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Abstract: Confronting with complex and troublesome optimization problems, Particle Swarm 
Optimization (PSO) algorithm maybe easy to be led to local optimum and suffer the unacceptable 
phenomenon as premature convergence. This paper proposes a new rapid PSO algorithm (RPSO), 
utilizing all particles’ individual best positions found so far to update its velocity; providing a 
distinguishing weight according to the particles’ different positions; and an adaptive learning factors 
turning strategy based on particle’s fitness value. Then Jury Criterion is adopted to make convergence 
analysis of our proposed algorithm. Ultimately, the optimization performance of RPSO is simulated by 
searching the optimums of four common benchmark functions and training a RBF network for 
approximating a nonlinear system. The simulation results reveal the satisfactory efficacy of our proposed 
algorithm. 
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 

1. INTRODUCTION 

Nature-inspired heuristic optimization algorithms mainly 
consist of physically-inspired heuristics Xie et al. [2011],  
Ding et al. [2012] and biologically-inspired heuristics Kuo et 
al. [2013], Müller et al. [2002], Walton et al. [2011], Pan 
[2012], which all have gained widespread popularity in 
solving complex global optimization problems. In general, 
these heuristic optimization algorithms suffer somewhat 
limitations that may give rise to slow convergence or 
premature to their local optimum.  

Since Particle Swarm Optimization (PSO) was first proposed 
by Kennedy in 1995, it has gradually gained widespread 
popularity in the research community for its simplistic 
implementation, reported satisfactory performance on various 
practical application problems, e.g. resource allocation Fan et 
al. [2013], training RBF neural network Fathi et al. [2013], 
and optimizing controller parameters Hu et al. [2011]. 
Kadirkamanathan et al. [2006] made a stability analysis of 
PSO using Lyapunov stability analysis and the concept of 
passive systems, and revealed that the selections of inertia 
weight w and learning factors 1c , 2c  have profound influence 
on the convergence performance of PSO. Then a lot of 
adaptive PSO algorithms have been proposed Hu et al. [2012], 
Xu [2013], Alireza  [2011] to adjust the inertia weight and 
learning factors of PSO. 

In these previous PSO algorithms, each particle updates its 
velocity according to the information of its current individual  
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best position found so far. While in our view, this way is lack 
of activity to exploit more useful information to help 
individuals find better solutions. Therefore a new rapid PSO 
(RPSO) algorithm was proposed in this paper. We suggest 
that each particle takes the advantage of all particles’ 
individual best positions found so far, which are better than 
its current position, to update its velocity. Then a 
distinguished weight based on its corresponsive object 
function value to the individual best position is given, to 
guarantee particles to quickly converge to acceptable position. 
And a adaptive learning factors turning strategy was also 
proposed according to the change of particle’s fitness value. 
Furthermore, convergence analysis in view of Jury Criterion 
is presented here. Ultimately, the optimization performance 
of RPSO is simulated by searching the optimums of four 
common benchmark functions and training RBF network for 
approximating a nonlinear system, and the basic PSO (BPSO) 
is also used as comparison. 

2.A RAPID SWARM OPTIMIZATION ALORITHM 

In basic PSO algorithm, each particle is defined as a potential 
candidate solution to an optimization problem in d-
dimensional space. The i-th particle’s position and velocity in 
one dimensional space were given by: 

1
1 1 2 2( ) ( )t t k t t

i i ibest i gbest iV w V c r X X c r X X           (1) 
1 1t t t

i i iX X V                                                              (2) 

where w  is the inertia weight,  1c  and 2c  are learning factors 

and typically equal to 2, 1r and 2r are uniformly distributed 

random numbers between 0 and 1. t
iV  and t

iX  are the i-th 

particle’s velocity and position at t-th iteration. k
ibestX  
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represents the best position found so far by the k-th particle, 
and 

gbestX mean. 

