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Abstract: Reaction Wheels (RW) are common actuators for three-axis stabilized satellites.
This paper deals with the management of a RW assembly where four or more skewed RW are
used simultaneously. Four-wheel control is commonly used on spacecraft. This paper contributes
to this field by providing an efficient algorithm for attitude control torque distribution with RW
angular rate constraint management and by providing the rationales that guide the tuning of
this algorithm. Moreover, it defines an algorithm for the angular momentum management of
this reaction wheels assembly. Eventually, as proof of concept, it applies these algorithms to a
realistic scenario of the PROBA-3 mission using a high fidelity simulator. Results demonstrate
that the suggested algorithms are operational and efficient. They can be used and adapted to
several types of missions.
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1. INTRODUCTION

Reaction Wheels (RW) are common actuators for three-
axis stabilized satellites. In principle, this type of space-
craft requires only three non-planar RW to ensure full at-
titude controllability. In reality, most of the time, in order
to provide for redundancy, the Reaction-Wheel Assembly
(RWA) includes at least one additional RW. The usual
strategy consists in using three of the four RW to realise
the control torque (or required angular momentum). How-
ever, there are advantages in using four or more skewed
RW. This is particularly true for a high-accuracy high-
agility mission like PROBA-3.

The PROBA-3 mission aims at demonstrating in-orbit the
formation flying technology. For this purpose, the mission
consists of two spacecraft, the Coronagraph Spacecraft
(CSC) and the Occulter Spacecraft (OSC) flying in a
highly elliptical orbit around the Earth (see Peyrard
et al. (2013) for details). Each satellite is equipped with
four RW. On the one hand, fast large-angle manoeuvres
are required to fulfil the mode switching requirements
and the demonstration of formation-flight reconfiguration
manoeuvres. This implies high agility. On the other hand,
stringent pointing requirements (see Table (1)) imply high
accuracy.

With the high-accuracy high-agility requirements, it is
particularly relevant to use simultaneously the four RW of
each spacecraft. Indeed, the enhancement of the angular
momentum capability increases the spacecraft agility by
allowing fast large-angle manoeuvre. It also contributes
to enhancing the pointing accuracy as it reduces the
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frequency of attitude-disturbing RW offloading. Moreover,
the degree of freedom provided by the fourth wheel allows
optimisation of the RW operation point by trading off
between margin before saturation and margin before zero
angular rate crossing (where stiction occurs, impacting
pointing performance).

In this context, this paper addresses the conceptual design
of the RWA management algorithms for the PROBA-3
mission and provides a proof of concept by numerical simu-
lation performed on a high fidelity Functional Engineering
Simulator (FES).

First, the n (> 3) reaction wheels management problem
is stated and solutions from the literature are charac-
terised in a clear mathematical formulation that allows
comparison, trade off and selection. In addition, this paper
provides rationale, guidelines and techniques for the tuning
of the parameters of the selected algorithm. This is the first
contribution of this paper.

Then, this paper addresses the autonomous Angular Mo-
mentum Management (AMM) of a cluster of n (> 3)
reaction wheels. This is the second contribution of this
paper.

Finally, as a third contribution, this paper applies these
algorithms to the PROBA-3 mission, highlighting the
resulting gain in performance.

2. REACTION WHEELS MANAGEMENT

This section addresses the problem of control torque
realisation by a cluster of n > 3 reaction wheels. First,
it states the problem, then it presents the most relevant
solutions identified by a literature review and identifies
the best algorithm to be used in the context of PROBA-3.
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Finally, it provides the technique that allows an efficient
tuning of the algorithm.

2.1 Statement of the Problem

When four or more skewed RW are used at the same time,
the torque commanded to the reaction wheels expressed
in a body-fixed frame, denoted here as the B frame, TB,
i.e. the opposite of the control torque to be applied on
the spacecraft, is distributed to the n RW: TRWn

. Linear
algebra defines the relationship by Eq. (1).

