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Abstract: Glycaemic control can be used to enhance critically ill patient outcome. This paper presents the 

in-silico design of a computerized model-based controller for a Belgian medical intensive care unit (CHU 

of Liege, Belgium). In silico trials are used to assess the current clinical protocol efficiency and safety and 

to compare this protocol with the existing Stochastic Targeted (STAR) control approach. The objective of 

this research is to optimize a glycaemic controller for its future clinical implementation and clinical 

workflow requirements. Results suggest that the currently used, paper-based sliding scale protocol is too 

general to achieve safe and effective glycaemic control. The computerized model-based protocol STAR 

leads to better glycaemic outcomes associated with increased safety. In particular, time in target band is 

higher than 80% with STAR targeting 90-150 mg/dL and 100-160 mg/dL. Time in the desired 100-150 

mg/dL band is improved using STAR, and BG < 80 mg/dL is reduced. Results suggest that control 

targeting 100-160 mg/dL is associated with increased time in band and increased safety. 



1. INTRODUCTION 

Critically ill patients often present stress-induced 

hyperglycaemia and high glycaemic variability that worsen 

patient outcome (Egi et al., 2006, Krinsley, 2003). Effective 

glycaemic control (GC) should reduce patient glycaemic 

levels and variability and should also account for inter-patient 

variability, evolving physiological patient conditions and 

minimizing hypoglycaemic risk (Suhaimi et al., 2010, 

Krinsley and Keegan, 2010). During glycaemic control, 

protocols are used to specify insulin and nutrition rates, and 

control frequency (time interval between glycaemia 

measurements). Protocols must also be designed to meet 

clinician expectations, fit into clinical practice of a unit, and 

provide patient-specific, safe and effective GC. 

The STAR (Stochastic Targeted) model-based controller 

enables adaptive, patient-specific and computerized GC 

(Evans et al., 2012, Fisk et al., 2012). STAR accounts for 

evolving patient condition by identifying patient insulin 

sensitivity (SI) and by forecasting patient SI until the next 

glycaemia measurement using a stochastic model of SI future 

potential variability (Lin et al., 2006, Lin et al., 2008). The 

STAR protocol framework can be customized in terms of its 

glycaemic target, control approach (insulin and nutrition, 

insulin-only, enteral and/or parenteral nutrition…), and 

clinical resources (control frequency) to best fit clinical 

practice. 

This research presents a STAR protocol customized for the 

clinical practice needs of a Belgian medical intensive care 

unit (ICU) at the University Hospital of Liege, Belgium. This 

particular ICU currently uses a sliding scale GC protocol but 

are interested in performance improvements that may arise 

from adopting STAR. The main objective of this study is the 

development and the clinical implementation of a 

computerized controller using the STAR framework. First, 

this research assesses the current clinical protocol for 

efficiency, safety and GC compliance in silico. Then, these 

results are compared with the STAR protocol to optimize 

control and assess potential improvements. The work is based 

on a retrospective and comparative analysis of GC protocols 

using retrospective clinical data and a clinically validated 

virtual trial approach (Chase et al., 2010). 

2. METHODS 

2.1 Clinical protocol 

The current clinical protocol follows an experimental sliding 

scale and targets patient glycaemia to be between 100 and 

150 mg/dL. The protocol is characterized by an insulin 

infusion-only approach with a 1-4 hour time interval between 

blood glucose (BG) measurements. Insulin rate is adjusted 

depending on current BG level and previous insulin infusion 

rate (Table 1). The nutrition rate is left to attending clinicians, 

but is increased (12 g bolus of exogenous glucose) when BG 

becomes lower than 40 mg/dL for severe hypoglycaemia. 

2.2 STAR protocol 

The glycaemic target of STAR is customizable to different 

targets. This study examines 3 target bands (80-140 md/dL, 

90-150 mg/dL and 100-160 mg/dL) to determine the best 

option of the mix of patients in this medical ICU. An insulin 

infusion-only approach is used and the nutrition rate 

corresponds to the clinical one as it was left to attending 
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clinicians, but nutrition rate is increased to avoid 

hypoglycaemia the same way it is done by the clinical 

protocol. Measurement frequency during the GC varies from 

1 hour to 3 hours.  

Table 1: Current sliding scale clinical protocol. 

Calculation of time interval 

If two consecutive BG measurements are within 100-180 mg/dL: 2 hours; 
otherwise 1 hour. 

