Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Tuning Nonlinear Controllers with the
Virtual Reference Approach

Alexandre Sanfelice Bazanella* Tassiano Neuhaus **

* Graduate Program in Electrical Engineering, Universidade Federal do
Rio Grande do Sul, Porto Alegre - RS, Brazil.
bazanela@ece.ufrgs.br
** Datacom Telemadtica, Porto Alegre - RS, Brazil.
neuhaus@datacom.ind.br

Abstract:

Virtual Reference Feedback Tuning (VRFT) is a well established method for data-driven tuning
of linear controllers. In VRFT the design is performed in “one-shot”, that is, with only one
batch of input-output data, without the need of iterative data collection procedures. Its core
concept consists in treating input-output data collected from the plant to be controlled as if
they had been obtained from a wvirtual experiment, in which a particular reference signal - the
virtual reference - would have been applied to the closed-loop system. A key feature of the
VRFT method is that it greatly simplifies the design procedure with respect to standard model
reference design: for linear and linearly parametrized controllers, it results in convexification of
the design, so that its solution can be found by a single least squares method. In this paper this
paradigm is applied to the tuning of nonlinear controllers. We propose specific design procedures
for two classes of nonlinear plants: rational plants and plants of the Wiener type. Statistical

properties of the controllers thus designed in noisy environments are also illustrated.
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1. INTRODUCTION

In the past two decades, a number of data-driven con-
trol design methods have been proposed - Hjalmarsson
et al. (1994, 1998); Campi et al. (2002); Karimi et al.
(2004); Kammer et al. (2000), among others - where a
parametrized controller structure is chosen a priori, and
the controller tuning is based directly on input and output
data collected from the plant, without the use of a model
of this plant. A common theoretical framework for these
data-driven - also called data-based - methods, which are
based on the model reference control design formulation,
is given in Bazanella et al. (2012). Some of these methods,
like Iterative Feedback Tuning are iterative in nature: the
optimal controller is obtained as a sequence of controllers
that operate on the actual plant, and experimental data
are collected on the corresponding sequence of closed-loop
plants Hjalmarsson et al. (1994, 1998). Other methods are
“one-shot”, that is, non-iterative: they directly estimate
the controller’s parameters on the basis of one batch of
input-output data: Virtual Reference Feedback Tuning
(VRFT) - Campi et al. (2002), Model Reference Tuning by
Prediction Error Identification - Campestrini et al. (2012)
and a non-iterative version of Correlation-based Tuning -
Karimi et al. (2007) - are representative of this class.

In VRFT the design is performed after computing, from
the data collected from the system, a virtual reference,
which is the signal that should be applied as the input
to the reference model in order to produce the signals
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that have been collected. With this virtual reference, an
alternative objective function representing the desired per-
formance is formed which, contrary to the original model
reference objective function, does not depend explicitly on
the plant. When the controller is linearly parametrized,
this alternative objective function is quadratic, allowing
its minimization through a simple least squares procedure,
which is probably the major asset of the VRFT method.

Over the past decade the virtual reference (VR) paradigm
has matured and has continuously driven further develop-
ments in data-driven control design. VRFT has been suc-
cessfully applied to relevant industrial applications, such
as in Formentin et al. (2013). The methodology has been
extended to nonminimum phase plants in Campestrini
et al. (2011) and to linear-parameter varying plants in
Formentin and Savaresi (2011). The VRFT approach in a
nonlinear setup has been introduced in Campi and Savaresi
(2006), where a general theory has been presented for a
certain class of controller parameterizations.

In this paper we advance the application of the VR
paradigm in a nonlinear setup by proposing design proce-
dures for two major classes of controller parameterizations:
rational controllers and Hammerstein-type controllers. We
treat controller parameterizations that do not fit in the
class studied in Campi and Savaresi (2006). On the other
hand, the convenience of its implementation being a major
feature of the VR paradigm, we propose specific solutions
for the implementation issues for the two classes of non-
linear controllers considered. We also illustrate, by means
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of case studies, the statistical properties of the proposed
solutions when applied in a noisy environment.