TB = CBRWTRW + CBRWNt (1)

with:

• CBRW is the 3 ∗ n transformation matrix from RW
frame to body-fixed frame. The columns of the matrix
correspond to the spin-axis unit vectors of each reac-
tion wheel expressed in the body-fixed frame, with
the ith column corresponding to wheel number i.
• TRW is the vector that concatenates the n RW torque
TRWi

i = 1 . . . n.
• N is the n ∗m null-space matrix of CBRW satisfying

the null-space property: CBRWN = 03∗m where
m = n − r is the degree of redundancy in the RWA
computed knowing n the number of RW and r the
rank of CBRW (for 4 RW: m = 1).
• t = [t1 . . . tm] contains the m null-space scaling

parameters.

The control torque is distributed to the n RW by isolating
TRW in Eq. (1). Due to the under-determined nature of
the problem, CBRW is not square and the wheel null-space
exists. Therefore, the torque expressed in B is decomposed
into two components in the reaction wheels basis: a torque
along the null-space and a torque corresponding to the
control torque distributed to the RW.

Thus, the control torque can be allocated to the set of
wheels in an infinite number of ways. Indeed, CRWB that
“inverses” CBRW can be computed in an infinite number
of ways. Criteria and selection rules must be defined and
applied in order to choose the best one. This can be
considered as the first part of the reaction-wheel
management problem.

Moreover, the torque along the null-space, defined as a
function of t, can be used as an additional degree of
freedom in dealing with reaction-wheel constraints. For
instance, this degree of freedom can be used to control the
reaction wheel angular rates around a specific reference
angular rate in order to avoid zero crossing and saturation
without impacting the spacecraft attitude. Indeed, the
control torque has no component in the null-space and
by definition a torque that remains in the null-space does
not contribute to the torque in B. Defining a relevant
approach to set the torque along the null space in
order to manage RW operation constraints can be
considered as the second part of the reaction-wheel
management problem.

2.2 Review of the Most Relevant Solutions

The basic solution for this actuator allocation problem is
the pseudo-inverse method. This approach consists simply

in computing CRWB = Cpinv
BRW and considering t = 0. The

merit of this approach is that the actuator allocation logic
is simply a gain matrix because the pseudo-inverse of a
matrix exists in an analytic form. By nature of the pseudo
inverse, this solution minimises the following l2-norm:

‖TRW‖22 (2)

Thus, the torque realised by the reaction wheels is the min-
imisation of the control torque module when distributed
on the available reaction wheels. It must be noted that the
pseudo-inverse distributes the three control torque vector
components in the body fixed frame to the n reaction
wheels torque vector components such that the null-space
component of the reaction wheels torque vector is zero
( Rigger (2010)).

It must be also noted that all these equations written with
torque are also available with angular momentum. Thus,
since the pseudo-inverse is the result of unconstrained l2-
norm optimization, it cannot yield an optimal use of the
angular momentum capability ( Lim and Miotto (2006)).

Therefore, other solutions based on other criteria have
been developed. In Markley (2010), a solution for the
computation of CRWB based on l∞-norm is proposed and
compared to the l2-norm (pseudo-inverse) solution. While
the l2-norm algorithm finds the distribution of an arbitrary
angular momentum among the wheels that minimises the
sum of squares of the individual wheel momenta; the l∞-
norm algorithm determines the distribution of an arbitrary
angular momentum among the wheels that minimises the
l∞-norm of the vector of the individual wheel momenta,
i.e. the maximum of the individual wheel momentum
magnitudes.

The l2-norm optimisation approach does not control the
amplitude of each RW momentum. Consequently the mo-
mentum storage capacity of a RWA managed by this algo-
rithm depends on the value of the maximum momentum
that can be assigned to any wheel for a given commanded
angular momentum. Thus, this solution is not optimal.
Indeed, an optimal use of the angular momentum capacity
of a RWA requires that equal demands be made on all RW.
In the case of RW with identical capacities, this is ac-
complished by the l∞-norm algorithm. Thus, the l∞-norm
algorithm presents a better momentum storage capacity
(in fact the optimal one) than the l2-norm algorithm.
This is of great interest as it maximises the time interval
between momentum dumping events, i.e., it reduces the
number of time the RW have to be off-loaded over a period
of time.