Obviously, the PSO algorithm possesses the characteristic of 
simplistic implementations. However, in face of complex and 
troublesome optimization problems, the PSO will be easy to 
be lost in local optimum and suffer the unacceptable 
phenomenon of premature convergence. In this paper, a novel 
rapid PSO (RPSO) algorithm is proposed to strengthen it’s 
exploration ability. 

First of all, the velocity updating formula of i-th particle 
velocity in RPSO is given by: 

1

1 ( )t t t k t
i i i k k ibest ik M

V w V c r X X


              (3) 

where { | ( ) ( ), }k
i lbest iM k f X f X k pop    , pop  is the set 

of all individuals, k
lbestX is the previous best position of 

individual k, ( )k
lbestf X is the objective function value at the 

individual best position of the k-th particle,  k is regarded as 

the contribution of previous best position of the individual k 
and used to weight the position information adopted by 
RPSO. In RPSO algorithm, each particle utilizes all particles’ 
individual best position found so far, which is better than its 
current position, to update its velocity. Thus each particle’s 
velocity embodies more advantageous information, including 
the information of global best position and its individual 
previous best position. On the other hand, the contribution 

k  is updated as follows: 

1 1 1( ( ) ( )) /( ( ) ( ))k t t t
lbest worst worst bestf X f X f X f X

k e
    ,  ik M         (4) 

where 1( )t
worstf X  is the objective function value at the worst 

position of all particles at (t-1)-th iteration. 1f (X )t
best
  is the 

objective function value at the best position of all particles at 
(t-1)th iteration. t

iC  in (3) represents the learning factor of 

particle i at the t-th iteration. 

Secondly, a new strategy for adaptive learning factors turning 
based on the change of particle’s fitness value is proposed: 

1
1

best0

f ( ) f ( )
(1 (tanh( )))

f ( )

t t
t t i i
i i

X X
C C

X



 


                    (5) 

where   is a positive number that determines the change 

speed of learning factor. 0( )bestf X indicates the objective 

function value of the initial global best position of all 
particles. tanh( )  is hyperbolic tangent function. From this 

formula, if 1( ) ( )t t
i if X f X  , the learning factor of particle i 

will diminish so that particle i can carry out local search; 
otherwise the learning factor of particle i will largen so that 
particle i can implement global search. 

Thirdly, particle's position updating way is proposed as 
equation (6). 

   
   

1

1

(1 ( 0.5))  

 

t t
i gbest it

i t t t
i i gbest i

X if f X f X
X

X V if f X f X

 




    

 

 


    (6) 

where  gbestf X is defined as the global best fitness over all 

particles. The position updating formula of particle i can be 

seen as local search if the  t
if X  is equal to ( )gbestf X , 

and (1 / max )a t gen    , a  is the initial amplitude of local 

search, max gen  is the maximum value of generation.   is 

the random number between 0 and 1. Additionally, the 
particle's velocity and position are limited to their feasible 
boundaries to let all candidate solutions feasible. 

The algorithm that uses the AEPSO to solve optimization 
problem is described as follow: 

Step 1: Initialize population: both position X  and velocity 
V , and set parameters, the number of population N , D , the 
maximum number of iterations G , the initial learning 

factors 0
KC , and inertial weight w , etc.  

Step 2: Evaluate all individuals using corresponding 
objective function (fitness function), and record the 
corresponsive useful information gbestlbest XX , , etc. 

Step 3: Calculate the contribution of all related particles’ 
individual previous positions by Eq. (3) and adaptively adjust 
the learning factors by Eq. (4). 

Step 4: Updating the velocity and position of particle by Eq. 
(5) and Eq. (6), and evaluate all individuals using 
corresponding objective function (fitness function). 

Step 5: Updating the particles' related information  

gbestlbest XX , , etc., and judge the terminal condition ( G  is 

reached or )( t
worstXf  is equal to )( t

bestXf  is met. If the 

terminal condition is satisfied, the optimization process will 
stop, otherwise, go back to Step 3. 

