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Abstract:
We propose a novel formulation for declutching control of wave energy converters with the power take-
off time as the only decision variable. The optimal control problem is modeled as a single-variable
optimization problem, thereby making real-time implementation a possibility. We present a derivate-
free optimization algorithm that exploits the quantization of the decision variable in order to reduce the
number of function evaluations needed to compute a solution. We propose two receding horizon closed-
loop strategies: the first one uses past wave information and can increase the energy generation by 42%
compared to the uncontrolled case, while the second formulation uses predictions of future waves and
results in a further 40% increase in energy generation. For irregular waves with peak periods longer
than 6 s, one can generate at least four times more energy when co-designing the physical system and
controller, compared to a controlled system that was optimized without a controller in the feedback loop.
Key Words: derivative-free optimization, declutching control, wave energy, coordinate-search

1. INTRODUCTION

The energy absorption of wave energy converters (WECs) can
be significantly improved by various control strategies, as sug-
gested by Falnes [2007], Budar [1975] and Abraham and Ker-
rigan [2013a]. This paper will study a control implementation
for WECs known as declutching control. Declutching control
can increase the power take-off (PTO) of WECs in a wide fre-
quency range, particularly for devices whose resonant period is
longer than the incident wave’s peak period. Declutching con-
trol works by bypassing the PTO mechanism for certain time
intervals, thereby effectively altering the resonant frequency
of the device to match the frequency of the incident wave.
Detailed physical implementations can be found in Babarit et al.
[2009] and Clément and Babarit [2012]. Declutching control
is passive, easy to implement and more importantly, does not
have violent cut-off actions as with latching control. Hence,
declutching control is of great interest to many practitioners
[Falnes, 2001, Salter, 1979]. Furthermore, designing an algo-
rithm for controlling a two-mode system provides control theo-
reticians with an interesting example problem.

In this paper, we will modify the latching control algorithm in
Feng and Kerrigan [2013], which is based on derivative-free
optimization (DFO), to declutching control. Unlike latching
control, for declutching control the cost function is continuous
in most cases. However, the analytical gradient is very hard to
obtain and a finite difference method will struggle due to the
fact that the decision variable is quantized (this will be dis-
cussed in Section 2.2). Thus, reliable performance of derivative-
based optimization methods is not guaranteed. Furthermore,
since we have a univariate cost function, the computational
cost of derivative-free optimization methods is low. Two for-
mulations will be studied: a past data formulation, which uses

recorded past wave data, and a future data formulation, which
requires the prediction of future waves.

The paper is organized as follows: in Section 2 a declutching
controlled WEC model will be described and we will demon-
strate some properties of the cost function. In Section 3 we will
briefly introduce the coordinate-search optimization method.
We will discuss two closed-loop problem formulations in Sec-
tion 4. Section 5 will present some simulation results, where
we will demonstrate the benefit of cyber-physical co-design of
the WEC, as well as compare our optimization method against
other algorithms for univariate optimization. Finally, we will
end with conclusions and suggestions for future work.

2. MODEL AND PROBLEM FORMULATION

2.1 Model of Wave Energy Converter

The model of a WEC used here is based on linear wave
theory, due to its simplicity and sufficient accuracy for control
applications. In the time domain, the model is given by:

(M+µ∞)ζ̈ (t)+
∫ t

0
K(t− τ)ζ̇ (τ)dτ +Bptoζ̇ (t)

+(ks +ρgS)ζ (t) = Fe(t), (1)
where ζ is the displacement of the WEC buoy from the equi-
librium, M is the mass of the buoy, µ∞ is the infinite frequency
added mass, K(·) is the impulse response kernel, Bpto and ks
are the PTO damping coefficient and the spring constant of
the PTO mechanism, respectively, ρ is the water density, g is
the gravity constant, S is the submerged cross-section area of
the buoy and Fe(·) is the excitation force caused by incident
waves. The model (1) is widely used in WEC control studies,
for example in Babarit and Clément [2006] and Clément and
Babarit [2012].
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The system (1) is a differential-integral equation. The integral
term causes difficulty in analysis and can be simplified, as
suggested in Yu [1995], Loan [1978] and Kristiansen [2005].
The integral Brad(t) :=