The counterpart of this solution is the complexity of the
algorithm. Contrary to the l2-norm optimisation approach
which requires simply computing the pseudo-inverse, the
l∞-norm algorithm computation is not trivial (see for in-
stance Lim and Miotto (2006), Markley (2010), Cadzow
(1973)).

All of the discussed algorithms compute CRWB which op-
timises l2-norm or l∞-norm of Eq. (2). However they can-
not accommodate any explicit constraint such as angular-
rate magnitude limits of actuators ( Lim and Miotto
(2006)). Taking advantage of the degree of freedom offered
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by the existence of the null space is an alternative to
manage optimisation and constraints. This is discussed
now.

Considering Eq. (3), the goal of kernel management is
to find the null-space scaling parameters of t that fulfil
specific objectives or constraints.

TRW
tot = TRW

nom + TRW
null (3)

with

• TRW
nom = Cpinv

BRWTB is the nominal control torque
commanded to the RW by the attitude control al-
gorithm.
• TRW

null = Nt is the torque along the null space that
provides additional degrees of freedom to take into
account additional objectives and constraints.

Reckdahl (2000) 1 and Rigger (2010) suggest similar al-
gorithms to control RW speed minimising power by con-
trolling RW speed nullspace components NTω (where ω
is the vector of RW speeds measurements) to zero or user

defined target value in the null space ωtgt
null by means of a

PID controller.

t = PID
(
ωtgt
null −NTω

)
(4)

It must be noted that Schaub and Lappas (2009) proposes
another power-optimal control formulation for the RW
kernel management that minimises analytically the instan-
taneous l2-norm of the RW power vector (not detailed
here).

These algorithms provide a strong added value as they
allow controlling the RW angular rate around user-defined
objectives far from restricted range of operation (such as
limit of saturation or zero angular rate to avoid stiction).
However, these algorithms still optimise l2-norm while, as
it has been explained above, it is the l∞-norm, rather
than the l2-norm, optimisation which presents an optimal
momentum storage capacity that prolongs the periods
between successive momentum dumping manoeuvres to
the maximum possible. Indeed, this approach produces
sets of RW speeds whose maximum speed is minimum.

Ratan (2007) modifies the algorithm of Eq. (4) in order to
optimise indirectly the l∞-norm:

t = PID (α) (5)

with

α = f (N, ω) (6)

where Eq. 6 (defined in detail in Ratan (2007)) tends
to zero when ω reaches the l∞-norm optimal solution.
Unfortunately, this algorithm suffers from two drawbacks.
First, the algorithm behind Eq. (6) is composed of several
imbricated “if loops”, i.e. its stability cannot be assessed
analytically. Moreover, as this algorithm is protected by a
US patent, there are restrictions to its use by industry.

At this step, the RW management algorithms have been
characterised highlighting their pros and cons. It is time
to define the solution for PROBA-3.

1 This reference is a US patent since year 2000, however, this solution
has been used at large by space industry for more than 20 years.

2.3 Algorithm Definition and Parameters Tuning Method

Algorithm Selection For PROBA-3, the duration of peri-
ods between momentum dumping manoeuvres need to be
maximised. At the same time, in addition to the saturation
limit constraint, zero-angular rate crossing is unacceptable
during fine pointing as stiction will prevent fulfilling the
requirements defined in Table 1. The performance indices
of this table are defined in ESSB-HB-E-003 (2011).

Table 1. PROBA-3 Attitude Specifications

These requirements would drive the RW management al-
gorithm selection toward a l∞-norm optimisation solution
that allows specifying a RW angular rate target far from
the stiction and saturation ranges. However, the next para-
graph shows that, within the realistic context of PROBA-
3 (and of many other missions), the practical constraints
cause the l∞-norm approach to have no added value rela-
tive to the l2-norm approach. Consequently, while the l∞-
norm approach is theoretically more relevant, in practice,
the l2-norm approach is better because Eq. (4) does not
require an “if loop” but simply basic mathematical opera-
tions that allow stability assessment by linear analysis and
simple implementation and validation.