The paper is organized as follows. In Section 2 we present
some notations and definitions. The virtual reference
paradigm is presented in Section 3. Detailed solutions
following this paradigm are presented for two classes of
processes, each of which are presented in one of the fol-
lowing two sections. Finally, some conclusions are given in
Section 6.

2. PRELIMINARIES

Let u(t) and y(t) stand respectively for the input and
output of a system at time ¢t. The plant to be controlled is
a time-invariant single-input single-output “real system”
described by a fixed yet unknown difference equation:
St oy(t) = Pp(t),e(t) =0

where ¥p(t) = [y(t —1),...,y(t —np),u(t —1),...,u(t —
mp)], and €(t) = [e(t), e(t — 1), ...,e(t=1p)], e(t) being a
white noise sequence with variance o2, and the nonlinear
function P(-,-) : R"PTmr x RIFL 5 R is Lipschitz.

(1)

The controller is similarly described by a difference equa-

tion

C: u(t)—Cle(t),p) =0 (2)
where Yo (t) = [y(t), y(t—=1),...,y(t—nc),u(t=1),..., u(t—
me),r(t),r(t—1),...,r(t—lc)], r(t) is the reference signal,
and p € R? is the parameter vector to be tuned. The

nonlinear function C(-,-) : Rretmetlo+2 o pd o R s
Lipschitz and defines the controller structure, which is
fixed a priori. Notice that S designates a single system, the
real unknown plant, whereas C designates a whole class
of systems, one for each parameter value p. The control
design consists in tuning the parameter vector p, that is,
in choosing one controller among all those in the class C.

Model Reference control design consists in specifying a
desired closed-loop behavior and then solving the following
optimization problem

min JM%(p)
p

JME(, ANZ{

where y4(¢) is the desired output. The desired output y,(¢)
is usually specified by means of a desired transfer function
M (q), called the reference model, such that
ya(t) = M(q)r(t)

where ¢ is the forward shift operator defined by qz(t) =
z(t + 1). Assume that there exists a feedback control
law u(t) = Cq(va(t)) such that the input-output map
r(t) — y(t)? of the closed-loop system is exactly the
one specified by the model reference M(q), where ¢4(t) =
[y(t),y(t—1),...,y(t—ng),u(t=1),...,u(t—mg), r(t), r(t—
D),...,r(t — Ig)] and Cg(-) : Rratmatlat2 5 R This
control law is called the ideal controller. Whether or not
the ideal controller can be exactly matched by one of the
controllers in the class considered for the design is a crucial
issue in model reference control design - Bazanella et al.

3)

—w®?] @

2 That is, the relationship between 7(t) and y(t) assuming that

e(t) =0.

(2012). This is an assumption that is tacitly made in most
of what follows, so let us formalize it.

Assumption 2.1. Matching condition - C4 € C
Jpo . C(ve(t), po) = Ca(a(l))
o

The matching condition 2.1 is equivalent with the assump-
tion that the real system belongs to the model set, which
is ubiquitous in the context of system identification plus
model-based control design - Bazanella et al. (2012); Ljung
(1999). The following example, extracted from Campi and
Savaresi (2006), illustrates these definitions.

Ezample 2.1. Consider the plant:

y(t) = y(t —1) +ult —1)° +e(t)
and the controller class
u(t) = plr(t) — y(t)]'/?
and also the reference model:
ya(t) =r(t—1)
that is, M(q) = ¢~ 1.

If the control law is u(t) = [r(t) —y(¢)]? and e(t) = 0, then

the closed-loop becomes

y(t) =yt — 1)+ {[r(t —1) —y(t — 1)]5}3
=y(t — 1)+ [r(t — 1) — y(t — 1)]
=r(t—-1)

as desired. Hence this control law represents the ideal
controller and it belongs to the controller class, with pg = 1
- the matching condition is satisfied.

