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Abstract:

This paper studies bipartite consensus problems for multi-agent system over signed directed graphs. We
consider general linear agents and design a dynamic output feedback control law for the agents to achieve
bipartite consensus. Our results show that structural balance property of the graph and an appropriate
consensus error information are two crucial factors of bipartite consensus.
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1. INTRODUCTION

In the past two decades, there has been tremendous interest
in developing distributed control laws for multi-agent systems
with a primary focus on consensus over nonnegative graphs
(Jadbabaie et al. [2003], Lin et al. [2005], Olfati-Saber et al.
[2007], Ren and Cao [2011], Lewis et al. [2014], etc.). Non-
negative graphs which are defined by positive edges are appro-
priate for describing collaborative behaviors between agents.
When both collaborative and antagonistic interactions coexist
within a group of agents, such communication networks can be
more suitably represented by signed graphs, in which a positive
edge means collaboration and a negative edge represents an
antagonistic interaction. Research on collective behaviors over
signed graphs finds applications in scenarios of social networks
(Wasserman and Faust [1994], Altafini [2012]), predator-prey
dynamics (Lee [2006]), and so on.

Altafini [2013] studied bipartite consensus problem over signed
graphs. In this work, it was found that two subgroups of nodes
are formed during evolution, and consensus is achieved within
each subgroup, moving individually towards opposite direc-
tions. Altafini [2013] examined only single-integrator dynamics
and pointed out that it may be nontrivial to extend the results
of (Altafini [2013]) to higher order integrator dynamics. In the
authors’ recent paper (Zhang and Chen [2014]), we studied
bipartite consensus problem of general linear systems, where
a distributed control law using full state information was pro-
posed. We showed that for general linear multi-agent systems,
bipartite consensus over signed graphs is equivalent to ordinary
consensus over nonnegative graphs.
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In this paper, we extend our work to the setting of output
feedback control. In particular, we propose a dynamic out-
put feedback control law for linear multi-agent systems over
signed directed graphs. We show that bipartite consensus can
be achieved when the graph has a spanning tree and is struc-
turally balanced. Moreover, we point out that an appropriate
definition of the neighborhood consensus error is also crucial
for achieving bipartite consensus.

The paper is organized as follows. Section 2 introduces con-
cepts and preliminary results on signed graphs. In Section 3,
an output feedback control law is designed and rigorously an-
alyzed. Simulation examples are provided in Section 4, and
Section 5 concludes the paper.

Notations  Notations used throughout the paper are rather
standard. The empty set is @. For a square matrix A, o(A) is
its spectrum. A matrix with entries a;; is denoted as [a;;]. A
diagonal matrix with entries o1, . .., 0y, is diag(o1,...,0n). A
vector of all ones is denoted as 1,, € R™ and the identity matrix
is Iy € RVXN_ The Kronecker product is denoted as .

2. PRELIMINARIES ON SIGNED GRAPHS

Communication network of a multi-agent system can be mod-
eled by a graph, where the nodes/vertices correspond to the
agents and the edges correspond to the communication links
between agents. A graph G can be mathematically represented
by G = {V,&}, with V = {vy,...,un} being the set of
nodes, and £ C V x V the set of edges. Generally, a weight
a;; is assigned to an edge (v;,v;), which may represent the
communication strength. When there is an edge from node j to
node ¢, graphically depicted by an arrow with head at node ¢
and tail at node j, we have a;; = 0; otherwise a;; = 0. When
ai; # 0, node 7 can get information from node j which is often
called a neighbor of node ¢, and also node j is known as the
parent node and ¢ the child node. A positive edge and a negative
edge can represent collaborative or antagonistic interactions
between agents, respectively. A graph with all edges positive
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is a nonnegative graph, while a graph having both positive
edges and negative edges is a signed graph. An edge may be
undirectional (i.e., a;; = aj;) or directional (i.e., a;; # aj;),
corresponding respectively to undirected graphs or directed
graphs (or digraphs). This paper concerns collective behaviors
over signed digraphs. We further assume there is no self-loop,
i.e., Qg5 — 0.

