is affine, which is omitted here for
brevity.

The numbers of scheduling signals and parameters as-
sociated with each modeling framework are summarized
in Tab. 5(a). The scheduling block sizes and associated
repetitions for the LFRs are given in Tab. 5(c) and signal
dimensions are provided in Tab. 5(b).

Tab. 6 lists all complexity indicators computed a priori
based on the model data. The last column indicates an
estimation of whether synthesis is considered tractable or
no definitive statement can be made. Values in red text

color are considered critical and either prevent successful
implementation/synthesis or at least endanger it. Reasons
for the latter include numerical difficulties on common PC
hardware. The colored bars behind these values are not to
scale. Instead their length is relative to the highest value
written in black text color of the respective column. Note
that even though the figures do not appear extraordinarily
large, synthesis approaches associated with values marked
in red with respect to the full-block multiplier based LFT
approach have been tried and discussed in Hoffmann and
Werner (2014) and were found intractable.

Tab. 6 indicates a limited applicability of polytopic and
general intractability of gridding methods for the consid-
ered problem.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11758



Table 5. Problem sizes

(a) No. of sched. signals/params.

Sched.

params.

No.

Robot SI Eng.

nρ 5 3
nδ 9 3
nθ 16 3
nφ 4 2
nυ 10 —

(b) Signal sizes.

Signal Size

Robot SI Eng.

nx 21 4
nu 3 1
ny 6 1
nw 3 1
nz 6 2

(c) LFT block size and no. of repetitions.

LFT

block

Size Repetitions ri

Robot SI Eng. Robot SI Eng.

∆ 37 6 rδ = [8 8 8 6 1 1 3 1 1] rδ = [3 2 1]
Θ 16 3 rθi = 1, i = 1, ...,16 rθi = 1, i = 1, ...,3
Φ 10 4 rφ = [3 3 1 3] rφ = [2 2]
Υ 8 — — —
Υ̂ 15 — rυ = [1 2 2 2 2 2 1 1 1 1] —

Table 6. 3-DOF robot example: Implementa-
tion and synthesis complexity.

Technique Impl. complexity Synth. complexity

PDLF Arith. ops. Mem. LMI size Dec. vars. Tract.

Poly.

θ 20,736 11,016 ≈ 3.3·106 462

PSM φ 5,184 3,240 858 462

θ 190,515 5,343 ≈102.3·109 4,158

PSM φ 179,931 2,571 7,332 4,158 ?

LFT

FBM

∆ 962,000 13,746 38,055 6,012

Υ 19,848 1,624 16,493 734

Υ̂ 80,790 3,318 30,843 1,392

Θ 95,120 3,624 ≈2.0·106 1,518

Φ 31,310 2,028 433 882

D/G

∆ 85,384 3,904 167 944

Υ̂ 22,515 1,638 123 512

Θ 21,120 1,464 125 494

Φ 5,280 1,158 113 518

FBM

∆ 460,450 3,016 ≈38.8·106 51,337

Υ 239,250 1,711 ≈33.6·106 2,878

Υ̂ 273,240 1,872 ≈62.9·106 8,877

Θ 278,990 1,903 ≈270.0·109 10,030

Φ 247,880 1,747 10,713 4,222 ?

D/G

∆ 460,450 3,016 315 4,723 ?

Υ̂ 273,240 1,872 183 987

Θ 278,990 1,903 189 910

Φ 247,880 1,747 153 898

Grid.

ng = 4

164,055 2,319

52,266

462

?

ng = 8 ≈1.7·106

ng = 12 ≈12.6·106

ng = 4

190,515 5,343

≈1.6·109

4158ng = 8 ≈52.0·109

ng = 12 ≈390.0·109

6.2 Charge Control of a Spark-Ignited Engine

Next, the charge control of a spark-ignited (SI) engine is
considered as an example of more moderate complexity.
Details on the model can be found in (Kwiatkowski et al.,
2006; Hoffmann et al., 2014b). The numbers of scheduling
signals, parameters, LFT block sizes and repetitions asso-
ciated with each modeling framework are again summa-
rized in Tab. 5(a), 5(b) and 5(c), respectively. The block-
diagonal LFT-based modeling approach from Hoffmann
and Werner (2014) is not pursued here. Tab. 7 lists the a
priori complexity indicators in the same fashion as before.
Levels of complexity deemed intractable are altered with
respect to implementation, as in automotive applications

Table 7. SI Engine example: Implementation
and synthesis complexity.

Technique Impl. complexity Synth. complexity

PDLF Arith. ops. Mem. LMI size Dec. vars. Tract.

Poly.

θ 150 100 104 20

PSM φ 100 75 56 20

θ 1,380 99 508 50

PSM φ 1,349 89 160 50

LFT

FBM

∆ 4,260 415 128 176

Θ 663 148 74 62

Φ 1,392 221 60 92

D/G

∆ 552 121 32 48

Θ 165 55 26 26

Φ 110 65 28 36

FBM

∆ 2,835 105 1,688 1,388

Θ 1,958 78 854 371

Φ 2,195 85 332 636

D/G

∆ 2,835 105 56 224

Θ 1,958 78 38 65

Φ 2,195 85 44 132

Grid.

ng = 4

1,199 95

776

20ng = 8 6,152 ?

ng = 12 20,744

ng = 4

1,380 99

3,968

50

?

ng = 8 31,744

ng = 12 107,136

usually electronic control units (ECUs) impose limits on
controller complexity (Kwiatkowski et al., 2009).

6.3 Discussion

In the first example, gridding approaches are clearly ruled
out due to their high synthesis complexity even for low
grid densities. This situation changes, when a problem
of fewer scheduling signals is considered, as in the SI
engine case. With non-evenly spaced grids, the gridding
approach can maintain tractable LMI sizes, while PDLF-
based synthesis provides improved performance at little
additional cost during implementation. In fact, implemen-
tation can even appear less costly than non-PDLF-based
synthesis using LFT techniqes and FBM. In contrast, the
gap in implementation complexity between parameter-
independent and parameter-dependent Lyapunov func-
tions appears much larger in both the LFT- and the
polytopic approach. Taking into consideration that the
gridding-based synthesis can accommodate nonconvex pa-
rameter ranges, the resulting controller may typically incur
little conservatism. An interesting aspect can be seen in
the implementation complexity of non-PDLF LFT-based
synthesis with rational parameters and FBM. The matrix
inversions are very costly due to the large size of the
scheduling block ∆. This shows that unless a compact
LFR can be found, as in Hoffmann and Werner (2014),
the reduced conservatism of FBMs come at the price of
a greatly increased implementation complexity. Since even
PDLF-based controllers can be less complex to implement,
the use of closed-form formulae (17)–(18) appears advan-
tageous.

7. CONCLUSION

In this paper, a survey of implementation and synthesis
complexity associated with polytopic, LFT- and gridding-
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based LPV output-feedback controller synthesis is pur-
sued. The complexity is assessed in terms of the number
of arithmetic operations and memory requirements, as
well as the size of the LMIs of the existence conditions
and the associated number of decision variables. Formulae
are made available online for adaptation and immediate
application to a priori assessments. A three-degrees-of-
freedom robotic manipulator with a relatively high number
of both scheduling signals and parameters, as well as a
more moderate size problem are considered as numerical
examples. The examples are analyzed with respect to the
LPV modeling frameworks and synthesis methods, some of
which have already been successfully applied in previous
literature.
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