 

3.CONVERGENCE ANALISIS 

The convergence proof of RPSO is developed in this section. 
It reveals the essential convergence conditions under which 
RPSO is guaranteed to converge to a fixed equilibrium point. 
Since the RPSO algorithm is inherently stochastic (each 
particle's position is a random variable), the convergence for 
stochastic sequences is defined as follows. 

Definition 3.1 (Stochastic sequence convergence Xie et al. 
[2011]) A stochastic sequence{ ( )}, 0,1,iX t t    of scalars or 

vectors ( )X t  converges to the constant value 

X  {1,2, }i N    if the limit exists:  lim i
t

E X t X





   , 

that is, *X is the limit of the excepted value of the stochastic 

sequence   iX t , where E  is the excepted value 

operator, N  is the population size (number of particles), 

 iX t  is the position of individual i at time t, and  iE X t    

is the excepted value of  iX t . 
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Without loss of generality, the convergence of RPSO is 
investigated by observing one-dimensional RPSO model and 
the particle i is chosen arbitrarily. bestX  is assumed to be a 

constant over some number of iterations when current 
iteration number t  is big enough, so that  in Eq. (6) 
approximates to be zero, and then all particles update their 
velocities and positions according to equation (5) and (2). 

The position updating Eq. (2) can be rewritten by substituting 
Eq. (5) into (2) to obtain: 

 1 1

i

t t t t t t k t
i i i i i k k lbest i

k
k

M

X X V X w V C r X X


          

   1

i

t t k
k lbest

t t t
i i i k i

k M
kX w X CX Xr X



         

  11 t t
i i i iw X w X                                        (7) 

With the following definitions 

i

t
i k k kk M

C r 


                                   (8) 

i k

i

t k
k lbest

k M
kC r X



                               (9) 

Assume that the fitness landscape is so smooth that the t
kC  

and k  keep stable in three generations. Eq. (7) may be 

written to the following non-homogenous recurrence relation: 

1 1(1 )t t t
i i i i iX w X w X                      (10) 

In order to obtain the convergence properties of RPSO, the 
corresponsive convergence of stochastic sequence 

 { }iE X t    may be analyzed. For the stochastic case, 

adding the expected value operator to Eq. (10) yields 

 t 1 * 1 *
i i i[ ] 1 [ ] [ ]t t

i iE X w E X w E X               (11) 

where 

 *
i

1

2
i

i k
k M

t
kE C  



                                (12) 

 *
i i

1

2
i

k
k

t k
lb

M
k estE C X  



                        (13) 

By inspection, the characteristic equation of Eq. (11) is: 

 2 1 0iw w                               (14) 

As stable solutions of LTI system exist if and only if its 
eigenvalues all lie inside the unit circle in the complex   -
plane. The solutions of Eq. (14), in turn, will converge to a 
deterministic limit under the converging conditions. And, the 
necessary converging condition will be proved in Theorem 
3.1. To better complete the proof of Theorem 3.1, Jury 
Criterion is cited as Lemma 3.1. 

Lemma 3.1. (Jury Criterion in Jury [1974]) Considering the 

polynomial  
0 j

N N j

j
P P  


 , with 0 =1P , it has no 

complex root outside the unity circle if and only if all the 

following conditions are satisfied: 

1）  1P   >0, 

2）  ( 1) 1N P    >0, 

3） 0NP P , 

4） Defining the following inductive relation: 

       
 

1, ,0 , , ( , )

0, 2 and [0, ]

p k j p k p k j p k N k p k N k j

k N j N k

       
      


 

with  0, jp j p , [0, 1]j N   , last assumptions are: 

   ,0 , , [1, 2]p k p k N k k N      

Thus the necessary converging condition is demonstrated in 
Theorem3.1. 

Theorem 3.1. If and only if 1w   and 0 2 1 )i w   （ , 

then  iX t  converges to gbestX . 