<

Under assumption 2.1 it is clear that pg is the global
minimum of the cost function JM#(p) and thus the so-
lution of the optimization (3). But finding this solution
starting only from input-output data collected from the
plant (without its model) can be quite involved due to
the lack of convexity of the cost function JM%(p), thus
requiring iterative procedures and several experiments on
the plant. This issue can be tackled by a Virtual Reference
approach, presented in the next Section.

3. THE VIRTUAL REFERENCE PARADIGM

The solution of (3) often becomes quite troublesome for
two reasons: the objective function depends of the un-
known plant and it is nonconvex, even for linear systems -
Hjalmarsson et al. (1998); Bazanella et al. (2012, 2008).
One approach to eliminate, or at least mitigate, these
problems is the Virtual Reference (VR) paradigm. Based
on signals y(t) and wu(t) measured from the real system,
define the wirtual reference 7(t) as M(q)7(t) = y(t). This
is the signal that, when applied to the reference model,
would produce the measured data; but this is not how
the data have actually been generated, hence the signal’s
designation. Figure 1 shows the virtual system and the
related signals.

In the VR approach one proceeds as if the experiment
depicted in Figure 1 had actually taken place. If this were
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Fig. 1. Block representation of the virtual closed-loop
system, with the virtual reference 7(¢), which would
have generated the signals that have been measured.
The dashed lines represent the virtual part of this
fictitious system.

the case, the ideal controller would have been in the loop
and then we could identify it from its input output data
by solving the following optimization.

mpin JV(p) (8)

N
TR & > (w0 - cte )] ©

where C(9¢c(t), p) is the controller function (2) with r(¢)
replaced by the virtual reference 7(¢). The two problems
(8) and (3) have the same global minimum provided that
Assumption 2.1 is satisfied.

Solving the optimization problem (8) instead of (3) is the
cornerstone of the VR control design paradigm, the advan-
tage being that (8) is usually much simpler to solve than
(3). First, (8) is purely data-dependent, that is, it does not
depend explicitly on the unknown plant. Second, the shape
of the cost function (8) often is much more amenable to
optimization than (3). In the particular situation in which
the controller is linearly parameterized (an ubiquitous
situation), (8) is quadratic in the decision variable p and
thus can be solved by Least Squares. The direct solution
of (3), on the other hand, requires optimization methods
that not only are complicated because of the dependence
on the plant but also tend to get trapped in local minima
due to lack of convexity - see Bazanella et al. (2008).

The nonlinear VRFT has been presented in Campi and
Savaresi (2006), but there only the first feature (the data-
dependent nature) of the method has been explored. In
order to obtain a complete and powerful design method,
effective means for solving the optimization are needed and
these will be different for different classes of processes.
Moreover, in this paper we consider controllers in the
form (2), which can depend on the reference and on the
input independently. This is somewhat more general than
the controller structure considered in Campi and Savaresi
(2006), which requires that the control action depends only
on the tracking error. We will see that for the control of
rational systems, for instance, this more general controller
structure comes in handy.

4. RATIONAL SYSTEMS

A rational model is one in which the function P(:,-)
consists in the ratio of two polynomials, each of which a
function of past input and output data: [y(t—1),...,y(t—
ne),u(t),u(t —1),...,u(t — me)]. When the real process
is a rational system, so will be the ideal controller, as

illustrated in the case study to be presented shortly. It is
then only reasonable to use a rational controller structure
when controlling a rational process.

Given a controller class of rational type, we propose to
apply the virtual reference paradigm to design the con-
troller’s parameters. Then the controller design amounts to
identification of the ideal controller with a rational model
and an appropriate algorithm must be used. We propose
the use of the prediction error algorithm in Billings and
Zhu (1991), that is tailored for rational systems. This algo-
rithm minimizes the prediction error through the iterative
solution of a series of least squares problems and has been
shown to be quite effective; it can be applied, with minor
adaptations, to the minimization of JV%(p) in this case.
This is still a one-shot solution, in the sense that only one
batch of input-output data are needed.