Calculation of insulin rate adjustment 

Based on current blood glucose level (BG) [mg/dL] and previous insulin rate 
(u) [U/h] 

  

Conditions Insulin rate adjustment 

180 < BG and  

u ≤ 2 U/h 

2 U/h < u ≤ 10 U/h 
10 U/h < u ≤ 20 U/h 

20 U/h < u  

 

 

+ 0.5 U/h 

+ 1 U/h 
+ 2 U/h 

+ 4 U/h 

 

80 < BG ≤ 180 + 0 U/h 
 

60 < BG ≤ 80 or BG reduction higher 

than 50 mg/dL per hour 
and 

u ≤ 2 U/h 

2 U/h < u ≤ 10 U/h 
10 U/h < u ≤ 20 U/h 

20 U/h < u  

 

 

 
 

- 0.5 U/h 

- 1 U/h 
- 2 U/h 

- 4 U/h 

 

40 < BG ≤ 60 

 

0 U/h 

BG ≤ 40 

 

0 U/h 

+12 g exogenous glucose (bolus) 
Then, once BG > 80 mg/dL, set u to half the rate applied before BG ≤ 40 

mg/dL and stop bolus of exogenous glucose. 

Specific case 1:  

When BG decreases below 100 mg/dL whereas during previous 24 hours BG 
was within 100-180 mg/dL and insulin was unchanged  reduce insulin rate 

by 20 % and set time interval to 1 hour. 

Specific case 2:  

When nutrition is stopped, stop insulin and when nutrition starts again, 
administrate the same insulin rate than before stop. 

 

The insulin rate and time interval are adjusted based on 

glycaemic levels and previous insulin and nutrition rates. 

This adjustment process is composed of four steps. This step-

by-step process is partly illustrated in Figure 1. 

Step 1. Previous and current BG measurements are used to 

identify a patient-specific SI value for the prior time interval 

(Hann et al., 2005). This step accounts for inter-patient 

variability (Lonergan et al., 2006, Chase et al., 2007, Chase 

et al., 2011). 

Step 2. Insulin rates are limited to the range 0 - 8 U/h, in 0.5 

U/h increments, except between 0 U/h and 1 U/h. Thus, 

allowable insulin rates are 0, 1, 1.5, 2, 2.5, 3, 3.5…8 U/h. The 

increment is defined to reduce nurse workload associated 

with making small and frequent changes in insulin rates. The 

maximum insulin rate of 8 U/h is defined for safety and to 

avoid insulin saturation effects (Rizza et al., 1981, Black et 

al., 1982). Possible time intervals are limited to 1 hour, 2 

hours and 3 hours. 

However, in two specific cases, no insulin and hourly 

measurement are required. First, when the current BG value 

is more than 18 mg/dL below the 5
th

 percentile expected from 

the last protocol intervention; second, when the current BG 

level is lower than a hypoglycaemic threshold value (40 

mg/dL). In this case, nutrition is increased (12g bolus of 

exogenous glucose).  

Moreover, time interval is limited to only 1 hour when 

current BG level is lower than the low bound of the target 

band and when there is a hyperglycaemia (BG > 180 mg/dL). 

Step 3. For each possible time interval defined is Step 2 (1 

hour or 1-3 hours), insulin rate resulting in the forecast 5
th

 

percentile BG value closest to the lower bound of the target 

range (80 mg/dL, 90 mg/dL or 100 mg/dL), but above 80 

mg/dL, is selected among the possible insulin rates defined in 

Step 2. The step is composed of three phases that are repeated 

for each possible time interval (1 hour or 1, 2 and 3 hours). 

- Phase a. The stochastic model (Lin et al., 2006, Lin 

et al., 2008) provides the distribution of likely SI 

values for the next time interval based on current SI 

value (Step 1). This phase accounts for intra-patient 

variability, as SI can be quite variable over time for 

a patient. 

- Phase b. Based on SI distribution and for each 

possible insulin rate defined in Step 2, the associated 

glycaemic outcome predictions (the 95
th

 and the 5
th

 

percentile values) are calculated using the 5
th

 and 

95
th

 percentile SI values (calculated in Phase a), 

respectively. This accounts for the glycaemic 

variability due to intra-patient variability. 

