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Abstract: In many applications of nanopositioning, such as scanning probe microscopy, tracking fast
periodic reference trajectories with high accuracy is highly desirable. Repetitive control is a simple and
e�ective control scheme to obtain good tracking of such reference trajectories. In order to implement
repetitive control, a method for introducing time-delay is necessary. This can easily be implemented
using a memory bu�er with digital signal processing equipment. To achieve fast, high accuracy, and
low noise performance, fast microcontrollers or field-programmable gate array hardware with fast high-
resolution analog-to-digital and digital-to-analog converters are needed. As an inexpensive alternative
to digital signal processing, the use of an analog bucket brigade device to implement the time-delay
is investigated in this paper. Bucket brigade devices use switching to carry the input voltage over an
array of capacitors, achieving a specified time-delay. Low-noise bucket brigade devices can achieve a
signal-to-noise ratio around 80 dB, comparable to the actual performance when using 16-bit analog-to-
digital converters. In this paper, the proposed control scheme utilizes a modified integral control law in
conjunction with the repetitive control law. The overall control scheme ensures robustness towards plant
uncertainty. Experimental results demonstrate the e�ectiveness of the overall control scheme and the
analog implementation.

1. INTRODUCTION

Nanopositioners employed in applications that include scanning
probe microscopy (SPM) require tracking of fast periodic ref-
erence trajectories with high accuracy (Salapaka and Salapaka,
2008; Clayton et al., 2009). Periodic reference trajectories occur
in both imaging and manipulation applications of SPM equip-
ment. Recently, repetitive control (RC) has been introduced for
nanopositioning systems (Aridogan et al., 2009; Merry et al.,
2011; Shan and Leang, 2012b). The RC scheme is based on
the internal model principle (Francis and Wonham, 1976) and
it is specifically tailored to track periodic reference trajectories.
At the heart of the control law is a signal generator that pro-
vides high gain at the harmonics of the reference trajectory. RC
can easily be implemented digitally using a pure time-delay, a
memory bu�er, inside of a positive feedback loop (Inoue et al.,
1981). Compared to traditional feedback and feedforward con-
trol laws (Clayton et al., 2009; Devasia et al., 2007), the tracking
error of RC diminishes as the number of operating periods
increases. The control law generally requires only the period
of the reference trajectory to be known (Inoue et al., 1981).
An important feature of RC is that as long the overall control
loop is stable, the RC scheme is invariant to changes in plant
dynamics, thus the achieved performance should be consistent
for any plant perturbations within the specifications of the cho-
sen uncertainty weight. In many nanopositioning applications,
the period of the reference signal is known in advance which
makes RC attractive. Compared to iterative learning control
(ILC) (Moore et al., 1992; Bristow et al., 2008; Wu and Zou,
2007; Leang and Devasia, 2006), RC does not require resetting
the initial conditions at the start of each iteration step, and has

less computational complexity. It is pointed out that ILC for
hysteretic systems require a cycling process to reset the ini-
tial conditions at the beginning of each iteration (Leang and
Devasia, 2006). For convenience, an RC can be plugged into
an existing feedback loop to enhance performance.

A digital implementation of an RC scheme for nanoposition-
ing puts some requirements on the hardware used. To obtain
high accuracy and low noise, the analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs) used must fea-
ture high resolution and must be capable of high sampling fre-
quencies. High resolution is required to have a reasonable lower
bound for the absolute achievable accuracy, and to minimize
the e�ects of quantization noise. A high sampling frequency
is necessary to sample at a su�cient rate with respect to the
bandwidth of dominant dynamics of the controlled system, and
also to minimize the power spectral density of the quantization
noise in the sampled signal. This means that microcontrollers
or field-programmable gate arrays used for the digital signal
processing must be able to handle high data rates, as well as
support floating point arithmetic or a large word size for fixed
point arithmetic. Programming the required filtering algorithms
for microcontrollers or field-programmable gate arrays can also
be time-consuming, and often requires proprietary compilers.
The implementation can be simplified by using ready-made
hardware-in-the-loop systems, albeit at a higher overall cost for
the system.