Proof. According to Lemma 3.1 and Eq. (14), the 
convergence conditions of Eq. (11) are: 

   
      *

1 1 1 0

1 1 1 2 1 0

1

i i

ii

p w w

p w w w

w

  

  

 



        
           
 

     (15) 

Thus, the stable conditions of Eq. (11) are  

1w  , 0 2 1 )i w   （                       (16) 

Thus, { [ ]}t
iE X  will converge to the corresponding 

convergent position iX   if Eq. (16) is met. Next, to take the 

limit on both sides of Eq. (15), note that *lim{ [ ]} it

t
iE X X


 , 

1, , pi N  , with the result: 

 * * * * *1i i i i iw X wX X                (17) 

To simplify Eq. (17) as 

* * *
i i iX                                   (18) 

Substitute Eq. (8) and Eq. (9) into Eq.(18), one has  

i i

t t k
k k i k k lbestk M k M

C X C X 
 

            (19) 

Which may be written: 

*

NM
ik M s

i

k
lbe tX

X 


                                 (20) 

According to the definition 3.1, a limit of sequence { }t
iX  

exists and converges to *
iX  if Eq. (15) is met. Thus, to take 

the limit on both sides of Eq. (5) and Eq. (6), with the result:  

( ) 0

( ) 0
i

i

t k
k k k lbest ik M

k
k lbest ik M

C r X X

r X X

 





    

   




              (21) 
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Considering that kr  is a random number between 0 and 1, 

thus if and only if * 1 NM
i lbest lbest gbestX X X X    , ik M , 

Eq. (18) is satisfied. So  iX t  will converge to gbestX . 

4.SIMULATIONS AND RESULTS 

Some simulation experiments were conducted as employing 
four commonly used benchmark functions and training RBF 
networks to investigate the optimization performance of the 
RPSO algorithm proposed in this paper. 

4.1 four benchmark functions 

Benchmark functions are widely applied on inspecting the 
optimization performance of various algorithms due to their 
characteristics of diversity of decision space topologies. Four 
common benchmark functions shown in Table 1 are used in 
this paper to examine the usefulness of RPSO, and the basic 
PSO (BPSO) algorithm is chosen as comparisons. 

To keep the fairness of performance comparison between 
RPSO and BPSO, their initial swarm population size N , 
maximum number of iterations G  and feasible searching 
space are all in the beginning stage. In detail, N =30, is 
G =2000, the inertial weight w =0.75 in BPSO, the inertial 

weight and learning factors of RPSO are w = 0
KC =0.9, and 

uniformly distributed random numbers on 





NN

25
,

5
. For each 

experimental setting, 20 independent runs of BPSO and 
RPSO are performed. The implement results on the functions 
of 1f ~ 4f  with dimension 10, 20, 30 are in terms of the best 

(minimum) fitness value (B), worst (maximum) fitness value 
(W) and average fitness value (A) over 20 runs as shown in 
Table 2.  

Table 1  Four common benchmark functions 

 Functions 

Tablet 6 2 2
1 1

2

( ) 10
n

i
i

f X X X


  , [ 50,50]d
iX    

Rosenbrock 

1
2 2 2

2 1
1

( ) (100( ) ( 1) )
n

i i i
i

f X X X X





    , 

[ 50,50]d
iX    

Griewank 
2

3
1 1

1
( ) cos 1

4000

nn
i

i
i i

X
f X X

i 

    
 

  , 

[ 50,50]d
iX    

Rastrigin 
2

4
1

( ) -10 cos(2 ) 10
n

i i
i

f X X X


  （ ） , 

[ 5,5]d
iX    

 

 

 

Table 2  Results of BPSO (no.1) and RPSO (no.2) on four 
benchmark functions with dimension=10, 20, 30, 

respectively. 

 

4.2 parameters identification for a RBF network based 
nonlinear system 

Considering a single-input two outputs nonlinear system in 
Du  [2010]: 

        
    

1 1

2 2

0.5 -1 -1 0.4 tanh tanh - 2

0.1 sin sin - 2 -1

y k y k u k u k

y k y k
    

   
    

       
 

2 2 2 1
2

1

0.3 1 0.1 2 1

0.4 exp( ( 1)) 2

y k y k y k y k

u k y k

       
     

           (22) 

where the system input ( )u k  is uniformly distributed within 

[-0.5, 0.5]. 1( )y k  and 2 ( )y k  are the system outputs. 