- Phase c. For the given time interval, the selected 

insulin rate is the one resulting in the forecast 5
th

 

percentile BG value closest to the lower bound of 

the target range (80 mg/dL, 90 mg/dL or 100 

mg/dL), but above 80 mg/dL. For 3 hour forecasts, 

an additional constraint of the median BG ≤ central 

value of the target band (110 mg/dL, 120 mg/dL or 

130 mg/dL) is also implemented. 

This step leads to one selected insulin rate per allowable time 

interval. Note that there is always at least one 

recommendation for the 1-hour interval and a maximum of 

three recommendations when hourly measurement are not 

required. 

Step 4. Among selected insulin rates from Step 3, the insulin 

rate associated with the longest possible time interval is 

selected to minimize nurse workload. The time interval is set 

to that longest possible time interval.  

During the in silico trials, the insulin adjustment cannot be 

calculated using this method for the first BG measurement as 

the previous BG is needed. Hence, the first STAR controller 

intervention is based on the clinical protocol (Section 2.1) 

and time interval is set to 1 hour. 
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Figure1: Step-by-step description of STAR framework. 

2.3 Stochastic model of insulin sensitivity variability 

The objective of a stochastic model of insulin sensitivity 

variability is to forecast a likely distribution of patient SI 

based on current condition and current SI. Such stochastic 

model is based on historical SI variations in ICU population 

data. These clinical data can come from a specific type of 

patients and can be selected in function of the patient days of 

stay. The stochastic model used in this research was based on 

all types of patients included in the SPRINT GC study (Chase 

et al., 2008b) and all patient days of stay (Lin et al., 2006; Lin 

et al., 2008). It used clinical data from 393 critically ill 

patients (Christchurch Hospital, New Zealand) (Lin et al., 

2008). This large number of patients and data is critical to 

reliably capture stochastic variation of insulin sensitivity.  

Based on a current, identified SI value, SIn, the stochastic 

model returns the probability density function for future 

insulin sensitivity values, SIn+1 where n+1 represents a time 

step of 1-3 hours. 

2.4 Patient data 

In this research, we have used retrospective clinical data from 

20 non-diabetic patients whose glycaemia was controlled 

during their stay in a medical ICU at the University Hospital 

of Liege, Belgium. All patients were admitted in 2011. The 

selection criteria for patients were: (1) GC for at least 60 

hours; (2) insulin administration at the beginning of the 

control; (3) clinical data clarity; and (4) at least 10 BG 

measurements during control. Diabetic patients were 

excluded as they received subcutaneous insulin and clinicians 

wished to analyse an insulin-infusion approach. Patient 

characteristics are summarized in Table 2 and clinical data in 

Table 3 (first column).  

Table 2: Patient characteristics. Data is presented as median 

[IQR] when it is appropriate. 

Number of patients 20 

Age (years) 68 [54-76] 

SAPS(*) II 67 [51-76] 

Number of women (%) 11 (55%) 

Length of ICU stay (days) 18.5 [12.8-25.8] 

Initial BG (mg/dL) 153.5 [131.8-175.8] 

(*)SAPS refers to Simplified Acute Physiology Score (Le Gall et al., 1993). 

2.5 Virtual trials 

Virtual trials are a safe, rapid, and efficient method to 

analyse, develop, and optimise or validate GC protocols. 

Virtual trials could be divided into two phases: the fitting and 

the simulation (Fig.2). During the fitting, clinical data are 

used to identify hourly SI values and create a SI profile over 

ICU stay (Hann et al., 2006). This profile reflects the patient 

state evolution and its glycaemic response to insulin and 

nutrition inputs (Chase et al., 2007, Chase et al., 2010). This 

SI profile can then be used to simulate glycaemic response to 

different insulin and nutrition inputs, associated with 
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different control protocols (Chase et al., 2010). This second 

phase is the simulation phase and allows in silico assessment 

of protocol performance and safety. 

 

Figure 2: Virtual trial process. 

2.6 Analysis 

Control efficiency is assessed by median BG levels and 

interquartile range (IQR), by percentage of BG levels in 

different glycaemic bands. Number of patients with severe 

hypoglycaemic event (BG < 40 mg/dL), and the percentage 

of BG below 80 mg/dL, and below 60 mg/dL are used to 

evaluate control safety (Finfer et al., 2013). GC compliance 

is assessed by comparing clinical data and in silico trial of the 

clinical protocol. P-values are calculated using the Mann-

Whitney U-test. Analysis is performed using glycaemic data 

resampled hourly from modelled or interpolated data to 

provide a consistent measurement frequency for fair 

comparison between different protocols. 