4.1 Case study

Consider the control of the nonlinear system S described
by:

0.5u(t — Dyt —1) +u(t—1)
+) = t 10
y(®) 1+ 0.2502(t — 2) et)  (10)

where the desired closed-loop response is specified by
means of the following linear reference model:

0.4
M =
(9) 706

(11)

The input-output relationship in (11) can also be described
by the following difference equation.

y(t) =04r(t — 1)+ 0.6y(t — 1) (12)
Equating (10) with (12) and isolating the signal u(t) we
find the equation that describes the control law corre-
sponding to the ideal controller, which is given by:
) = 0.47(t) + 0.6y(t) + 0.1y%(t — 1)r(¢t) + 0.15y(t)y%(t — 1)
= 1+ 0.5y(t)

(13)

Assume that the matching condition is satisfied, that is,
the structure of the ideal controller is known and only its
numerical parameters are unknown. Then the controller
structure is
_ par(t) + p2y(t) + psy®(t — Dr(t) + pay(H)y*(t — 1)
u(t) =
1+ psy(t)

and the controller class (14) is seen to contain the ideal
controller (13), thus satisfying the matching condition.
Notice that the ideal controller and the controller class
depend on the output and on the reference independently,
and not on the tracking error only.

(14)

After exciting the system with a Pseudo Random Binary
Signal (PRBS) with N = 254 and with a noise with
variance 02 = 0.005, we performed the control design as
described. In order to assess the statistical properties of
the control design, 100 Monte Carlo experiments have been
run. The average controller obtained was:

Pav = [0.4000 0.5999 0.1001 0.1501 0.5OOO]T

with the following sample covariance matrix:

1.0 x 10~6
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0.0498 0.0585 —0.0353 —0.0362 —0.0018
0.0585 0.4714 —0.0449 —0.3690 0.0057
—0.0353 —0.0449 0.0581 0.0745 —0.0040
—0.0362 —0.3690 0.0745 0.4647 —0.0070
—0.0018 0.0057 —0.0040 —0.0070 0.0911

The variance of the estimates is illustrated in Figure 2, in
which the results of all the 100 Monte Carlo experiments
performed are depicted, in the form of the projections of
the parameters obtained in each case onto the p; X p2 plane.
The controller’s performance can be assessed by the cost
value obtained with the typical (average) controller, which
was JME(p,,) = 5.8442x 1072, It is important to interpret
this number: it is the per sample difference between the
output obtained with the controller thus designed and the
desired output yg(t). Since the noise variance is of this
same order (recall that o2 = 0.005), one could not expect
(from any control design method) the cost value to attain
values significantly lower than what has been obtained.

0.6025

T
O Estimatives
0.602 - *  Average

B Real

0.6015 -

0.601

0.6005 -

0.6

0.5995 -

The estimated value of P,

0.599

0.5985 -

0.598
0.3994

L L
0.4002 0.4004

T .
0.3996 0.3998 .04
The estimated value of [

0.4006

Fig. 2. p; and ps obtained in 100 Monte Carlo experiments
and the estimated confidence ellipsoid with x? = 95%.

5. WIENER PROCESSES

A Wiener system is one that can be described by (see
Figure 3)

2(t) = Go(q)u(t) + Ho(q)e(t) (15)
y(t) = o(2(1)) (16)

where Go(q) and Hy(g) are rational transfer functions,
both causal and BIBO-stable, and ¢(-) : D — D, with
D C R; the system (15)-(16) is a particular case of the
general structure (1).