This paper investigates the use of analog filters and an ana-
log bucket brigade device (BBD) for the implementation of an
analog RC scheme. In terms of required equipment, this is an
inexpensive and simpler alternative to digital signal processing.
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The BBD is used to implement the necessary time-delay. In
a BBD the input signal is sampled in time and passed into a
series of capacitors and transistor switches. The charge in each
capacitor stage is passed into the subsequent stage at a rate de-
termined by an external clock signal (Sangster and Teer, 1969;
Weckler, 1977; Ra�el and Smith, 2010). This produces a time-
delayed version of an input signal. The BBD is thus a hybrid
device, which uses sampling, but not quantization. Low-noise
BBDs from the MN3000 series from Panasonic can achieve
a signal-to-noise ratio, or dynamic range, from 80 to 90 dB.
Using terminology from the analysis of ADCs, this equates to
13 or more e�ective number of bits (ENOB). This is comparable
to the actual performance when using 16-bit ADCs (Walden,
1999). The dynamic range for a BBD can in some cases be
improved by using companding (compressing and expanding
a signal before and after some operation) (Ra�el and Smith,
2010), but this has not been applied in the presented implemen-
tation. An alternative to BBDs is charge couple device (CCD)
delay lines (Weckler, 1977; Catrysse et al., 1980), but BBDs
for designed for audio applications are still in production and
available for purchase at the time of writing.

The performance and stability of RC depends on the dynam-
ics of the controlled system (Hara et al., 1988; Inoue, 1990).
Particularly, sharp resonance peaks can degrade performance
and even make creating a stable RC system di�cult. Positioning
systems for nanopositioning often involve moving payloads of
various masses. The resonance frequencies and the e�ective
control gain of the mechanical structure will therefore change
every time a new payload is attached. Because the majority of
nanopositioning designs use piezoelectric actuators, inherent
variations in the e�ective control gain due to changes in actuator
temperature, o�set voltage, displacement range, as well as due
to depolarization of the piezoelectric actuator must be taken into
account. Piezoelectric actuators also introduce disturbances due
to hysteresis and creep. Thus, the presence of hysteresis can
also jeopardize the stability of an RC system designed around a
linear dynamics model for the plant (Shan and Leang, 2012a).

The use of BBDs for RC have previously been investigated (Es-
cobar et al., 2007; Leyva-Ramos et al., 2005), but using di�erent
control law structures. This paper presents a control scheme
based on the design proposed in (Eielsen et al., 2012b). The
scheme consists of a modified integral control law, combined
with a plug-in type RC scheme. When applying the scheme to a
nanopositioning stage, the presence of high-gain integral action
helps to reduce the sensitivity of the system to the hysteresis
and creep nonlinearities inherent in the piezo actuator. The
sensitivity due to the dominant resonant response of the posi-
tioning stage is also reduced, as the modified integral control
law introduces damping. The tuning methodology used for the
RC scheme incorporates the uncertainty of the plant, and the
uncertainty weight can therefore be tailored to include e�ects
such as changing gain or resonance frequency, as well as other
e�ects, if necessary.

2. SYSTEM DESCRIPTION AND MODELING

The custom-designed nanopositioning stage used in this work
is shown in Fig. 1. It is a serial-kinematic motion mechanism
designed such that the first vibration mode is dominant and
occurs in the actuation direction (piston mode). The simplified
free body diagram for the mechanism is displayed in the inset
image in Fig. 1, and by this model the corresponding second-

order di�erential equation to describe the dynamics (where
subscript “x" indicates the x direction) is given by
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where m

x

(kg) is the mass of the sample platform, as well as
any additional mass due an attached payload, c

x

(N s m�1) is
the damping coe�cient, and k
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x
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(t) , (2)
where � (N V�1) is the e�ective gain 1 of the piezoelectric
actuator from voltage to force, and u

a

(t) (V) is the applied
voltage. The piezoelectric actuator will introduce hysteresis
and creep when driven by a voltage signal. It is a reasonable
assumption to consider this behavior as a bounded disturbance
added to the input (Eielsen et al., 2012a), represented by the
term d

h

(t).