3. RESULTS 

Tables 3 and 4 present the clinical data and in silico trial 

glycaemic outcome. Insulin inputs given the GC approach are 

shown in Figure 3. 

Table 3: Whole cohort glycaemic statistics for clinical data 

and results of in silico clinical protocol virtual trials. 

 
Clinical data 

100-150 mg/dL 

Clinical protocol 

100-150 mg/dL 

P-

values 

Total hours of control 5006 5009  

Number of BG measurements 1391 2125  

BG median [IQR] (mg/dL) 
137.8 [117.8 - 

160.9] 

127.1 [109.3 - 

149.4] 

0.00 

% BG ≥ 180 mg/dL 12.01 7.95  

% BG in 150-180 mg/dL 24.71 16.33  

% BG in 100-150 mg/dL 55.42 60.43  

% BG in 100-160 mg/dL 66.43 68.50  

% BG in 90-150 mg/dL 59.93 67.67  

% BG in 80-140 mg/dL 50.70 62.46  

% BG < 100 mg/dL 7.86 15.29  

% BG < 90 mg/dL 3.35 8.05  

% BG < 80 mg/dL 1.42 3.44  

% BG < 60 mg/dL 0.12 0.26  

% BG < 40 mg/dL 0.00 0.00  

Median [IQR] insulin rate 

(U/hour) 
2.5 [2.0 - 3.0] 3.0 [2.0 - 6.5] 

0.00 

Median [IQR] exogenous 
glucose rate (g/hour) 

9.7 [8.8 - 11.7] 9.7 [8.8 - 11.7] 
 

Table 4: Whole cohort glycaemic statistics for results of in 

silico STAR protocol virtual trials with three different 

glycaemic target bands. 

 
STAR 

80-140 mg/dL 

STAR 

90-150 mg/dL 

STAR 

100-160 mg/dL 

Total hours of control 5006 5007 5014 

Number of BG 
measurements 

2186 2112 2051 

BG median [IQR] 

(mg/dL) 

109.6 [102.1 - 

128.0] 

116.3 [109.6 - 

130.0] 

125.7 [119.5 - 

135.4] 

% BG ≥ 180 mg/dL 4.76 4.97 5.15 

% BG in 150-180 
mg/dL 

6.80 7.24 8.20 

% BG in 100-150 

mg/dL 
69.18 81.46 84.64 

% BG in 100-160 

mg/dL 
72.62 84.98 88.54 

% BG in 90-150 
mg/dL 

84.50 86.23 85.90 

% BG in 80-140 

mg/dL 
82.73 82.71 79.86 

% BG < 100 mg/dL 19.26 6.33 2.01 

% BG < 90 mg/dL 3.94 1.55 0.75 

% BG < 80 mg/dL 1.05 0.46 0.24 

% BG < 60 mg/dL 0.14 0.04 0.02 

% BG < 40 mg/dL 0.00 0.00 0.00 

Median [IQR] insulin 

rate (U/hour) 
6.5 [3.5 - 8.0] 4.5 [2.5 - 8.0] 3.0 [2.0 - 7.5] 

Median [IQR] 
exogenous glucose 

rate (g/hour) 

9.7 [8.8 - 11.6] 9.7 [8.8 - 11.6] 9.7 [8.8 - 11.6] 

0 1 2 3 4 5 6 7 8
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Clinical protocol, 100-150 mg/dL
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Figure 3: Cumulative density functions for exogenous insulin 

input, given the control protocol used. 

Clinical data (BG levels, 

nutrition and insulin inputs) 

SI profile 

Glycaemic outcomes 

Fitting 

Simulations of a given 

control protocol 
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4. DISCUSSION 

This research aims to develop and assess a computerized 

glycaemic controller for clinical implementation in an ICU 

using the STAR framework. Current clinical protocol 

performance is assessed in Table 3 where in silico results for 

retrospective patients show: 24.28 % of the BG are above the 

target band (≥ 150 mg/dL), 60.43 % of the BG are within the 

target glycaemic band (100-150 mg/dL) and 15.29 % of the 

BG are below 100 mg/dL, with 3.44 % < 80 mg/dL.  