Parameters Tuning Considering Eq. (4) or Eq. (5), the
parameters to be tuned are the PID gains and the angular
rate target ωtgt

null (a scalar when n = 4) of Eq. (4). The
following section characterises the drivers of this tuning.

• Tuning of ωtgt
null. This parameter shall be set to

ensure the maximum margin before zero angular rate
crossing and saturation limit. As the four wheels are
identical, the target angular rate of each RW shall be
defined such that each RW has the same amplitude
ωsat

2 where ωsat is the considered limit of saturation.
This is formalised by Eq. (7):∥∥ωtgt

RWi

∥∥ =
ωsat

2
with i = 1 to 4. (7)

This equation defines the amplitude of each RW
target angular rate. Their sign can be set by taking
advantage of the null space properties by means of
Eq. (8).

ωtgt
RW =

ωsat

2
N (8)

This tuning ensures ωtgt
RW ∈ Null (CBRW) with

ωtgt
RW =

[
ωtgt
RW1

ωtgt
RW2

ωtgt
RW3

ωtgt
RW4

]T
. It means that,

when the wheels are set by Eq. (8), their angular rates
do not contribute to the total angular momentum
expressed in the body fixed frame: the algebraic sum
of the angular momentum of each RW expressed in
body-fixed frame is equal to zero. Once ωtgt

RW is set,

ωtgt
null is defined by Eq. (9).

ωtgt
null = NTωtgt

RW (9)

• Tuning of PID gains. Considering Eq. (3), TRW
nom

and TRW
null are in competition for a limited TRW

tot capa-
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bility driven by the RW saturation limit. However, it
is obvious that attitude control shall have priority.
Therefore, it is relevant to limit the fraction p of(
TRW

tot

)
max

allocated to TRW
null. Thus, the maximum

control torque dedicated to kernel management shall
be limited by the following inequality:(

TRW
null

)
max

= NPIDωtgt
null ≤

1

p

(
TRW

tot

)
max

(10)

Indeed, the maximum error
(
ωtgt
null −NTω

)
max

=

ωtgt
null occurs at the activation of the algorithm (once

it is activated, the algorithm reduces the error),
i.e. when the wheels are not used and consequently
damped by friction up to zero angular rate.

Considering thatRWi is the RW for which 1
p

(
TRWi

tot

)
max

is the smallest, its corresponding inequality drives the
tuning of the PID:

PID ≤ 1

p

1

Niω
tgt
null

TRW
max (11)

where TRW
max is the maximum torque that one RW

can realise and PID is the transfer function of a PID
controller.

Eq. (11) provides an upper bound to set the pro-
portional gain of the PID. Once the proportional gain
is set, integral and derivative gains can be tuned as
a function of the proportional gain considering usual
PID tuning criteria.

Moreover, it must be noted that attitude control
requires transient evolution of the RW angular rate
around their target rate. The kernel management
control shall not react to these variations that are
required by the attitude control law. Consequently,
the kernel management shall be slower than the
attitude control.

These two considerations are the drivers of the
tuning of the PID controller. When they are used,
the transient of each RW angular rate is dominated by
the attitude control loop while the slow kernel man-
agement loop impacts essentially the steady state.
This last remark is important as it highlights that,
in practice, the fact that the transient of the ker-
nel management loop is controlled by an l∞-norm
optimisation algorithm or an l2-norm optimisation
algorithm has only a second order effect that can be
neglected.

3. ANGULAR MOMENTUM MANAGEMENT

This section defines the algorithm for the Angular Momen-
tum Management (AMM) of a spacecraft equipped with
n > 3 reaction wheels. First, it defines the problem. Then,
it defines the algorithm.