Three classes of graph topologies are often encountered when
studying the multi-agent systems over digraphs: graph being a
spanning tree, graph having a spanning tree, and graph being
strongly connected. A graph is a spanning tree if each node,
except for one node (called the root node, which only has
child node(s)), has only one parent node; a graph has a span-
ning tree if deleting some edges properly leaves a spanning
tree; a graph is strongly connected if for each ordered pair
of nodes [v;,v,], ¢ # j, there is a directed path in the form

{(vivvl)v (vlvv;D)a R (vqavj>}'

The adjacency matrix fully captures the topology of a graph and
is defined as A = [a;;] € RV*N. Let G(A) explicitly denote a
graph whose adjacency matrix is .4. For nonnegative graphs, an
important matrix associated with graph G(.A) is the Laplacian
matrix (Godsil and Royle [2001], Ren and Beard [2008])

N N
L= [l”] :dzag Zalj,...,ZaNj — A. (1)
j=1 j=1

This Laplacian matrix plays an important role in analyzing
collective behaviors of multi-agent systems over nonnegative
graphs. It has a simple eigenvalue of zero associated with a right
eigenvector 1y when the graph has a spanning tree (Lin et al.
[2005], Ren and Beard [2008]). However, this nice property
does not generally hold for signed graphs, which makes this
Laplacian matrix less useful. In this paper, we adopt another
Laplacian matrix (Altafini [2013]) for signed graphs, defined as

N N
L:[Z,-j]:diag Z|a1j|,...,2|a1vj| — A (2)
j=1 j=1

We shall differentiate definition (1) from (2) using the attribute
“ordinary”. Thought out the paper, Laplacian matrix for signed
graphs is always defined as in (2), unless otherwise indicated.

A new graph property specific to signed graphs is defined as
follows.

Definition 1. (Harary [1953], Altafini [2013]) A signed graph
G(A) is structurally balanced if it has a bipartition of the nodes
Vi, Vo, 1.e., V1 UVy = Vand V; N Vy = &, such that Qij <0
when nodes ¢ and j are in different subgroups; otherwise,
Qi Z 0.

The following several lemmas are instrumental in the analysis
of consensus patterns on signed graphs.

Lemma 1. (Altafini [2013]) A spanning tree is always struc-
turally balanced.

Lemma 2. (Zhang and Chen [2014]) Suppose the signed di-
graph G(A) has a spanning tree. Denote the signature matrices
set

D = {D = diag(oy,...,on) | 0; € {1,—1}}.
Then the following statements are equivalent.

a) G(A) is structurally balanced;

b) a;;a;; > 0, and the corresponding undirected graph

A+ AT .
2

[l

G(A,) is structurally balanced, where A4,, =

¢) 3D € D, such that A = [a;;] = DAD is a nonnegative
matrix, i.e., G;; = |ai;]|.
Lemma 3. (Zhang and Chen [2014]) Suppose the signed di-
graph G(A) has a spanning tree. If the graph is structurally
balanced, then 0O is a simple eigenvalue of L and all its other
eigenvalues have positive real parts; but not vice versa.

Lemma 2 bridges the gap between signed graphs and nonnega-
tive graphs, through the use of the signature matrix D.

3. DESIGN OF OUTPUT FEEDBACK CONTROL

In this section, we propose an output feedback control law
to solve the bipartite consensus problem. We also show that
appropriate choices of both neighborhood bipartite consensus
error and topology of the graph are crucial for the multi-agent
systems to achieve a bipartite consensus.

3.1 Problem formulation

Consider a group of agents, each modeled by an identical linear
time-invariant (LTI) system

&; = Ax; + Bu;, vy; = Cuzy, i=1,...,N 3)
where x; € R", u; € R™, and y; € RY are the state, input
and output, respectively; the triple (A, B, C') is controllable and
observable. The underlying communication network is a signed
digraph. Our objective is to design a distributed output feedback
control law w;(y:, y;|en, ) for each node 4, such that a bipartite
consensus is achieved, which is defined as follows.