The comparison between clinical data and results of the 

clinical protocol simulation provides information about the 

nurse compliance, in clinical practice, to this protocol as 

differences in BG outcomes result from difference in insulin 

rates and measurement frequency. In particular, results in 

Table 3 show that the clinical protocol was not fully followed 

during clinical implementation. Clinical data are associated 

with higher patient glycaemic levels (p < 0.01), reduced low 

BG and thus increased safety with reduced number of BG 

measurements. These results are associated with significantly 

reduced insulin administration during clinical practice (Table 

3 and Fig.3), probably due to fear of hypoglycaemia.  

STAR is patient-specific and accounts for evolving patient 

condition. Results show that the STAR protocol enhances 

control performance and safety compared with clinical data 

and clinical control protocol. As shown in Table 4, STAR is 

associated with the best percentages of BG within the desired 

100-150 mg/dL glycaemic band and within the specified 

band, and with reduced low BG (< 80 mg/dL). More 

precisely, time within 100-150 mg/dL was increased from 

60.43 % with the clinical protocol to 84.64 % with the STAR 

framework targeting 100-160 mg/dL.  

As expected given the insulin rate calculation used by STAR 

(Section 2.2), less than 5 %, of BG are below 80 mg/dL 

(Table 4). STAR is also associated with tighter GC as IQR is 

reduced from 40.1 mg/dL (clinical protocol) to 25.9 mg/dL, 

20.4 mg/dL and 15.9 mg/dL with STAR targeting 80-140 

mg/dL, 90-150 mg/dL and 100-160 mg/dL, respectively. 

Better glycaemic outcomes are associated with more 

dynamically changing exogenous insulin inputs and higher 

insulin rates, except for the 100-160 mg/dL target band 

(Table 4 and Fig.3). These improvements of glycaemic 

outcomes could be explained by a GC protocol, STAR, that 

can account for patient dynamics and evolving conditions, 

while paper-based clinical protocol cannot. A more patient-

specific protocol could lead to enhance patient glycaemic 

outcomes. As control efficiency could be associated with 

higher and more dynamic exogenous insulin inputs than those 

usually administrated in this ICU, simulations of protocols 

have also been performed with a 30 % reduction of total 

nutrition inputs. The results (not shown) suggest that reduced 

nutrition should facilitate tighter control of glycaemic levels. 

Reduced nutrition associated with the STAR protocol leads to 

better glycaemic outcomes. Clinically, it should be noted that 

the nutrition rules used correspond to 100 % of ACCP 

guidelines (Cerra et al., 1997). 

The glycaemic target of STAR is customized to different 

ranges (80-140 mg/dL, 90-150 mg/dL and 100-160 mg/dL) to 

assess the effect of a glycaemic target shift. Results in Table 

4 show that a 10 mg/dL increase in target bounds to shift 

from 80-140 mg/dL to 90-150 mg/dL is associated with a 

reduction BG under 100 mg/dL (12.93 %), an increase of BG 

within the 100-150 mg/dL desired band (12.28 %) and a 

slight increase of BG over 150 mg/dL (0.65 %). But, the shift 

between the 90-150 mg/dL and the 100-160 mg/dL target 

band is associated with a reduction of BG under 100 mg/dL 

(4.32 %), a small increase of BG within the 100-150 mg/dL 

desired band (3.18 %) and a slight increase of BG over 150 

mg/dL (1.14 %). These results suggest that the 100-160 

mg/dL is the best target band as it’s associated with an 

increased time in the desired band and a reduced low BG, and 

thus increased safety; compared with the other assessed target 

bands. 

Considering the clinical implementation of STAR control 

approach, we should pay attention to higher insulin inputs 

associated with this approach compared with clinical data. 

Nursing staff could be reluctant to make such practice 

changes. We should simulate STAR with reduced maximum 

insulin rate of 4 U/h and 6 U/h to assess impact of maximum 

insulin rate on GC efficiency. 

5. CONCLUSIONS 

This research presents the assessment of a clinical protocol 

performance using STAR framework in virtual trials. This 

research shows that the STAR computerized model-based 

glycaemic controller is associated with improved glycaemic 

outcomes and increased safety compared to the existing 

sliding scale protocol and could thus potentially improve 

patient outcome. The 100-160 mg/dL glycaemic range seems 

to be the target band best achieving the control objective: 

maximizing time in the 100-150 mg/dL and ensuring safety. 

STAR should be now implemented in a Belgian ICU to 

assess its efficiency in real clinical conditions. This pilot 

clinical trials should include 10 critically ill patients whose 

glycaemia will be controlled during at least 24 hours.  
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