∫ t
0 K(t−τ)ζ̇ (τ)dτ can be approximated

as the output of a state-space system:

q̇(t) = Arq(t)+Brζ̇ (t), (2a)

Brad(t) =Crq(t)+Drζ̇ (t), (2b)

with an approximation order of nr, where q(t) ∈ Rnr is the
approximation state, and Ar, Br, Cr, Dr are the coefficient matri-
ces of the approximating system. These coefficient matrices are
calculated via the impulse to state-space technique proposed in
Kristiansen [2005].

According to Babarit et al. [2009], if we activate the PTO mech-
anism when v(t) 6= 0, the system may undergo high stresses. On
the other hand, in simulation results, the optimal time instance
for activating the PTO mechanism is mostly at v(t) = 0 [Abra-
ham and Kerrigan, 2013a, Babarit et al., 2009]. It is clear that
v(t) = 0 is often the best practical switching point for the PTO
mechanism. Therefore, we propose a sub-optimal declutching
control scheme that is similar to latching control: we activate
the PTO mechanism whenever v(t) = 0 and declutch the PTO
mechanism after ta seconds.

The dynamics of such a declutching-controlled system can be
described as a hybrid system in terms of a timed automa-
ton [Lee and Seshia, 2011, Chap. 4]. We assume that when
the system is declutched, the damping Bpto becomes zero,
i.e. no energy is generated in the declutched mode. Figure 1
shows the timed automaton representation of the declutching-
controlled system, where v(·) := ζ̇ (·) is the velocity of the
buoy. First, define a clock with dynamics Ξ̇(t) = 1 and let
z(t) :=

[
ζ (t) v(t) qT (t)

]T be the state of the system. Let the
dynamics of the two different modes be:

g1(z,Fe; t) :=


v(t)

1
MT

[−kT ζ (t)−Drv(t)−Crq(t)

+Fe(t)]
Arq(t)+Brv(t)

 , (3a)

g2(z,Fe; t) :=


v(t)

1
MT

[−kT ζ (t)− (Bpto +Dr)v(t)

−Crq(t)+Fe(t)]
Arq(t)+Brv(t)

 , (3b)

where MT := M + µ∞ and kT := (ks + ρgS). g1 describes the
dynamics in the declutched mode. The resonant period in this
mode is slightly shorter than the PTO-active mode. g2 describes
the PTO-active mode, i.e. when the system’s PTO damping Bpto
is engaged and the power is generated. Whenever the velocity
v(t) = 0, the clock is reset Ξ(t) := 0, the system transits from
the declutched mode to the PTO-active mode and stays in this
mode for ta seconds. The time during which the system is in the
PTO-active mode is termed the PTO-active time.

We assume full state feedback. However, a state estimator can
be constructed by modelling the WEC as a linear time-varying
system, where Bpto is a known function of time. Alternatively,
one can model the system as a linear differential inclusion and
follow the same procedure outlined in Abraham and Kerrigan
[2013b].

ż = g1(z,Fe; t),
Ξ̇ = 1

Declutched mode

-

v(t) = 0,
Ξ(t) := 0

�

Ξ(t)> ta

ż = g2(z,Fe; t),
Ξ̇ = 1

PTO-active mode

Fig. 1. Declutching-controlled WEC system.
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Fig. 2. Average power generated against ta under an irregular
wave with park period 7 s for a 2000 s simulation.

2.2 Cost Function and the Optimization Problem

With a given WEC system, one aims to maximize the energy
absorption over a time horizon, say from t = a to t = b.
The power extracted by the system depends on the damping
coefficient of the PTO mechanism and the velocity of the buoy,
i.e. B̂pto(t; ta)v2(t), where B̂pto(t) = Bpto if the system is in the
g2 mode and B̂pto(t) = 0 if the system is in the g1 mode.