Denoting the output y = x

x

, the transfer function for the
nanopositioning stage is
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y

u

a
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s
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=
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2 + 2⇣!0s+ !0
2
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where b0 = �/m (m s�2 V�1), a0 = k/m (s�2), a1 = c/m

(s�1), ⇣ = c/2
p
mk (-), and !0 =

p
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Fig. 1. Experimental serial-kinematic nanopositioning stage.

The measured frequency response for the x axis is displayed
in Fig. 2. The input is taken to be the voltage input to the high-
voltage piezo amplifier, and the output is the voltage output from
the capacitive sensor gauge. The model (3) is fitted to the fre-
quency response data using the MATLAB System Identification
Toolbox, and the resulting parameter values are: b0 = 9.82 ·
106 V/V; ⇣ = 19.6·10�3; and!0 = 2⇡·762 rad/s. The response
of the model (3) using these parameters is also displayed in
Fig. 2 for comparison.

The actual response of the first vibration mode is well approx-
imated by the second-order model (3). There are higher order
modes in the system, but these have negligible magnitude re-
sponses in comparison to the first, thus the second-order model
is su�cient to describe the dominant dynamics.

The system has uncertainty with regards to the parameters, and
the model (3) does not include high frequency dynamics. A
reasonable stability margin is therefore needed and the control
law must have su�cient attenuation at higher frequencies to
1 Mainly determined by the material, amount of polarization, and the driving
voltage amplitude (as the amount of deflection generated changes with voltage
amplitude due to hysteresis).
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Fig. 2. Measured frequency response (solid line) for x-axis of
the nanopositioning stage and the model (3) (dash line).

avoid excitation of the higher frequency dynamics. To assess
the robustness of the proposed control scheme, the uncertainty
of the system model is taken into account as a multiplicative
perturbation to the positioner dynamics, i.e.,
G

p

(s) = G(s)(1 + w

G

(s)�
G

(s)); |�
G

(j!)|  1 8 ! . (4)
The uncertainty weight w

G

(s) is determined experimentally,
and an approximate over-bound is found. These results are
shown in Fig. 3.
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Fig. 3. Open-loop uncertainty weight w
G

(s), using experimen-
tal data and as over-bounding transfer function.

3. CONTROL LAW DESIGN AND TUNING

The system to which the control scheme is applied consists of
the positioning stage, a voltage amplifier, and a capacitive dis-
placement sensor. 2 The control scheme consists of a modified
integral control law, and the plug-in repetitive control scheme.
The modified integral control law is comprised of a regular
integrator, and the anti-aliasing and reconstruction filters. A
block diagram for the overall system is shown in Fig. 4.

Wr(s)

G(s)

C(s)Wa(s)
r ue

y

Anti-aliasing
Filter

Integral
Control Law

Reconstruction
Filter

Positioning Stage

–

ua

ī(s)
Repetitive Control

w

vİ

Damping and Tracking Control Law

Fig. 4. System block diagram.

2 As the amplifier and sensor used in the experimental set-up have very fast
dynamics, they have been neglected in the system analysis.