RBF network consists of three separate layers, named input 
layer, hidden layer and output layer respectively, is 
considered here with a common Gaussian function: 

 
1

φ ,
M

ji ij i
cy w x


   

and                         2φ , exp( || || / )i i ix c x c                 (23) 

f1~f4 Tablet Rosenbrock Griewank Rastrigin

B(10)
1 6.62e-08 0.2842 0.0295 4.9748 

2 4.59e-68 2.5874 0 0.9952 

A(10)
1 5.79e-04 5.4799 0.0953 12.5365

2 1.07e-55 4.6701 0.0053 3.3358 

W(10)
1 0.0037 9.6045 0.1944 19.8991

2 1.13e-54 7.5223 0.0541 6.9647 

B(20)
1 0.1167 21.3663 0.01 16.3278

2 7.52e-34 14.9357 0 2.078 

A(20)
1 0.6003 193. 289 0.0465 25.9782

2 7.85e-31 16.3144 0.0058 7.1112 

W(20)
1 1.0664 1.91e+03 0.0915 38.0477

2 1.31e-29 19.3644 0.0473 14.0054

B(30)
1 0.9964 197.8931 0.0214 33.9406

2 3.24e-24 23.7176 0 6.4494 

A(30)
1 3.0831 723.6394 0.1046 53.8696

2 4.34e-21 29.0332 0.0284 11.6493

W(30)
1 8.2219 1.86e+03 0.181 93.2765

2 4.64e-20 84.2917 0.2448 15.907 
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where M  is the number of the hidden nodes, jiw  is the 

weight between j-th output and i-th input, ic  and i  are the 

center and width of i-th unit in the hidden layer. 1( 1)y k  , 

1( 2)y k  , 2 ( 1)y k  , 2 ( 2)y k  , ( 1)u k  , ( 2)u k   are 

regarded as the inputs of RBF network, whose initial 
conditions are all set as zero, and 200 sample data are 
generated for training.  

Relative parameters are set as: Number of hidden nodes=10; 
Number of inputs/outputs=6/2; Number of centers =10; 
Number of weights =20.  

A least-squares error criterion eJ  is utilized to evaluate the 

efficacy of algorithms. 

1 1

* 2( ( ) ( ))
N L

i k d

e

y k y k
J

N
 


  

              (24) 

where dy  is the desired output vector, and y  is the output 

of RBF neural network, L  the length of dy  and N the 

number of system output.  

RPSO and basic PSO (BPSO) are used to optimize 
( ic , i , jiw ) in (23) and for comparison. Related parameters 

are setting as follows: N =500, G =2000, w = 0.75, the 

learning factors of RPSO=
20

N
, and max 20X  . Furthermore, 

20 independent runs of RPSO and BPSO are performed. The 
simulation results over 20 runs are compared in Table 3. It 
can be easily seen that the values of RPSO are all smaller 
than BPSO’s revealing the prior optimization capability of 
RPSO. And Fig. 1 shows the training errors for one output of 
RBF constructed by RPSO and BPSO respectively, averaged 
for 20 runs. The simulation results show the better 
performance and acceptable robustness of RPSO based RBF 
network. 

Table 3  Performance comparisons 

Criteria 
 
Algorithms 

minimum 
value (MIN) 

average 
value 

(AVG) 

maximum 
value 

(MAX) 

eJ by RPSO 0.0648 0.1673 0.4361 

eJ by BPSO 0.0684 0.5131 2.5185 
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(a) Training error of output 1( )y k  by RPSO 
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Fig.1. 1( )e k  of RBF network averaged for 20 runs 