In declutching control, the optimal control problem over a
horizon starting at t = a and ending at t = b can be defined
as:

max
ta≥0

J(za, ta,Fe,a,b) :=
∫ b

a
B̂pto(t)v2(t;za, ta,Fe|[a,b])dt, (4)

where J : Rn×R+×L p×R×R→ R+ depends on the initial
state za := z(a), control variable ta and Fe|[a,b] : [a,b]→ R, the
excitation force function over the integration interval.

Figure 2 shows the energy absorption against ta when the
WEC described in Section 5 is subjected to a Joint North
Sea Wave Project (JONSWAP) spectrum-generated excitation
force with a peak period of 7s. Such an excitation force is
often used to simulate irregular wave conditions [Babarit and
Clément, 2006]. Unlike the discontinuous cost function for
latching control observed in Feng and Kerrigan [2013], the
cost function of declutching control appears to be continuous.
However, note that this is not always the case: the function can
be discontinuous, as we will show later.

We will first provide a condition when the cost function is
continuous. Consider that the declutching-controlled system
(3), which can be written as:

ż(t) = A0z(t)+BFe(t), ∀t ∈ [t0, t1)∪ [ti + ta, ti+1), (5a)
ż(t) = A1z(t)+BFe(t), ∀t ∈ [ti, ti + ta), (5b)

where ti, i = 1, . . . ,Nv, are the Nv zero-crossing points of v(t)
over a time horizon and v(t) is the second element in the state
z(t). A0, A1 and B are the coefficient matrices.

The two solutions of the linear sub-systems (5a) and (5b) are:

Φ0(z(a),a,b) = eA0(b−a)z(a)+
∫ b

a
eA0(b−τ)BFe(τ)dτ,

Φ1(z(a),a,b) = eA1(b−a)z(a)+
∫ b

a
eA1(b−τ)BFe(τ)dτ.

Without loss of generality, assume the system starts in mode (5b),
then the solution of system (5) is given by
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Fig. 3. (a) Simulation showing that, when ta changes from 4 s
to 4.1 s, the zero-crossing point at t = 149.3 s vanishes.
(b) The cost function for a sinusoidal excitation force of
period 18 s; the function is discontinuous at ta = 4 s.

z(t; ta) = Φ0(Φ1(Φ0(Φ1(· · ·Φ0(z0,0, t1), · · · , tn−1 + ta, t),
∀t ∈ [tNv−1 + ta, tNv). (6)

If Fe(·) is continuous, then φ0(·) and φ1(·) are continuous. As
a result, if the number of the function compositions does not
change, then the composite function (6) will be continuous in ta
and, consequently, the cost function in (4) will be continuous
in ta.

For the declutching controlled system (3), there is no violent
cut-off actions as in latching control. The system is controlled
by bypassing the PTO machinery; hence, the number of zero-
crossing-points seldom change and the cost function is contin-
uous in most cases. However, even for sinusoidal waves, if the
period of the incoming wave is significantly longer (or shorter)
than the resonance period of the device, it is possible that the
number of zero-crossing points will change. Consequently, the
number of compositions in (6) will change and it is possible
that the trajectory z(·; ta) will have a discontinuity for some ta.
Such a situation is shown in Figure 3(a): when ta = 4 s, the
velocity at t = 149.3 s has two zero-crossing points very close to
each other and the PTO-active time is thus extended by 4 s after
t = 149.3 s. However, any increase in ta will result in the two
zero-crossing points reducing to a zero-touching point. This is
shown in Figure 3(a) when ta = 4.1 s; since the zero-crossing-
points vanished, the PTO-active time only lasts for 4 s. Note
that, immediately after t = 151 s, the two velocity trajectories
become different. Hence, following a similar analysis in Feng
and Kerrigan [2013], one can conclude that discontinuities will
arise in the cost function, as in Figure 3(b).