3.1 Statement of the Problem

The dynamic equation of a spacecraft with thrusters
(torque TB

thr), reaction-wheels (angular momentum hB
RW)

and perturbations (torque TB
p ) is:

ḣB
tot = TB

p + TB
thr (12)

Thus, over a period that lies between t0 and t:

hB
tot = hB

sc + hB
RW =

∫ t

t0

TB
p dt︸ ︷︷ ︸

hB
p

+

∫ t

t0

TB
thrdt︸ ︷︷ ︸

hB
thr

+hB
tot (t0)

(13)

When the satellite attitude is controlled, the spacecraft
angular rate ωB

sc has to track a reference. This means
that hB

sc is constrained. In that case, with the thrusters
switched off, only the RW can absorb the variations of the
total angular momentum generated by the perturbations.
With time, hB

tot and hB
RW increase, thereby loading the

RW and consequently driving them to their saturation
limit or zero angular rate. Therefore, a control algorithm
that compensates the secular effects of perturbations must
be considered to unload the RW using the thrusters.

3.2 AMM Algorithm

The proposed AMM algorithm inherits from previous
PROBA missions (Cote et al. (2010)) with two critical
adaptations. For PROBA-3, this algorithm unloads, by
means of thrusters, a cluster of 4 RW that are operational
simultaneously; while for previous PROBA satellites, only
three wheels were running at the same time and were
unloaded by means of magnetotorquers.

This algorithm ensures that each ωB
RWi

is within the user-

defined range by directly controlling hB
tot. Without any

perturbation, the total angular momentum in an inertial
frame remains constant (hI

tot = hI
totsp) during the ma-

noeuvres. It is the exchange of angular momentum be-
tween the reaction wheels and the spacecraft which results
in spacecraft rotation. Therefore, hB

totsp , the nominal value

(or set point) of the total angular-momentum available
during the manoeuvre, must be set carefully by preloading
the reaction wheels in order to ensure that hB

sc can evolve
as required by the mission while hB

RW fulfils the RW
constraints (zero crossing and saturation).

In order to control hB
tot about hB

totsp despite external
perturbations, a control torque shall be generated by the
thrusters as a function of hB

ex = hB
tot − hB

totsp . This

is ensured by a a proportional/integral controller that
considers hB

ex as the error signal. This offloading control
loop is enabled/disabled autonomously by the algorithm
of Fig. (1) that compares

∥∥hB
ex

∥∥ to an upper limit Rlim

defined as a function of the saturation limit and to a
lower limit Rlim defined as a function of the precision
required for the AMM. Roughly, when the total angular
momentum reaches the upper limit, the offloading control
loop is enabled until the total angular momentum reaches
the lower limit.

4. APPLICATION TO PROBA-3

In order to demonstrate the algorithms and the tuning
method, it is implemented within the PROBA-3 Guidance,
Navigation and Control software and tested in closed-
loop by numerical simulations performed on the high
fidelity Functional Engineering Simulator (FES) used to
support the analyses of the PROBA-3 mission Phase-B
(see Peyrard et al. (2013) for details).
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Fig. 1. Angular Momentum Management Algorithm

For the PROBA-3 RWA, NT = [−0.5 + 0.5 − 0.5 + 0.5]
while the maximum RW angular rate is 526 rad/s.
PROBA-3 has no privileged axis of rotation, thus the
wheels shall have the same margin before reaching zero
or saturation angular rate. It is therefore relevant to set
ωtgt
RW = [−263 + 263 − 263 + 263], i.e. each wheel has

the same margin before reaching zero and saturation limit.
This setting drives to ωtgt

null = 526 rad/s.

The tuning of the PID is performed using Eq. (11) as
an equality for the setting of the proportional gain. For
PROBA-3, the maximum torque that one RW can produce
is 0.005 Nm while its inertia is 0.0019 kg.m2. In order
to put the emphasis on the attitude control, p = 10% is
selected. This implies that Kp = 1.9e − 6. Simulations
with this tuning are operational. As required, the kernel
management loop is slow. Therefore, in order to put
the emphasis on this loop for the present paper, the
simulations presented below have been performed with
Kp boosted to Kp = 1.9e − 5 in order to allow faster
convergence (in this context integral and derivative terms
have been set to zero).