3.1 Repetitive Control Scheme

Repetitive control intends to track or reject arbitrary periodic
signals of a fixed period T

p

, by embedding a model of the
reference r or disturbance d signal in the control law. The
transfer function for the RC configuration shown in Fig. 5(a)
is given as

w

"

(s) = � (s) =
R(s)e�Tps

1�Q(s)e�Tps
, (5)

where Q(s) is a unity-gain low-pass filter, and R(s) is an output
filter, defined below. It is pointed out that the low-pass filter
Q(s) shifts all the poles into the complex left half-plane, with
an amount dependent on frequency, so at higher frequencies the
pole locations is further away from the original locations than
at lower frequencies. This will degrade the nulling property of
the control law at the fundamental and harmonic frequencies
of the reference signal. Steps to improve on this situation are
discussed in Section 3.4.

By inspection of Fig. 4, the closed-loop sensitivity function for
the overall system is found as
e

r

(s) = S(s) =
1

1 + Ḡ(s)C(s) + Ḡ(s)C(s)� (s)
=

1

�(s)
,

(6)
where Ḡ(s) = W

r

(s)G(s)W
a

(s). The stability of the closed-
loop system is determined by the denominator

�(s) = 1 + Ḡ(s)C(s) + Ḡ(s)C(s)� (s) . (7)

Now, consider the sensitivity S̄(s) and complementary T̄ (s)
sensitivity function excluding the RC scheme

S̄(s) =
1

1 + C(s)Ḡ(s)
and T̄ (s) = C(s)Ḡ(s)S̄(s). (8)

Then, by inserting the expression for � (s), multiplying the nu-
merator and denominator of 1/�(s) by S̄(s), and rearranging,
the sensitivity function for the closed-loop system when adding
the repetitive control law becomes

S(s) =
1

�(s)
=

S̄(s)(1�Q(s)e�Tps)

1� (Q(s)� T̄ (s)R(s))e�Tps
. (9)

With reference to Fig. 5(b), it can be seen that given a bounded
reference r(t) and stable transfer functions S̄(s) and Q(s), the
small-gain theorem provides the criterion for the stability of the
closed-loop system as (Hara et al., 1988)��

Q(s)� T̄ (s)R(s)
��
1 < 1 = 0 dB , (10)

where it is noted that |e�jTp!| = 1 8 ! 2 R.

The output filter R(s) is constructed as
R(s) = W

T

�1(s)Q(s) , (11)
introducing a stable all-pole filter W

T

(s), which provides for
some flexibility in meeting the stability criterion. Using a unity-
gain low-pass filter Q(s), the following somewhat simpler cri-
terion

R(s)
Output Filter

e–Tps

Time Delay

Q(s)
Low Pass Filer

Ƥ w

Ɗ(s) e–Tps

S(s)(1-Q(s)e–Tps)

Q(s)-T(s)R(s)

r

e –

–

(a) (b)

Fig. 5. (a) Plug-in repetitive control scheme. (b) Equivalent
representation of the sensitivity function Eq. (9).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1128



��1�W

T

�1(s)T̄ (s)
��
1 < 1 = 0 dB (12)

can be used for selecting an appropriate filter W
T

(s).

To assess the robustness of the RC, a multiplicative perturbation
for the closed loop complementary sensitivity is used, that is:
T̄

p

(s) = T̄ (s)(1 + w

T

(s)�
T

(s)); 0 < |�
T

(j!)|  1 8 ! .

(13)
Assuming that the uncertainty is due only to the plant, then,
using S̄(s) + T̄ (s) = 1,

w

T

(s)�
T

(s) =
S̄(s)w

G

(s)�
G

(s)

1 + T̄ (s)w
G

(s)�
G

(s)
,

and by using (21) and the reverse triangle inequality, the closed-
loop uncertainty weight w

T

(s) is bounded from above by

|w
T

(j!)|  |S̄(j!)w
G

(j!)|
1� |T̄ (j!)w

G

(j!)|
 N · |S̄(j!)w

G

(j!)| ,

(14)
where N = (1 � kw

G

(s)T̄ (s)k1)�1. The bound in (14) can
be conservative, thus in this case an estimate is found as

|w
T

(j!)| ⇡ |S̄(j!)w
G

(j!)| , (15)
and compared to the measured uncertaninty.