Moreover, because in applications the system is often dis-
cretized in time, ta can only be drawn from a countable set
Sta := {ta|ta = jh for j = 0,1, · · · , jmax}, where h > 0 is the
sampling period and jmaxh =: t̄a is the largest admissible value
for the PTO-active time (which should usually be less than the
peak period of the incoming wave). Therefore, we replace the
problem in (4) with

max
ta∈Sta

J(za, ta,Fe,a,b) :=
∫ b

a
B̂pto(t)v2(t;za, ta,Fe|[a,b])dt, (7)

where the decision variable is quantized.

Algorithm 1 One-dimensional coordinate search (CS)
Require: f (·): objective function; x0: initial guess;

α0 ∈ Sta\{0}: initial step size; γ > 1, β ∈ (0, 1):
step size update parameters; h: sampling time (tolerance);

Ensure: Locally optimal x∗.
Define

f̂ (x) :=
{

f (x) if x ∈ [0, jmaxh]
−∞ if x < 0 or x > jmaxh .

Set i := 0.
repeat

1. Poll step: Let the poll set be defined as Pi := {xi +
αi, xi − αi}. If ∃x̂ ∈ Pi s.t. f̂ (x̂) > f̂ (xi), then set xi+1 :=
argmaxx̂∈Pi f̂ (x̂) and claim the poll step as successful.

2. Parameter update: If the poll step was successful,
set αi+1 := d γαi

h eh. If the poll step was unsuccessful, set
xi+1 := xi and αi+1 := bβαi

h ch.
3. Increment i

until αi < h

Gradient-based optimization methods are clearly not suitable
for this application. Although it seems that the cost function is
smooth in most of the cases, it is possible that the cost function
will be discontinuous. Moreover, even in the smooth case, the
analytical derivative is hard to find. Consequently one cannot
expect gradient-based methods to be numerically robust.

3. DERIVATIVE-FREE OPTIMIZATION

As discussed in Section 2.2, derivative-based optimization
methods are not appropriate in this application. We choose to
adapt the derivative-free coordinate search (CS) method dis-
cussed in Feng and Kerrigan [2013]. Here we only briefly
present the algorithm specialized for declutching control; a
detailed discussion can be found in Feng and Kerrigan [2013].

For declutching-control considered here, the generic CS algo-
rithm becomes a simple two-directional line search procedure,
which is summarized in Algorithm 1. The problem solved is

max
x

f (x) := max
x

J(z0,x,Fe,a,b),

where the decision variable x in this case is the PTO active
time ta. Each iteration of Algorithm 1 evaluates points that are
αi away from the current iterate and compare their values. If
a cost increase is detected, the current iterate is replaced by
the new point and the step size is increased. Otherwise, the
algorithm stays at the current point and reduces the step size
in order to try and find a point with higher cost.

Note that Algorithm 1 is different from the algorithm presented
in Feng and Kerrigan [2013]. In Algorithm 1, α0 ∈ Sta\{0}
means that α0 is drawn from Sta but not 0. We take αi+1 :=
d γαi

h eh to round αi+1 to the nearest number in Sta that is larger
than γαi; or we take αi+1 := bβαi

h ch to round αi+1 to the nearest
number in Sta that is smaller than βαi. Therefore, the sequence
generated by the algorithm ensures xi ∈ Sta, so the algorithm
does not evaluate points that are not feasible. The tolerance is
h, which is the smallest change in ta. By contrast, the algorithm
presented in Feng and Kerrigan [2013] evaluates points in an
uncountable set of reals, most of which may not be feasible and
hence results in redundant function evaluations.
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Algorithm 2 Closed-loop Receding Horizon Implementation
Require: Equivalent discrete-time systems z((k + 1)h) =