—] Ho(Z) _l
u(t) z(t)

—_—] Go(z) —>O—>

Fig. 3. A Wiener system as described in (15) and (16)

y(t)

—>

()

It is assumed that the output map ¢(-) is right invertible
in the whole operating range D, that is, there exists a map
¢7' () such that ¢(¢5' (r)) =z Va € D. It is not hard to
see that for this case the ideal controller is of the following
form:

(17)
(18)

Ca(z) —

¥()

Fig. 4. A Hammerstein controller as described in (17) and
(18)

Indeed, if ¥(-) = ¢'(-) and

Chla) = i
Go(g)(1 — M(q))
then the closed-loop system is linear with transfer function
M (q). This is a standard solution in control systems prac-
tice, as commercial controllers often include a customiz-
able linearizing function ¢(-) in the feedback loop. It is
clearly seen that in this standard case the ideal controller
is not a function of the tracking error ¢(t) = r(t) — y(t),
but instead a function of r(t) and of y(t) separately.

(19)

Assuming that the reference is a given constant, an alter-
native topology can be used for the controller that makes
the controller dependent of the tracking error only. Define
the controller class as

u(t) =C"(q, p)o(t) (20)
v(t) =(r(t) —y(t)) (21)

where the function () must be such that the control
system behaves as if both nonlinearities were not present,

that is:

P(r(t) —y(t) = alr(t) — 2(t)] (22)
for some o € RT. Figure 5 shows a system with a Wiener
process with a Hammerstein controller as described before.

_____________

1
ﬂ>Of(_t—)i—>| ¢() |ﬂ| C’(z){—eﬂi-» Go(2) |—»O—(Q| () I_n_y_(ﬁ)
1 ] 1

_____________

Fig. 5. Wiener process/Hammerstein controller block dia-
gram.

In so doing, the ideal controller does depend only on
the tracking error, but the nonlinearity () that forms
the ideal controller depends on the reference value, and
will be a different function for each different constant
value. Moreover, for non constant references, the inverse
nonlinearity would not be autonomous. Both choices for
the controller structure can be treated similarly within the
VR framework; let us present the treatment for the later
structure, (20)-(21).

It is desired that in closed loop the system behaves linearly
and as specified by M(q). To achieve that, the controller
should cancel all nonlinear effects of ¢(z(t)). In other words
it is desired that in closed loop the signal v(t) obeys (22).
However the system depicted in Figure 5 behaves as:

vo(t) = (r(t) —y(t))
and thus we can obtain the relationship between 1 (-) and

o(-) as:
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P(r(t) — o(2(1)) = afr(t) — 2(2)].

It is clear that when there is no reference signal, () = 0,
the relationship between the functions ¢(-) and ¢(-) is
simplified to:

(23)

(0(2(1))) = —az()
so that in this case (but only in this case) ¥(-) must be
the right inverse of ¢(-), apart from a real constant.

5.1 A linear parameterization

In order to obtain a linear parameterization, and thus a
convex optimization, let us consider that the controller and
the nonlinear function are both linearly parameterized,
that is

C'(0.0) = 50"N(a) (24)
() =T E(®) (25)

with D(g) a known monic polynomial,

N@2@ ¢'q..q¢77

E(t) 2 [e(t) &(t)...e50)]"

and £(t) is the tracking error; § € R+ and n € R* are
the controller’s parameters to be adjusted. The parame-
terization (25) for the nonlinear map can be seen as the
truncated Taylor series of the ideal nonlinear function -
the one which results in the exact matching of the closed-
loop desired response. Hence the truncation at its k** term
implies that the matching assumption is, in general, not
satisfied.

Defining us(t) = D(q)u(t) we can write
p

P k
up(t) =Y 0:ib(e(t —i)) =D _ 6> mel(t—i)] (26)
i=0 i=0  j=1

where 6, are the elements of the vector 6 and likewise for
7n;. Finally, define the new parameters p; 2 Oon1, po 2

Oonz, -+ Pp+1)k = 0,m1 and the corresponding parameter

T
vector p = [pl .. p(p—i—l)k}
as

, so that (26) can be rewritten

p k
up(t) =Y > pigel (t—i) = p w(t)
i=0 j=1

where the regressor w(t) has also been defined. Now
the vector p is the parameter to be identified and the
parameterization is linear. The original parameters 6 and 7
can be recovered from p after these have been determined,
but this is unnecessary for the implementation of the
control law. Notice that the number of parameters is now
(p+ 1) x k instead of the original number p + 1 + k.