Incorporating the uncertainty weight w
T

(s) into the criterion
(10) and applying the triangle inequality, a robust stability
criterion is obtained:��

Q(j!)� T̄ (j!)R(j!)
��
< 1�

��
T̄ (j!)w

T

(j!)R(j!)
��
.

(16)

3.2 Modified Integral Control Law

The nanopositioning stage is a lightly damped structure as
shown by the measured frequency response in Fig. 2. Inspecting
the stability criterion for the repetitive control scheme, one
can expect that large peaks in the complementary sensitivity
function T̄ (s) can reduce the applicable bandwidth and gain
for the repetitive control law, depending on how well the output
filter R(s) is able to match the inverse closed-loop dynamics.
Introducing a robust damping and tracking control law increase
the robustness and bandwidth for the overall control scheme.

A simple, e�ective, and robust damping and tracking control
law for a lightly damped structure can be obtained by modifying
and optimally tuning an integral control law (Eielsen et al.,
2014). Since the BBD is a sampled device, reconstruction and
anti-aliasing filters must be present in order to mitigate aliasing
e�ects. As the external clock signal driving the BBD bleed into
the output signal, the reconstruction filter also serves to atten-
uate the clock signal noise. By including these filters, an extra
degree of freedom is added for the tuning of the control law,
i.e., the cut-o� frequency of the filters. Since reconstruction and
anti-aliasing filters must be present, this particular control law
structure provides a minimal physical realization, which also
uses the filters to good e�ect. Compared to a regular integral
control law the modified integral control law will introduce
damping, thus enabling an increased bandwidth. The integral
action also serves to suppress the hysteresis and creep nonlin-
earities.

An integral control law is given as

C(s) =
k

i

s

, (17)

where k

i

is the integral gain. Here the filters are taken to be
first-order low-pass filters
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Fig. 6. Amplitude and phase response for the complementary
sensitivity T̄ (s) = y(s)/r(s) and sensitivity S̄(s) =
e(s)/r(s) when using the modified integral law.

W

a

(s) = W

r

(s) =
!

c

s+ !

c

, (18)

where !

c

is the cut-o� frequency. For convenience they are
taken to be identical when tuning the control law. The modified
integral control law is therefore

C̄(s) = W

a

(s)C(s)W
r

(s) . (19)

As discussed in (Eielsen et al., 2014), the optimal values for
the cut-o� frequency and the integral gain can be found by
minimizing

J

C

(k
i

,!

c

) =
��1�

��
T̄ (k

i

,!

c

; j!)
����

2
, (20)

where k·k2 denotes the L

2-norm, truncated as needed. The
minimization of (20) attempts to produce the flattest possible
response for the complementary sensitivity function.

Evaluating the cost-function (20) results in
[k

i

?

, !

c

?] = arg min
ki,!c

[J
C

(k
i

,!

c

)]

s.t. Re {�
i

} 2 R� ^ k

i

2 R+ ^ !

c

2 R+
/{0} ⇡

[3070, 2⇡ · 572 rad s�1] ,

where �
i

are the eigenvalues of the closed-loop system.

The resulting frequency responses for the complementary sensi-
tivity and sensitivity for the optimal configuration are displayed
in Fig. 6. The optimal tuning e�ectively attenuates the resonant
mode, and by inspection of the sensitivity function response
in Fig. 6 the closed-loop bandwidth can be determined to be
approximately 100 Hz.

The robustness of the integral control law with regards to the un-
certainties displayed in Fig. 3 is determined. The criterion (Sko-
gestad and Postlethwaite, 2005)

kw
G

(s)T̄ (s)k1 < 1 = 0 dB (21)
is evaluated, and the results are shown in Fig. 7.