5.CONCLUSIONS 

This paper proposed a rapid PSO (RPSO) algorithm aiming 
to improve PSO's optimization performance. A novel velocity 
updating way is proposed taking advantage of all particles’ 
individual best positions found so far; secondly, a 
distinguishing weight is given based on its corresponsive 
object function value to guarantee particles to quickly 
converge to a acceptable position; thirdly, a new parameter 
turning strategy is presented for learning factor based on the 
change of particle’s fitness value to enhance the performance 
of the RPSO. Then, a Jury Criterion has been applied to 
obtain the convergence conditions of RPSO with simplistic 
and efficient. Finally, the optimization performance of RPSO 
is assessed by searching the optimums of four common 
benchmark functions and training RBF network for 
approximating a nonlinear system, and the basic PSO is 
chosen as comparison. The simulation results have reflected 
the prior performance of RPSO. 

REFERENCES 

Xie L., Zeng J., and Formato R.A.. (2011). Convergence 
analysis and performance of the extended artificial 
physics optimization algorithm. Applied Mathematics 
and Computation , vol. 218 , no. 8 , pp. 4000–4011. 

Ding D., Qi D., and Luo X., et al. (2012). Convergence 
analysis and performance of an extended central force 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8693



 
 

 

 

optimization algorithm. Applied Mathematics and 
Computation, vol. 219, pp. 2246–2259. 

Kuo H.C., and Lin C. H.. (2013). A Directed Genetic 
Algorithm for global optimization. Applied Mathematics 
and Computation  , vol. 219 , pp. 7348–7364. 

Müller S.D., Marchetto J., Airaghi S., and Koumoutsakos P.. 
(2002). Optimization Based on Bacterial Chemotaxis, 
IEEE Trans. on Evol. Comput., vol. 6 , no. 1 , pp. 16-29,. 

Walton S., Hassan Morgan O., K., and Brown M.R.. 
(2011).Modified cuckoo search: A new gradient free 
optimization algorithm. Chaos, Solitons & Fractals, vol. 
44 , pp. 710–718. 

Pan W.T.. (2012). A new Fruit Fly Optimization Algorithm: 
Taking the financial distress model as an example. 
Knowledge-Based Systems, vol. 26 , pp. 69–74. 

Fan K., You W., and Li Y.. (2013). An effective modified 
binary particle swarm optimization algorithm for multi-
objective resource allocation problem (MORAP). 
Applied Mathematics and Computation, vol. 221 , pp. 
257–267. 

Fathi V., and Montazer G.A.. (2013). An improvement in 
RBF learning algorithm based on PSO for real time 
applications. Neurocomputing, vol. 111 , pp. 169–176. 

Hu D., Sarosh A., and Dong Y.. (2011). An improved particle 
swarm optimizer for parametric optimization of flexible 
satellite controller. Applied Mathematics and 
Computation , vol. 217 , no. 21 , pp. 8512–8521. 

 Kadirkamanathan V., Selvarajah K., and Fleming P.J.. (2006). 
Stability Analysis of the Particle Dynamics in Particle 
Swarm Optimizer. IEEE Trans. on Evol. Comput., vol. 
10, no.3, pp. 245-255,  

Hu, M., Wu, T., Weir, J.D.. (2012). An Adaptive Particle 
Swarm Optimization with Multiple Adaptive Method. 
IEEE Trans. on Evol. Comput., vol. 17 , pp. 1-15,  

Xu G.. (2013). An adaptive parameter tuning of particle 
swarm optimization algorithm. Applied Mathematics and 
Computation , vol. 219 , no. 9 , pp. 4560–4569. 

Alireza A.. (2011). PSO with Adaptive Mutation and Inertia 
Weight and Its Application in Parameter Estimation of 
Dynamic Systems. Acta Automatica Sinica, vol. 37 , no. 
5 , pp. 541-549. 

Jury E. I.. (1974). Inners and Stability of Dynamic Systems. 
John Wiley & Sons ,New York.  

Du D., Li K., and Fei M.. (2010). A fast multi-output RBF 
neural network construction method. Neurocomputing, 
vol. 73 , no. 10-12 , pp. 2196–2202. 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8694