(27)

The numerical example below aims to demonstrate this
method proposed for tuning Hammerstein controllers.

5.2 Case study

Consider a Wiener type nonlinear plant & as shown in
Figure 5 whose linear block and static nonlinearity are
given by:

Gola) = — 5 (28)
B(z(t)) = y(t) = 1.52(t) + 0.223(t) (29)

The noise is white (Ho(g) = 1) and the noise variance is
o2 = 0.05.

This plant is to be controlled such that its closed-loop
behavior is given by the following reference model:

0.4
M =
(9) 700

The controller class is in form of (20) and (21) with C'(q, 0)
as a PI controller:

C'(q,0) = 61

(30)

1
0
q—1+ 2q—1

and the nonlinear output map of the controller is a fourth
order polynomial:

P(e(t)) = me(t) + me’(t) + nse’ () + mae*(t)

The linear part of the ideal controller can be determined
from (19), resulting in:

Cylq) =

(31)

(32)

0.8¢ — 0.72
-1
which can be exactly described within the class of PI
controllers (31). The nonlinear part of the ideal controller
is the inverse of the nonlinear function ¢(-) given in (29),

which will be approximated by the truncated Taylor series
as in (32).

(33)

Making the necessary mathematical substitutions as de-
scribed in the previous subsection, the following control
law is obtained:
up(t) =pre(t) + pa?(t) + pae®(t) + pac™ (t)+
pse(t — 1) 4 pee(t — 1) + pred(t — 1)+
pset(t —1) (34)
where uf(t) denotes that w(t) has been filtered by the
denominator of C’(¢) in (33). This control law is linearly
parameterized and the tuning of its parameters can be
done by minimization of JV(p), which can be performed
by least squares. In order to determine the efficacy of the
method and illustrate its behavior in a noisy environment,
this design has been performed in one hundred Monte
Carlo simulations, each time determining the controller
parameters p; — ps. The average parameter obtained is:
r 044717
2.0216 x 1073
—6.5181 x 10~*
—1.608 x 1077
—0.40435
-1.6163 x 10~*
6.1265 x 10~*
[ 1.469 x 107° |

with a sample variance whose norm is of the order of
1076, The resulting cost, which measures the average per
sample difference between the desired output y4(¢) and the
actually obtained output, was JM%(p,,) = 3.0078 x 1073,
In Figure 6 it can be seen that the closed-loop system’s
response with the average controller to a step reference
is very close to the desired step response specified by the
model reference M(q).

Pav =
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Step Response

— — — Estimated
M

0.8f
3
S 06f
£
E

04f

0.2F

0 . . . .
0 5 10 15 20 25

Time (seconds)

Fig. 6. Output of both systems: desired (continuous line)
and designed (dashed line)

6. CONCLUSIONS

In this paper we have explored the design of nonlinear
controllers using the virtual reference paradigm, inspired
by VRFT. A major appeal of the VRFT design methodol-
ogy is that it simplifies tremendously the controller tuning
procedure, even convexifying, for a large class of problems,
the model reference design. Our main concern was on
extending this idea to the tuning of nonlinear controllers
in such a way as to retain, at least partially, this mostly
desirable feature. We have proposed specific solutions, in
which this has been shown possible, for two broad classes
of nonlinear plants: Wiener plants and rational plants.

For these two classes of plants, we have formally stated
the design problem and detailed both the theoretical and
practical formulation of the design problem. We have also
provided case studies to illustrate the design issues and the
effectiveness of our design methodologies, indicating the
potential of the virtual reference paradigm for nonlinear
controller tuning. In the results obtained for the two case
studies presented it is seen that the statistical properties of
the designed controller are quite similar to (in fact, hardly
distinguishable from) the ones predicted by the theory in
the case of linear processes and controllers.
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