3.3 Choosing R(s) and Q(s)

Considering the stability criterion for the repetitive control
law (12), the ideal choice for the included filter would be
W

T

(s) = T̄ (s), as this would produce the minimum of the
norm (12). A su�cient choice for W

T

(s) would be a filter that
attenuates T̄ (s) su�ciently to meet the stability criterion, as
tracking performance is independent of the dynamics of the
controlled plant due to the nulling properties of RC.
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The complementary sensitivity function T̄ (s) has relative de-
gree n

r

= 5. As the closed loop response of the system using
the modified integral control law is fairly flat, W

T

(s) is chosen
to be a fifth-order Butterworth filter with DC-gain k

T

, and it is
assumed that W

T

(s) ⇡ T̄ (s). An optimal choice for the cut-o�
frequency !

T

and DC-gain k

T

for W
T

(s) is found minimizing
the cost-function

J

T

(k
T

,!

T

) = sup{|Q(j!)� T̄ (j!)R(!
T

, k

T

; j!))|
+ |T̄ (j!)w

T

(j!)R(!
T

, k

T

; j!))| : ! 2 R} , (22)

where R(j!,!
T

, k

T

) = W

T

(j!,!
T

, k

T

)�1
Q(j!). The eval-

uation of the cost-function must satisfy J

T

(k?
T

,!

T

?) < 1 in
order for the system to be robustly stable.

The filter Q(s) must be chosen before performing the optimiza-
tion. This is done with consideration to the filter R(s), and
chosen to be a unity-gain fifth-order Butterworth filter, such that
R(s) = W

T

�1(s)Q(s) is a proper filter. 3 By inspection of
the frequency response in Fig. 2, a cut-o� frequency for Q(s)
can be chosen in order to attenuate the second and higher order
vibration modes, in order to satisfy (16). A cut-o� frequency of
2⇡ · 2500 rad/s would seem adequate, but due to the tolerances
of the components used and the high sensitivity to component
values for the zeros in the state-variable filter used in the im-
plementation, a cut-o� frequency of !

Q

= 2⇡ · 1750 rad/s was
used in order to improve robustness. Minimizing (22) yielded
the optimal values k?

T

⇡ 0.25 and !

T

? ⇡ 2⇡ · 590.

The closed-loop uncertainties used are shown in Fig. 8, and the
evaluation of (16) is shown in Fig. 9.

3 By this particular choice, WT (s) and Q(s) being all-pole filters, R(s) and
Q(s) can be realized using a single filter with two outputs, as shown in Sec. 4.2.
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Fig. 9. Numeric evaluation of stability criteria (10) and (16).

3.4 The E�ect of Q(s) on RC Pole Locations

Due to the low-pass filter Q(s), perfect tracking is not possible,
since the nulling property of RC is determined by

L�1
⇥
(1�Q(s)e�Tps)r(s)

⇤
= r(t)� r̃(t� T

p

) (23)
where r̃(t) = Q(t) ⇤ r(t) 6= r(t). It is possible to modify the
time-delay T

p

to partially compensate for the shift in the poles
due to Q(s). For the analog implementation, since the exact
value of T

p

is dependent on the tolerances of components used,
the simplest solution is to adjust the fundamental frequency of
the reference signal in order to minimize the stationary root-
mean-square value of the error signal.

4. IMPLEMENTATION

The implementation of the control scheme consists of three
parts, the time-delay, the modified integral control law, and
the Q(s) and R(s) filters. The interconnection between these
parts is shown in Fig. 10, and the actual implementation is
shown in Fig. 11. In addition to the BBD, the necessary filters
were implemented using standard operational amplifier circuits.
All the circuits used the OPA227 operational amplifier, but the
lower specification TL081 was also successfully tested.

