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Abstract: This paper presents a preliminary study of using adaptive control of grid connected
wind farms to damp the inter-area oscillations in wind integrated power systems. The power
system is modeled as a distributed parameter systems using a forced first order hyperbolic
wave equation, which represents an aggregate model for the system of coupled swing equations
subject to wind farm power injections. A direct adaptive controller is used to stabilize the power
swing in the face of disturbances using power injected from the wind farms at either a single or
multiple locations throughout the power system.
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1. INTRODUCTION

The electricity generated from wind turbines is a growing
proportion of the electrical power being injected onto
existing transmission lines. The intermittent nature of
power produced by wind turbines may have negative
impact on the power grid. Therefore there has been a lot
of work aimed at finding ways to mitigate these effect,
see e.g. U.S. Dept. Energy (2008), Bousseau et al. (2006),
Smith et al. (2007). Studies have also examined ways in
which wind farms can be used to support the existing
transmission system in adverse conditions. Some examples
include using a wind farm to support the grid frequency
(Aho et al. (2012)), controlling the wind turbine generator
to stabilize the power systems after a disturbance (or
grid fault)(Sakimoto et al. (2011)), and controlling power
output of a wind farm to damp the inter-area oscillations
(Chandra et al. (2013), Gayme and Chakrabortty (2013)).

Existing power systems are interconnected via transmis-
sion lines which carry bulk electrical power. Generators
tend to be tightly coupled into areas in which the gener-
ators are synchronized (i.e. they all operate at the same
frequency) (Kundur (1994)). The difference in this swing-
ing of a group of generators in one area relative to those in
an adjacent areas results in inter-area oscillations. These
inter-area oscillations, if left undamped, can lead to grid
stability issues that can have system wide consequences
such as load shedding.
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Flexible AC Transmission Systems (FACTS) are com-
monly used to damp inter-area oscillations as well as for
other grid stability goals (Larson et al. (1995), Chaudhuri
et al. (2003), and Majunmder et al. (2006)). Recent studies
have examined the use of wind farm power output to
stabilize the rotor swing (Miao et al. (2004), Gautam
et al. (2009), and Tsourakis et al. (2010)) . Most of these
techniques use the idea of controlling the Doubly Fed In-
duction Generators (DFIG) connected to the wind turbine
to support the power system. Such control techniques do
not consider the location of the wind power plant in new
or existing power systems.

In paper by Gayme and Chakrabortty (2013) and Gayme
and Chakrabortty (2012), it is shown that the location
of a wind farm (i.e. the electrical distance along the
transfer path at which the wind power is injected) greatly
affects the spectrum of inter-area oscillation of the power
systems. They further proposed the idea of controlling
the wind farm power output to alter the spectrum of the
power system to match a desired response (Gayme and
Chakrabortty (2013)).

In this paper, the power system framework proposed by
Gayme and Chakrabortty (2012) is used to study the
effectiveness of an adaptive wind farm controller to damp
the inter area oscillations due to disturbances in a large
radial power system.
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Fig. 1. A power system model with disturbance at β and
wind farm power injection at α

2. POWER SYSTEM MODELING AND CONTROL

2.1 Power System as Distributed Parameter System

The power system under study is depicted in Fig. 1 where
the generators in two different regions (GA1 and GA2) are
connected with a transmission line and series of generators.
The generation Gi and power angle change δi of each
generator are continuously distributed over the spatial
dimension u. Assuming xi and∆L to be the line reactance
and spacing between generators Gi and Gi+1 respectively,
the rotor dynamics of the ith generator can be expressed
as (Cresp and Hauer (1981)):(

2Hi

Ωi

)
Giδ̈i + ξδ̇i = Pi ∀i = 1, 2, ......, n (1)

where Hi is the inertia constant, Ωs = 2π60 rad/sec is
the electrical frequency with 60 Hz base, Pi is the net real
power flowing out of ith machine with P0 = 0 and ξ is the
damping coefficient. The real power flow from node i to
i+ 1 over a lossless line is expressed as:

Pi,i+1 =
EiEi+1 sin(δi − δi+1)

xi
(2)

where Ei is the voltage magnitude at bus i. Assuming
small changes in rotor angle and constant bus voltage of
1 per unit in equation (2), the net active power flow from
the ith machine can be approximated as:

Pi = Pi−1,i − Pi,i+1
(δi−1 − δi)− (δi − δi+1)

xi
(3)

Substituting (3) into (1) and dividing by ∆L we get:

2

Ωi

Hi

∆L
δ̈i +

ξ

∆L
δ̇i =

1
xi

∆L

(δi − δi−1)

(∆L)
2 − 1

xi

∆L

(δi − δi+1)

(∆L)
2 .