ĝ1(z(kh),Fe;k) and z((k + 1)h) = ĝ2(z(kh),Fe;k); initial
timer Ξ(0) := 0; initial PTO active time ξ (0) := 0; initial
point for optimization solver ta0 := 0.
for each sampling instance k = 0,1, . . . do

if v((k−1)h) · v(kh)≤ 0 then
Compute ξ (k) := t∗as(z,Fe,kh), where s ∈ {p, f}
Reset timer Ξ(kh) := 0

end if
if Ξ(kh)≤ ξ (k) and ξ (k)> 0 then

z((k+1)h) = ĝ2(z(kh),Fe;k)
else

z((k+1)h) = ĝ1(z(kh),Fe;k)
end if
Increase timer Ξ((k+1)h) := Ξ(kh)+h
Replace ta0 with ξ (k)

end for

4. CLOSED-LOOP IMPLEMENTATION

We define two closed-loop formulations for the CS algorithm:
the past data formulation and the future data formulation. If
we record past wave data and estimate the state of the system,
we have a cost function (7) w.r.t. PTO-active time ta. Using
the model (3), one can apply Algorithm 1 to determine the
best PTO-active time t∗ap for the recorded horizon. Because
the peak period of ocean waves is stable over a short interval,
t∗ap can be considered as a good estimate of the optimal PTO-
active time [Clément and Babarit, 2012, Babarit et al., 2004].
We refer to the first formulation as the past data formulation;
mathematically,

PD : t∗ap(z,Fe, t) := arg max
ta∈Sta

J(z(t−T ); ta,Fe, t−T, t), (8)

where t is the current time and T is the horizon length.

On the other hand, if one can predict the future excitation force,
then we propose a formulation based on the current state and
the predicted excitation force. One can use Algorithm 1 to find
the best PTO-active time t∗a f over the prediction horizon. We
refer to this as the future data formulation; mathematically,

FD : t∗a f (z,Fe, t) := arg max
ta∈Sta

J(z(t); ta,Fe, t, t +T ). (9)

As in Figure 2, there often exists a unique global maximum
close to zero. Thus, we propose 0 as the initial guess ta0 of the
first optimization problem (at the first sampling instant). This
makes it likely that the algorithm will converge to the global
maximum, in practice. For both formulations, one can solve the
optimization problem at each sampling instant using a warm
start procedure to speed up convergence. If the algorithm has
converged to the global maximum, then it is likely that at each
subsequent sample instant the algorithm will converge to the
global maximum.

For the closed-loop, one can solve problem (8) or (9) every h
seconds and implement the solution in a receding horizon
fashion, as is standard in predictive control. This procedure is
detailed in Algorithm 2, where s = p or s = f depending on
whether past or future wave data is available, respectively.

5. SIMULATION RESULTS

For the simulations, the parameters for the system (1) are
nr := 5, M := 707 t (ton), µ∞ := 244 t, g := 9.81 m/s2, ρ :=
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Fig. 4. PTO without control w.r.t. Bpto and Tp.
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Fig. 5. PTO under declutching control w.r.t. Bpto and Tp.

1000 kg/m3, S := 78.5 m2, ks := 240 kN/m. The parameters
for Algorithm 1 are γ = 1.5, β = 0.5. We set h := 0.1 s and
T := 20 s which is the shortest horizon length that can achieve
the best PTO and t̄a := 10 s. Note that we assume that the
switching can only occur at each sampling instance. Unless
indicated otherwise, the future data formulation is used.

5.1 Cyber-Physical Co-design

We briefly discuss how co-design can affect the choice of sys-
tem parameters. Traditionally, the system is designed without
considering the control strategy; the uncontrolled system is
tuned to its optimal performance against certain working con-
ditions. Following this, the controller is designed to maximize
the system’s performance. Co-design takes a different approach
and designs the physical system and controller (cyber system)
at the same time. In other words, the optimal physical parame-
ters are a function of the control parameters, and vice versa.