4.1 Realization of Time-Delay

The circuit implementing the time-delay is shown in Fig. 12.
The time-delay T

p

in the BBD is determined as

T

p

=
N

2f
cp

(24)

where N is the number of stages in the BBD and f

cp

is the
frequency of the external clock signal (Weckler, 1977). For the
BBD used in the implementation, Panasonic MN3007, N =
1024. As the BBD is a unipolar device with a non-unity gain,
the signal must be shifted and scaled before and after passing
through the BBD. The shifting and scaling is adjusted using

G(s)

r
y

ICTRL

Positioning Stage

ua

w Ƥ

Ƥ
VQ Vd

DELAY

Vd
VQ
w

SVF

Fig. 10. Interconnection of the di�erent components of the
implemented circuits, cf. Figs. 12, 13, and 14.
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R

oif

, R
oi

, R
oof

, and R

oo

. The output of the BBD has a first-
order low-pass filter with a cut-o� frequency of approximately
(2⇡ · 5 · 103 · 330 · 10�12)�1 = 96.5 kHz to remove some of
the clock signal noise. The frequency f

cp

can be adjusted mon-
itoring either the CP1 or CP2 output of the MN3101 clock gen-
erator on an oscilloscope, while adjusting the resistance value
R

ox2.

4.2 Realization of Modified Integral Control Law

The modified control law is implemented as shown in Fig. 13.
The anti-aliasing and reconstruction filters are first-order low-
pass, and the cut-o� frequency !

c

is determined by adjusting
R

f1 and R

f2 to satisfy

!

c

=
1

R

f1Cf1
=

1

R

f2Cf2
. (25)

The integral control law gain is determined, assuming R

e1 =
R

e2 = R

ef

= R

eg

and R

s1 = R

s2 and R

sf

= R

sg

, by
adjusting R

kf

to satisfy

k

i

=
R

kf

R

ki

1

R

i

C

i

. (26)

4.3 Realization of State-Variable Filter

By following the development in (Kerwin et al., 1967), it is
relatively straight forward to derive the topology for a state-
variable filter which implements the general proper transfer-
function

Y (s)

U(s)
=

b0s
n + b1s

n�1 + ...+ b

n�1s+ b

n

s

n + a1s
n�1 + ...+ a

n�1s+ a

n

,

which must be assumed to be stable. Fig. 14 displays the fifth-
order filter required to implement Q(s) and R(s). As R(s) =
W

T

�1(s)Q(s), and since W

T

(s) and Q(s) are all-pole filters,
Q(s) and R(s) can be realized using a single filter with two
outputs.

The network analysis of the topology in the time-domain closely
resembles a system on controllable canonical form, and thus
it is straight forward to find the mapping from the coe�cients
{a

i

} and {b0, bi}, to the resistance values {R
i

}, {R
z0, Rz

i

},
i 2 {1, 2, 3, 4, 5}.

Denoting the time-constant for each integrator in the filter as
⌧

i

= R

i

C

i

, (27)
the resistance values {R

i

} determining the poles are found
using:

a1 =
1

⌧1
, a2 =

a1

⌧2
, a3 =

a2

⌧3
, a4 =

a3

⌧4
, a5 =

a4

⌧5

The zeros of the filter are determined by the resistance values
of {R

z0, Rz

i

}. Defining

G

p

=
1

R

z1
+

1

R

z3
+

1

R

z5
+

1

R

g1
,

G

n

=
1

R

z2
+

1

R

z4
+

1

R

z0
,

K

p

=
1 +R

f1Gn

G

p

, and K

n

= �R

f1 ,

the required resistance values can be found solving:

Fig. 11. Implemented repetitive control scheme.
2

666664

K

p

/R

z1 + (R
bf

/R

bi

)⌧1 (b5 � a5b0)
K

n

/R

z2 + (R
bf

/R

bi

)⌧1⌧2 (b4 � a4b0)
K

p

/R

z3 + (R
bf

/R

bi

)⌧1⌧2⌧3 (b3 � a3b0)
K

n

/R

z4 + (R
bf

/R

bi

)⌧1⌧2⌧3⌧4 (b2 � a2b0)
K

p

/R

z5 + (R
bf

/R

bi

)⌧1⌧2⌧3⌧4⌧5 (b1 � a1b0)
K

p

/R

z0 + (R
bf

/R

bi

)b0

3

777775
= 0 .