Taking the limit as ∆L→ 0 results in ξi−1 → xi and

2

Ωi

dH(u)

du

dG(u)

du
δ̈ +

dξ(u)

du
δ̇

= lim
∆x→0

1
xi

∆L

(δi+1 − 2δi + δi−1)

(∆L)
2 =

1
dx(u)
du

δuu

(4)

where dG(u)
du , dH(u)

du , dξ(u)
du and dx(u)

du are respectively the
generation, inertia, damping and reactance densities over
the string of n generators. Considering an n link system

each with an infinitesimal distance between each link
∆ui ∀i = 1, 2, ...n; the average inertia density can be
defined as:

HT :=
1

n∑
i=1

∆ui

n∑
i=1

dH(u)

du
∆u, (5)

the average reactance density is:

γ :=
1

n∑
i=1

∆ui

n∑
i=1

dx(u)

du
∆u, (6)

and the average damping density is:

η :=
1

n∑
i=1

∆ui

n∑
i=1

dξ(u)

du
∆u, (7)

The generation density is approximated by the total gen-
eration and is denoted by GT . In the continuum as n→∞
, the densities in (5)-(7) can be expressed as:

HT =
1

L

L∫
0

dH(u) =
H(L)

L
; γ =

x(L)

L
; η =

ξ(L)

L
.

Substituting these expressions into (4) yields a damped
hyperbolic wave equation in terms of the aggregated
generator angle δ(u, t) as:

∂2δ(u, t)

∂t2
+ η

∂δ(u, t)

∂t
= ν2 ∂

2δ(u, t)

∂u2
(8)

with wave speed ν =
√

377
2HTGT γ

.

The corresponding power flow is:

P (u, t) = − 1

γ

∂δ(u, t)

∂u
(9)

The system (8) represents an unforced system. Now adding
a power injection (from an external source such as a wind
farm) to (8) leads to:

∂2δ(u, t)

∂t2
+ η

∂δ(u, t)

∂t
− ν2 ∂

2δ(u, t)

∂u2
= W (u, t) (10)

where W (u, t) is the net power injection. Assuming the
power is injected at u = α as in Fig. 1, the net power
injection can be expressed as:

W (u, t) = Pg(t)δ̂(u− α) (11)

where δ̂(u−α) is the Dirac delta function modeling a point
source injection at a particular location in space and Pg(t)
is the net power injected.

2.2 Approximation of Hyperbolic PDE

To solve the hyperbolic PDE of (10), the power angle
δ(u, t) and forcing function W (u, t) are first expressed as
the Fourier series:
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δ(u, t) =
1

2
A0(t)

+

∞∑
n=1

[An(t) cos(knu) +Bn(t) sin(knu)]
(12a)

W (u, t) =
1

2
F0(t)

+

∞∑
n=1

[Fn(t) cos(knu) +Gn(t) sin(knu)]
(12b)

where kn are the wave numbers for each mode λn. Now,
assuming GA1 and GA2 produce a constant power and no
power is injected at both ends of the system, the power
flow at the boundaries are constant in time. Then, the
power angle δ(u, t) is a standing wave with zero slope at
u = 0 and u = 1 , which yields the boundary conditions:

P (0, t) = P (1, t) = 0. (13)

Now, using these boundary conditions in (12a) and (12b)
results in:

δ(u, t) =

∞∑
n=1

An(t) cos(knu) =

∞∑
n=1

An(t)φn(u) (14a)

W (u, t) =

∞∑
n=1

Fn(t) cos(knu) =

∞∑
n=1

Fn(t)φn(u) (14b)

where φk(u) = cos(knu) are the spatial modes. Substitut-
ing (14a) and (14b) into (10) we get,

∂2An(t)

∂t2
+ η

∂An(t)

∂t
+ ν2k2

nAn(t) = Fn(t) (15)

where Fn(t) is obtained from the expression:

Fn(t) = 2

1∫
0

cos(knu)δ̂(u− α)du = 2Pg cos(knα). (16)

2.3 Adaptive Control using Selective Modes

From (14a) it can be observed that the expression for
power angle is a combination of spatial and temporal
modes. The spatial modes are obtained using the boundary
conditions whereas temporal modes are dictated by the
expression in (15). In this paper, the boundary condition of
(13) is considered which results in the approximate spatial
modes of (Cresap et al. 1981):

φk(u) = cos(knu) = cos
(nπ
L
u
)

(17)

Fig. 2 shows a plot of the first five spatial modes using a
normalized distance between generation areas of L = 1.