Assume the to-be-designed parameter is the PTO damping Bpto.
Figure 4 shows the power generated over 2000 s, subjected
to irregular JONSWAP waves of peak periods Tp from 5–
12 s with different values of Bpto. In this case, no control has
been applied. Figure 4 suggests the optimal value for Bpto
should be about 58–87 kNs/m for a significant range of periods.
Thus, if we followed the standard procedure, we would take
Bpto around 78 kNs/m. If declutching control is applied, the
maximum power is about 82 kW, obtained for waves with peak
periods of Tp = 6.2 s.

Figure 5 shows the power take-off of the device under de-
clutching control against Bpto for different wave periods. The
range for Bpto is now increased to 1MNs/m to show the power
take-off for very large Bpto. Figure 5 reveals that, unlike the
uncontrolled case, for a declutching-controlled system, more
power take-off can be achieved with a larger value of Bpto.
Also, the peak power take-off wave period is slightly longer
than for the uncontrolled case. Figure 6 shows the ratio of
the power generated by the controlled system compared to the
uncontrolled system. Note that there is little improvement for
long peak periods. However, for short peak periods, declutch-
ing control with Bpto = 900 kNs/m is able to achieve at least
27% improvement, compared to an uncontrolled WEC, and a
maximum of 170% improvement at about a peak period of 6 s.
Therefore, after co-design we conclude that a larger Bpto will
give a better performance under declutching control, hence
we choose Bpto = 900 kNs/m. Note that this value is 3 times
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larger than the value in Feng and Kerrigan [2013]; this is still a
realistic value, since it can be achieved by large WEC devices,
such as SEAREV [Babarit et al., 2009].

Figure 7 quantifies the benefits of co-design, compared to first
optimizing the system without any control. Figure 7 shows
the ratio of the power in Figure 5 to the power at the same
peak period, but with Bpto = 78 kNs/m, as obtained above from
Figure 4. For waves with Tp < 6.2 s, the controlled system with
Bpto = 78 kNs/m performs better. However, normally WECs
operate in environments with Tp > 6 s [Babarit and Clément,
2006]. For incident waves that have longer peak periods, note
that as Bpto increases, the PTO ratio increases and achieves a
maximum of 4.5 at Bpto = 900kNs/m with Tp = 11 s.

5.2 Comparison Between Past and Future Data Formulations

To test the performance of the CS algorithm for both the PD and
FD formulations, the system is subjected to an irregular wave
generated from a JONSWAP spectrum with a peak period of
8 s. The time domain simulation results are shown in Figure 8
for Bpto = 900 kNs/m. Figure 9 shows the accumulated energy
absorption, where it can be seen that the PD formulation results
in about 42% more energy generated than for the uncontrolled
case. The FD formulation results in another 40% increase over
the PD formulation.
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Fig. 10. Comparison of PTO for different incoming wave peak
periods over 2000 s.

Figure 10 shows the average power take-off of declutching
control for different wave peak periods. As Figure 10 reveals,
if the wave peak period Tp is shorter than the resonant period
of the system (in this case at about Tp = 11 s), the power take-
off is significantly increased with control, for both the past-data
and future-data formulations. Observe also that the maximum
is shifted from Tp = 11 s to about 7 or 8 s.

The crossed line in Figure 10 shows the power take-off of the
same WEC under the latching control of Feng and Kerrigan
[2013]. Clearly, for short incoming wave periods declutching
control outperformed latching control. However, for longer
incoming wave periods latching control is more advantageous.

The circle-dash-dot line in Figure 10 shows the future data
formulation with an auto-regression (AR) model for predicting
the future incoming wave [Fusco and Ringwood, 2010]. The
window length (order) of the AR predictor is 100 samples, the
prediction horizon 20 s and the past data length used to train
the AR predictor is 50 s. The prediction was considered to be
sufficiently accurate up to 4−−5 s into the future. Note that
the future data formulation with AR predictor has a similar
performance compared to using past data, despite relatively
inaccurate predictions beyond 5 s.