The scenario of the tests presented in this paper consists
in simulations that start with the spacecraft aligned to
its target attitude. During the first 1000s, the guidance
remains the same. At t=1000s, a 180 deg slew manoeuvre
is commanded and, at t =2000s, the original attitude is
commanded (i.e. 180 deg manoeuvre to come back). Three
tests are performed.

• Test 1: 4 RW in the loop without kernel management
(i.e. Kp = 0) and zero initial RW angular rate.
• Test 2: 4 RW in the loop with kernel management

(i.e. Kp = 1.9e− 5) and zero initial RW angular rate.
• Test 3: 4 RW in the loop with kernel management

(i.e. Kp = 1.9e − 5) and zero RW initial angular
rate excepted for RW1 which is set to 450 rad/s, i.e.

inital
∥∥hB

ex

∥∥ is beyond the upper limit Rlim thereby
requiring offloading.

These tests are analysed through three types of graphs.

• Graph 1. The attitude pointing error plots (Fig. (2))
show the overall pointing error between the estimated
and target attitude. The three test cases show a sim-
ilar behaviour where the spacecraft is properly con-
trolled and performs its slew manoeuvres adequately.
Thus, the comparison of these three plots highlights
that the kernel management does not impact the at-
titude control. However, the bottom plot shows a loss
of precision at the beginning of the simulation during
the period of RW offloading. In other words, the
thruster activation perturbs the attitude control loop.
This behaviour can be avoided by modifying the tun-
ing of the AMM control loop to be slower. Thus, the
designer has to trade-off between a slow control that
would not impact significantly the attitude pointing
and a fast control that shall be performed outside the
phases of the mission with tight requirements.

• Graph 2. The RW angular rate graphs (Fig. (3))
show the angular rate of each RW. For the case
where kernel management is not operational (top
plot), the RW drift from their initial values (here
zero rad/s) before experiencing a large evolution in
order to realise the slew manoeuvres. For the cases
where kernel management is activated (middle and
bottom plots), it can be observed that before the first
slew manoeuvre the RW angular rates evolve rapidly
from their initial values to reach their target angular
rates tracked by kernel management control. During
the slew manoeuvres, the RW angular rates evolve in
order to realise the attitude control torque. However,
after the manoeuvres the RW are again controlled to
their targets without drift. These graphs highlight the
need of kernel management in order to load the RW to
target angular rates to provide margin relative to zero
angular rate and saturation limit. They also highlight
that the proposed kernel management and tuning are
operational and behave as predicted by the theory.

• Graph 3. The AMM graph (Fig. (4)) is used only
for Test 3 where RW offloading is required. It shows
the module of the controlled angular momentum and
the flag that characterises if the RW offloading is
triggered on or off. As the total angular momentum
is beyond its upper limit when the simulation starts,
the flag is on and the angular momentum is reduced.
The algorithm automatically stops when the angu-
lar momentum reaches its target value. These plots
highlight that the angular momentum management is
operational and compatible with the attitude control
and kernel management.

5. CONCLUSION

This paper presented algorithms for the management of
a cluster of n > 3 reaction wheels. It first characterises
an efficient algorithm for attitude control torque distribu-
tion with RW angular rate constraint management and
provides the rationale that guides the tuning of this al-
gorithm. Then, it defines an algorithm for the angular
momentum management of this reaction wheel assembly.
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Finally, as proof of concept, it applies these algorithms to
a realistic scenario of the PROBA-3 mission using a high-
fidelity simulator. Results demonstrate that the suggested
algorithms are operational and efficient. They can be used
and adapted to several types of missions.

Fig. 2. Attitude Pointing Error - top: Kp = 0, Mid.:
Kp = 1.9e− 5, Bot.: AMM Required
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