From that the spatial injection location of a disturbance
or wind power greatly affects the individual modes, e.g.
injecting a power source at normalized distance of 0.15
encounters positive modal gain for the first three modes
but negative modal gains for the fourth and fifth modes.

The temporal part of the aggregate rotor angle expression
in (14a) is given by (15) which can be put in state-space
form as:

[
Ȧn(t)

Änt

]
=

[
0 1

−ν2k2
n −η

] [
An(t)

Ȧn(t)

]
+

[
0

Fn(t)

]
(18)

Fig. 2. First five spatial modes with normalized distance

Equation (18) is perturbed with Fn(t) to get the temporal

coefficient Ȧn(t) and this is combined with the spatial part

of the PDE as in (14a) to get the power angle rate δ̇(u, t)
as:

δ̇(u, t) =

∞∑
n=1

Ȧn(t) cos(knu) =

∞∑
n=1

Ȧn(t)φn(u) (19)

δ̇(u, t) in (19) is measured at a specified location in the
power system. But for simulation, it is not possible to
take an infinite number of modes, hence the summation
is truncated at some specified number of modes N , which
results in:

y := δ̇est(u, t) =

N∑
n=1

Ȧn(t) cos(knu) =

N∑
n=1

Ȧn(t)φn(u)

(20)

In simulation the approximated rotor angle rate δ̇est(u, t)
is used as output.

A large power system is very complex system and hence
modeling errors are unavoidable. Also, the presence of
different kinds of generator sources and loads make it dif-
ficult to assess the power system parameters. An adaptive
controller is best suited in such conditions because of its
capability to adapt the gains and perform under these
types of errors and uncertainties.

Now based on the system configurations (14a), (16), (18),
(19), and (20), we select an adaptive controller (Magar
et al. (2012)) to damp the rotor angle swing. The proposed
controller takes the rotor angle rate at specified spatial
point as input and produces the torque command to the
wind farm:

Tg(t) = Geδ̇ +GDφD ≈ Geδ̇est +GDφD
= Gey +GDφD

(21)

where Ge and GD are the adaptive gains based on the gain
adaption laws:

Ġe = −δ̇2γe ≈ −δ̇2
estγe = −y2γe

ĠD = −δ̇φDγD = −yφDγD.

In these expressions γe and γD are the positive definite
gain matrices.φD is the basis function for the disturbance,
which is assumed to be generated from disturbance model
of the form:
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{
u

D
= ΘzD; zD = LDφD

żD = FzD; zD(0) = z0
(22)

where Θ, LD, and F are the matrices that determine the
known form of disturbance waveforms. In the adaptive
control law (21), the first tem is responsible for driving the

measured output (i.e. rotor angle rate δ̇ ) to zero whereas
the second term is responsible for driving disturbances to
zero.

In order to guarantee stability and convergence of the
adaptive controller (20) with gain adaption laws (21), the
system under study has to be Almost Strict Positive Real
(ASPR), i.e. the plant transfer function has to be minimum
phase and the high frequency gains (product CB) has to
be positive (Balas and Fuentes (2004)) where C and B
are the output and input gain matrices for the state space
description (A,B,C) of the combined system (18) - (20).

3. ADDITION OF WIND FARM DYNAMICS

An adaptive control strategy based on selected modes of
the power system is proposed in the previous section.
In this section wind farms are used with the adaptive
controller to damp the inter-area oscillation modes.

A third order aggregate wind farm model developed in
Sloth et al. (2010) is used to study the effectiveness
of adaptive controller to damp the oscillation due to
disturbance in the power system. A linearizion proposed
wind farm discussed in Gayme and Chakrabortty (2013)
has the transfer function of the form:

Gw(s) =
Pg(s)

Tg(s)
=

6.786s+ 1.939e4

s3 + 0.294s2 + 816.2s+ 0.7696
(23)

where Pg(s) is the Laplace transform of the wind farm
power output and Tg(s) is the Laplace transform of torque
input for each wind farm.