5.3 Comparison with Other Univariate Optimization Methods

Algorithm 1 was compared against four other methods, namely
gradient ascent, golden section search, simulated annealing
and exhaustive search, in terms of the number of function
evaluations. At each sampling time, we solved the FD problem.
The results for Algorithm 1, which took an average of 7
function evaluations per problem, with a maximum of 26 and
a minimum of 6, are shown in Figure 11(a).

Gradient Ascent A gradient ascent method, along with a
backtracking line search [Nocedal and Wright, 1999, Chap.
3], was tested. The gradient was calculated through a central
difference method with step size of 0.2 (different step sizes
were tried, but the results were similar). The gradient ascent
method often got trapped in the flat region, as in Figure 2.

Golden Section Search The golden section (GS) search pro-
ceeds by repeatedly comparing and cutting the feasible interval
into subsections according to the golden ratio (in order to ensure
a constant convergence rate), until the termination tolerance is
met. The golden section search guarantees the convergence to
a local saddle point [Gill et al., 1986, Chap. 4.1.2]. The GS
search took 11 function evaluations for all problems, because
the golden ratio ensures a constant convergence rate. However,
because one cannot choose an initial guess for the golden-
section search algorithm, the GS search was often trapped in
the flat region, as in Figure 2.

Simulated Annealing Simulated annealing (SA) is a widely-
used global optimization method and does not require any

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7651



0 1000 2000 3000

10

20

30

Sample InstanceN
u

m
b

er
 o

f 
F

u
n

ct
io

n
 E

va
lu

at
io

n
s

(a) Number of Function Evaluations
for Algorithm 1

0 1000 2000 3000
0

200

400

600

Sample Instance

N
u

m
b

er
 o

f 
F

u
n

ct
io

n
 E

va
lu

at
io

n
s

(b) Number of Function Evaluations
for Simulated Annealing

Fig. 11. Number of function evaluations taken by different
optimization algorithms for 300 s simulation with a JON-
SWAP wave and 0.1s sampling period

derivative information [Bertsimas and Tsitsiklis, 1993, van
Laarhoven and Aarts, 1987]. Analogous to physical annealing
processes, which are stochastic in nature, SA has the chance
to converge to the global maximum. However, the rate of
convergence is relatively slow. As shown in Figure 11(b), the
number of function evaluations for the SA algorithm is varies
from about 30 to 700 function evaluations. This is due to the
probabilistic nature of the step generation. It is clear that the
convergence of SA is not as fast as Algorithm 1. In fact, in
many cases SA took more function evaluations than exhaustive
search.

Exhaustive Search Recall that t̄a := 10 s and h := 0.1 s, hence
an exhaustive search, which evaluates all points in Sta and
extracts the maximum, will require 100 function evaluations.

6. CONCLUSIONS AND FUTURE WORK

We proposed a control method and computationally efficient
algorithm to cope with discontinuities that may arise due to
the hybrid dynamics of a WEC under declutching control. An
interesting feature of our method is that one need only past
wave data to generate substantially more energy compared to an
uncontrolled WEC. However, information of future incoming
waves can also be used to further increase the energy generated.

Co-design of the physical system and controller can signif-
icantly increase the performance and robustness of a WEC,
compared to the usual method of first optimizing the physical
system without a controller, followed by controller design. This
is because the controller significantly alters the closed-loop
behaviour of a WEC, both qualitatively and quantitatively. Not
only does the controller allow one to increase the power take-
off for a given typical peak period, but the controller also allows
one to increase the range of wave periods for which one can
generate more energy, thereby extending the set of profitable
operating conditions of the device. Advanced optimal control
methods, coupled with co-design, could therefore become key
technologies in determining the economic viability of generat-
ing power from ocean waves.

Future research could consider the PTO-active time at all of
the predicted zero crossing points as independent decision
variables, hence the optimization problem will no longer be
univariate and more challenging to solve. It will be interesting
to determine how much more power may be generated by
solving this generalized problem.
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