Definition 2. (Zhang and Chen [2014]) The linear multi-
agent system (3) is said to achieve a bipartite consensus if
lim; oo (xZ (t) — :c*(t)) = 0,Vi € pand lim;_, (:c]- (t) +
2*(t)) = 0, Vj € g for some nontrivial trajectory z*(t), where
pUg={l,...,N}andpng=g.

When either p or ¢ is empty, Definition 2 reduces to the ordinary
consensus (Ren and Beard [2008]), where all nodes converge
to the same value. When 2*(¢) = 0, Definition 2 reduces to a
trivial consensus in the ordinary sense.

3.2 Controller design

For each node i, define the local output estimation error as
Ui =i — U = Cxy — Cy,
where y; and Z; are the estimated output and state information,

respectively; and define the neighborhood estimated bipartite
consensus error as

éi = Z (aijf]’ - |(lw|i'z) (4)
JEN;
Modified from [Zhang et al., 2011, Section V.B], the controller
and observer are designed here as

u; = cKé = cK Z (ai;d; — |ai;|2:), )
JEN;
& = Al + Bui — cFjj;, ©)

where
e cis a scalar control gain chosen as
1

> 7
€= 2 min;ez Re(\;)’ @
where Re()\;) is the real part of the i-th eigenvalue of the
Laplacian matrix L defined in (2), and Z = {i | Re(\;) >

0, ie{l,...,N}};
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e Fis designed such that (A + ¢F'C) is Hurwitz;
e K is designed using the Riccati design approach as fol-
lows
K=R'BTp ®)
with P being the unique positive definite solution of the
algebraic Riccati equation (ARE)

ATP+ PA+Q—-PBR 'BTP =0,
where ( and R are both positive definite design matrices
with appropriate dimensions.

It is well known (Lewis and Syrmos [1995]) that (8) is the
optimal state feedback control gain of the system (3) with
respect to the local performance index

J = / (xF Qs + ul Ruy)dt.
0
The next result demonstrates that this local optimal control gain

(8) leads to a bipartite consensus over a signed digraph.

Theorem 1. Assume the signed digraph G(A) has a spanning
tree and is structurally balanced. Under the dynamic control
law (5)-(6), system (3) achieves a bipartite consensus, and the
state estimates converge to their real values, i.e., lim;_, oo (z; —
Z;) = 0 forall 7.

Proof. The closed-loop system is
T; = Ax; + ¢cBK Z (aijfcj - |au|§31)

JEN;
Put it in a compact form as
t=(Iny®A)x — (cL ® BK)#, )
where z = [z ... 2T )T, 2 = [2T,...,2%]7, Lis the Lapla-

cian matrix for signed graph G defined as (2). The observer
dynamics is

&= (Iy®A)z — (cL ® BK)i — (cIy ® FC)(z — Z). (10)

Let the state estimation error be
I=x— 2.
Then )
z=(InN® (A+cFQC))Z. (11
Since (A + ¢FC) is Hurwitz, so is Iy ® (A + ¢FC). Then we
have
lim Z(t) =0,

t—o0
— &;) = 0 for all 4.

(12)
ie., limg_ oo (24

Since graph G(.A) has a spanning tree and is structurally un-
balanced, according to Lemma 2, there is a signature matrix
D € D such that the associated graph G(A) is a nonnegative
graph and has a spanning tree, where 4 = DAD. Let L be the
ordinary Laplacian matrix (1) of graph G(A). Then we have
L =DLD.