Since the basic idea behind damping the inter-area oscilla-
tion is to control the power output of the wind farm using
an adaptive controller under disturbances to the power
system, the wind farm in (24) can be viewed as actuator
dynamics connecting the power system and the adaptive
controller.

Fig. 3. Schematics of using adaptive controller with wind
farm

A schematic for adding the wind farm to the power
system is in Fig 3. The power system block corresponds
to the model developed in (18), (19), the wind farm
block corresponds to the wind farm model of (23) and

the adaptive control block corresponds to the controller
proposed in (21), (22). From (18) and (19) we can observe
that the transfer function for the temporal response of each
mode of power system has form:

Psys(s) =
s

s2 + ηs+ ν2k2
n

(24)

This transfer function has the relative degree of one. When
the power system is constructed using multiple modes,
then the corresponding transfer functions based on (24)
with different parameters are connected in parallel. The
transfer function obtained from the parallel combination
of (24) also retains the relative degree of one. Hence,
the power system block will have a transfer function of
relative degree one. Also from (23), the wind farm transfer
function has relative degree of two. Since the wind farm
acts as an actuator for the power system which is actuated
with the signal obtained from the adaptive controller,
the combination of the wind farm and the power system
can be assumed as a single block for adaptive controller
implementation. When the wind farm and the power
system are combined in series, the combined block will now
have relative degree of three. This transfer function when
converted to state space form will produce the product
CB = 0; or the high frequency gain will be zero. Since the
proposed adaptive controller requires the product CB > 0
for stability, a feedforward path is needed in the wind farm
to change its relative degree to zero which results in the
combination of wind farm and power system to have a
relative degree of one.

Fig. 4. Using FF path in wind farm to comply with ASPR
requirement

A feedfoward path with a gain of 90 is used as shown in
Fig. 4 to make the overall system ASPR (i.e. such that the
product CB > 0 and the system is minimum phase).

4. SIMULATION

For the study of the effectiveness of the adaptive controller
in damping the rotor angle swing, the system is setup
according to the description in previous sections. The
parameters for the power system and wind farm were used
from Sloth et al (2010). Only the first five modes are used
to illustrate the theory presented in the previous sections.

A step disturbance of magnitude 0.25 p.u. is injected
at distance of 0.5 along the electrical transfer path and
two identical wind farms are assumed to be installed at
respective distances of 0.12 and 0..75. Adaptive controllers
are used to control power output of these two wind farms
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Fig. 5. Schematics of using two wind farms to damp inter
area oscillation

based on the rotor angle rate measurement of (20) at these
places.

The schematic for using two wind farms to damp the inter-
area oscillation is shown in Fig. 5. The rotor angles are
observed at different locations considering each individual
wind farm and the combination of both wind farms.

Fig. 6. Rotor angle profile at 0.12 under different condi-
tions

Fig. 7. Rotor angle profile at 0.75 in different conditions

The rotor angle profiles at distance of 0.12, 0.5 and 0.75
are plotted in Fig 6, Fig. 6, and Fig. 8 respectively.
Each figure shows the rotor angle profile for different
controlled conditions e.g. uncontrolled, controlled with
W1, controlled with W2 and controlled with both W1 and
W2.

From the figures it can be seen that the controller has
good local performance when using only one wind farm
but the combination of two wind farms results in better
performance throughout the system. In another words,
using two wind farms are more effective in damping the

Fig. 8. Rotor angle profile at 0.5 in different conditions

inter - area oscillations throughout the full range of interest
compared to using only one wind farm.

5. CONCLUSIONS

Use of an adaptive controller to damp the inter-area
oscillations is discussed in this paper. The power system is
modelled as a distributed parameter system using a forced
second order hyperbolic PDE. The first five modes of the
system were considered for the simulation. A third order
wind farm model along with an adaptive controller is used
at two different locations to stabilize the rotor angle swing
in the face of the power system disturbances. From the
rotor angle profile at three different locations, it is found
that co-ordinated control of multiple wind farms effectively
damps the rotor swing throughout the system whereas the
single wind farm is only effective in locally damping the
rotor swing.
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