(28)
In the general case, depending on the exact values for the
poles and zeros, it might be necessary to modify the output
summation stage generating the signal w, in order to find a
realizable filter.
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Fig. 15. Stationary tracking results using modified integral law.
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Fig. 16. Stationary tracking results using repetitive control
scheme. Note that the error has been multiplied by a factor
of 10.

5. EXPERIMENTAL RESULTS

5.1 Description of the Experimental System

In addition to the components already described, an Agilent
33220A function generator was used to generate the reference
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Fig. 14. Circuit for a state-variable filter with fives states, generating five poles and five zeros.

signal, and a Tektronix TDS 3014C oscilloscope was used to
record the results. An ADE 6501 capacitive probe and ADE
6810 gauge was used to measure the mechanical displacement,
and a PiezoDrive PDL200 voltage amplifier was used to drive
the piezoelectric actuator.

5.2 Results

Results from the experiments are presented in Figs. 15 and
16 when applying a triangle-wave reference signal with period
T

p

= 0.02 s. The plots show the stationary response of the
measured deflection y(s) and error "(s) = W

a

(s)r(s)� y(s).

When applying the modified integral law only, the maximum
stationary error is 1.62 µm (21%), and when applying the RC
scheme, the maximum stationary error reduced to 0.100 µm
(2.2%).

6. DISCUSSION

Applying the modified integral law introduces damping, and
integral action suppresses hysteresis and creep. This greatly

reduces the sensitivity of the system, i.e. the plant uncertainty
is reduced, cf. Figs. 3 and 8. This makes it possible to achieve
higher bandwidth for the plug-in repetitive control scheme. One
salient problem with the implementation, however, is that the
state-variable filter topology has high sensitivity to component
values in the summer which generates the zero. The solution
used in this paper was to reduce the bandwidth of the RC
scheme, i.e. the cut-o� frequency of the Q(s) filter.

The tracking performance for the RC scheme is determined
by the bandwidth of the Q(s) filter, thus, in order to increase
the tracking performance, components with better tolerances
should be used, and the uncertainty introduced by the Q(s) and
R(s) filters should be incorporated into the uncertainty weight,
to obtain a more reliable tuning result. It can be mentioned that
an equivalent digital implementation was done using a dSPACE
DS1103 hardware-in-the-loop system, where the bandwidth of
theQ(s) filter was increased to 2⇡·2000 rad/s, and the error was
reduced by about one order of magnitude. Thus improving the
precision of the filters should translate to an improved tracking
performance.
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With regards to the BBD, the main problem is the clock noise. A
reconstruction filter with su�cient attenuation at and above the
driving clock signal frequency is required. This can therefore
preclude the usage of BBD based RC schemes for very high-
bandwidth positioning stages, as well as the application of very
low-frequency reference signals.

7. FUTURE WORKS

In order to improve the tracking performance, a state-variable
filter with high-precision components should be used, and the
uncertainty introduced by the various filters due to component
tolerances should be accounted for explicitly in the uncertainty
weights. Improvement in dynamic range in the BBD when using
a compander circuit should be investigated.

8. CONCLUSIONS

This paper focused on the design and implementation of an
analog repetitive control scheme using a bucket brigade device.
The experimental results showed good tracking performance
for an experimental nanopositioning system. The chosen design
features low-order filters, which are feasible for implementation
using standard operational amplifier circuits, but is also able
to handle a fair amount of uncertainty. This results in a low
component count, and since the bucket brigade device has com-
parable dynamic range to high-resolution DACs, the proposed
implementation can be used as an inexpensive alternative to
digital signal processing solutions. The proposed scheme can
also be implementable on existing hardware configurations for
nanopositioning, as it should require only minor modifications
to a standard configuration.
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