Equation (9) can be written as
t=(In®A—-cL®BK)x+ (cL® BK)zZ. (13)
Define z = (D ® I,)xz and 2 = (D ® I,)Z. Note that
D=D" =D Thenz = (D®I,)zand Z = (D ® I,,)Z.
Straightforward computation gives
i=(In®A—-cL®BK)z+ (cL® BK)z.  (14)
Since graph G(A) is nonnegative and has a spanning tree,
A1 = 01is a simple eigenvalue of the Laplacian matrix L, and all
other eigenvalues \; have positive real parts (Lin et al. [2005]),
ie,0 =\ < Re(A2) <--- < Re(An). Please be noted that in

the following development, we shall replace \; with \; without
changing any result, for L = DLD = D~'LD. There exists
a nonsingular matrix M = [mq | ma | --- | my] € RVXN,
where m; € RN andm; =1y = [1 1 ... 1]T e RY is the
right eigenvector of L associated with eigenvalue 0, such that
the Jordan form of L is

- 0
=M LM = ~‘7

where Jy_1 € RW=DXWV=1) iq jtself a Jordan form with
nonzero diagonal entries Az, - -+ , An.

Define ¢ = [qf |} ... qk]" = [af 4] = M ' g
I)2 and § = (M~! ® I,)z, where ¢ € R", q =
(¢, ..., qk])T €e RW=1n Then
Gg=(M"'®I,)z
=(In®A—-cJ®BK)q+ (¢J ® BK)q,

or equivalently,

@1 = Aq,

q=Acq+ (c[0 | Jy—1] ® BK)q,
where A, = (In_1 ® A — cJn_1 @ BK).

5)
(16)

Matrix A, is a block diagonal or block upper-triangular matrix
with diagonal blocks A — ¢\, BK (i = 2,..., N). Similar with
Theorem 1 in Zhang et al. [2011], we can show that A—c)\; BK
are Hurwitz, and thus A. is Hurwitz. Also, by recalling that
lims_, oo Z(t) = 0, we have

. -~ _ . —1 vl —
tli>Holo qt) = tlgrolo(M ® In)(D @ I,)Z(t) = 0.
Therefore, solving (15) and (16) yields

Jlim g1(t) = e**q1(0), (17
Jim q(t) = 0. (18)

Since
z=(M®1I,)q
=(mi1 @ L)g + -+ (my @ In)gn,
finally we have lim;_, o 2(t) = (m1 ® I,,)etq; (0), that is,
tlirrolo 2(t) = eMq1(0), Vi=1,2,...,N.

Then, bipartite consensus of system (3) follows from the fact
thatz = (D ® I,,)z. O

Structural balance is a necessary graph property that guarantees
the bipartite consensus behaviors. This is shown by the follow-
ing results.

Theorem 2. Assume the signed digraph G(.A) is strongly con-
nected and structurally unbalanced. Under the dynamic control
law (5)-(6), the system (3) achieves a trivial consensus, i.e.,
lim; o, x; = 0; and the state estimates converge to their real
values, i.e., lim;—_, o0 (z; — &;) = 0 for all 4.

Proof. First, it can be seen that derivation of the state estimation
error dynamics (11) does not depends on the graph topology.
Thus convergence of the observer holds as shown in Theorem
1.

The closed loop system is the same as (13). Let A, = Iy ®
A — cL ® BK.By [Altafini, 2013, Corollary 3], all eigenvalues
A; of matrix L has positive real parts. Let J be a Jordan form
of matrix L. It is trivial to show that matrix A, is similar to the
matrix (Iy ® A—cJ® BK), which is a block diagonal or block

4683



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

upper-triangular matrix with diagonal blocks being A—c\; BK.

Noting that all matrices A — ¢c\,BK (i = 1,...,N) are 2

Hurwitz, which can be shown the same way as in [Zhang et al., ®—’

2011, Theorem 1], it is clear that A. is Hurwitz. Due to the fact 1 -6
that lim;_, o, Z(t) = 0, solving (13) yields lim; o, z(t) = 0. O

When the signed digraph G(A) has a spanning tree and is

structurally unbalanced, interestingly more complex collective 3
behaviors will emerge, depending on specific graph topologies. 1

We shall not attempt to provide a rigorous analysis of this case @
herein, but only demonstrate this phenomena by a simulation -1 ( >
example in Section 4.3.

The neighborhood estimated bipartite consensus error (4) is 2
also vital for bipartite consensus. This is illustrated by the next

result. 1
Theorem 3. If the controller (5) is modified to be
wi =K Y ag| (& — ), (19) 2

JEN;

then ordinary consensus is achieved, i.e., lim; oo (2;—2;) = 0, -3
Vi # j, over any signed digraph, either structurally balanced 4—@
or unbalanced, as long as it has a spanning tree; and the state -
estimates converge to their real values, i.e., lim; o (z; — Z;) = (b)

0 for all 7.

2
This can be proved by showing that it is equivalent to an g : %

ordinary consensus over graph G(A*), where A* = [a};] €
RY*N and af; = |a;;|. Details are omitted.

4. SIMULATION EXAMPLES 3

Consider a multi-agent system with 6 nodes and each node is @41—®

modeled by an LTT system (3) with

0100 0 ©
-20 10 1 1000 ) . .

A= 000 1 B = ol and C = 0010]|" Fig. 1. Three types of graph topologies: (a) A graph which has
1 0-10 0 a spanning tree and is structurally balanced; (b) A graph

which is strongly connected and structurally unbalanced;

4.1 Example 1 (c) A graph which has a spanning tree and is structurally

unbalanced.
This example illustrates Theorem 1, where the signed graph
has a spanning tree and is structurally balanced (see Fig. 1a),
and the controller takes the form (5)-(6). Let z; ; be the j-th

component of the state vector x;, i.e., z; = [Ti1,...,Tin]T 4
The simulation results are shown by Figs. 2-3. A bipartite
consensus is achieved, with two subgroups being V; = {vs,v4}
and Vo = {v1,v2,v5,v6} (see Fig. 2). The convergence of the

observer is shown by Fig. 3.

w

OO RAWOWN =

4.2 Example 2 hat

This example illustrates Theorem 2, where the signed graph is
strongly connected and is structurally unbalanced (see Fig. 1b),
the controller is taking the form (5)-(6). In this case, all nodes
achieve a trivial consensus, i.e., lim;_, o 2; ; = 0 for all 7 and j
(see Fig. 4). The observer converges for all nodes (see Fig. 5).

-3

0 5 10 15 20 2 30
4.3 Example 3 time (second)

When the signed graph has a spanning tree and is structurally — Fig. 2. State trajectories of x; ;
unbalanced, under the controller (5)-(6), neither ordinary con-
sensus nor bipartite consensus is obtained. In this example, the

4684
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state estimation errors

10

15
time (second)

20

25

Fig. 3. Trajectories of state estimation errors Z; ;

state trajectores x. .

Fig. 4.

state estimation errors

30

State trajectories of x; ; for all ¢ and j

15
time (second)

20

25

30

10

15
time (second)

20

25

Fig. 5. Trajectories of state estimation errors Z; ;

30

4O O A WN =

25 i i i i i
0 5 10 15 20 25 30

time (second)

Fig. 6. State trajectories of x; 1

state estimation errors

3 i i i i i
0 5 10 15 20 25 30

time (second)

Fig. 7. Trajectories of state estimation errors Z; ;

nodes are separated into three subgroups V; = {vs,v4,v6},
Vo = {v1,v2} and V3 = {v5}. While subgroups V; and Vs
achieve a bipartite consensus, subgroup Vs agrees with neither
subgroups (see Fig. 6). The observer still converges as shown

in Fig. 7.

5. CONCLUSIONS

This paper investigated bipartite consensus of general linear
multi-agent systems over signed digraphs, which may have both
positive edges and negative edges. An observer based output
feedback control law was proposed. We also showed that two
factors are crucial for achieving a bipartite consensus, of which
one is an appropriate choice of the neighborhood estimated
bipartite consensus error (4), and the other is the appropriate
graph topology which requires the signed digraph to have a

spanning tree and be structurally balanced.
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